精校版數(shù)學(xué)人教A版選修45優(yōu)化練習(xí):第四講 達(dá)標(biāo)檢測 Word版含解析

上傳人:仙*** 文檔編號:43283158 上傳時(shí)間:2021-11-30 格式:DOC 頁數(shù):10 大?。?11KB
收藏 版權(quán)申訴 舉報(bào) 下載
精校版數(shù)學(xué)人教A版選修45優(yōu)化練習(xí):第四講 達(dá)標(biāo)檢測 Word版含解析_第1頁
第1頁 / 共10頁
精校版數(shù)學(xué)人教A版選修45優(yōu)化練習(xí):第四講 達(dá)標(biāo)檢測 Word版含解析_第2頁
第2頁 / 共10頁
精校版數(shù)學(xué)人教A版選修45優(yōu)化練習(xí):第四講 達(dá)標(biāo)檢測 Word版含解析_第3頁
第3頁 / 共10頁

下載文檔到電腦,查找使用更方便

10 積分

下載資源

還剩頁未讀,繼續(xù)閱讀

資源描述:

《精校版數(shù)學(xué)人教A版選修45優(yōu)化練習(xí):第四講 達(dá)標(biāo)檢測 Word版含解析》由會員分享,可在線閱讀,更多相關(guān)《精校版數(shù)學(xué)人教A版選修45優(yōu)化練習(xí):第四講 達(dá)標(biāo)檢測 Word版含解析(10頁珍藏版)》請?jiān)谘b配圖網(wǎng)上搜索。

1、最新資料最新資料最新資料最新資料最新資料 達(dá)標(biāo)檢測  時(shí)間:120分鐘 滿分:150分 一、選擇題(本大題共12小題,每小題5分,共60分.在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的) 1.用數(shù)學(xué)歸納法證明“對任意x>0和正整數(shù)n,都有xn+xn-2+xn-4+…+++≥n+1”時(shí),需要驗(yàn)證的使命題成立的最小正整數(shù)值n0應(yīng)為(  ) A.n0=1         B.n0=2 C.n0=1,2 D.以上答案均不正確 解析:當(dāng)n0=1時(shí),x+≥2成立,故選A. 答案:A 2.從一樓到二樓的樓梯共有n級臺階,每步只能跨上1級或2級,走完這n級臺階共有f(n)種走法,則下

2、面的猜想正確的是(  ) A.f(n)=f(n-1)+f(n-2)(n≥3) B.f(n)=2f(n-1)(n≥2) C.f(n)=2f(n-1)-1(n≥2) D. f(n)=f(n-1) f(n-2)(n≥3) 解析:分別取n=1,2,3,4驗(yàn)證,得f(n)= 答案:A 3.設(shè)凸n邊形有f(n)條對角線,則凸n+1邊形的對角形的條數(shù)f(n+1)為(  ) A.f(n)+n+1 B.f(n)+n C.f(n)+n-1 D.f(n)+n-2 解析:凸n+1邊形的對角線的條數(shù)等于凸n邊形的對角線的條數(shù),加上多的那個(gè)點(diǎn)向其他點(diǎn)引的對角線的條數(shù)(n-2)條,再加上原來有一邊成

3、為對角線,共有f(n)+n-1條對角線,故選C. 答案:C 4.用數(shù)學(xué)歸納法證明“n3+(n+1)3+(n+2)3,n∈N+能被9整除”,利用歸納假設(shè)證n=k+1,只需展開(  ) A.(k+3)3 B.(k+2)3 C.(k+1)3 D.(k+1)3+(k+2)3 解析:n=k時(shí),式子為k3+(k+1)3+(k+2)3, n=k+1時(shí),式子為(k+1)3+(k+2)3+(k+3)3, 故只需展開(k+3)3. 答案:A 5.下列說法中正確的是(  ) A.若一個(gè)命題當(dāng)n=1,2時(shí)為真,則此命題為真命題 B.若一個(gè)命題當(dāng)n=k時(shí)成立且推得n=k+1時(shí)也成立,則這個(gè)命題

4、為真命題 C.若一個(gè)命題當(dāng)n=1,2時(shí)為真,則當(dāng)n=3時(shí)這個(gè)命題也為真 D.若一個(gè)命題當(dāng)n=1時(shí)為真,n=k時(shí)為真能推得n=k+1時(shí)亦為真,則此命題為真命題 解析:由完全歸納法可知,只有當(dāng)n的初始取值成立且由n=k成立能推得n=k+1時(shí)也成立時(shí),才可以證明結(jié)論正確,二者缺一不可.A,B,C項(xiàng)均不全面. 答案:D 6.平面內(nèi)原有k條直線,它們的交點(diǎn)個(gè)數(shù)記為f(k),則增加一條直線l后,它們的交點(diǎn)個(gè)數(shù)最多為(  ) A.f(k)+1 B.f(k)+k C.f(k)+k+1 D.k·f(k) 解析:第k+1條直線與前k條直線都相交且有不同交點(diǎn)時(shí),交點(diǎn)個(gè)數(shù)最多,此時(shí)應(yīng)比原

5、先增加k個(gè)交點(diǎn). 答案:B 7.用數(shù)學(xué)歸納法證明34n+1+52n+1(n∈N+)能被8整除時(shí),若n=k時(shí),命題成立,欲證當(dāng)n=k+1時(shí)命題成立,對于34(k+1)+1+52(k+1)+1可變形為(  ) A.56×34k+1+25(34k+1+52k+1) B.34×34k+1+52×52k C.34k+1+52k+1 D.25(34k+1+52k+1) 解析:由34(k+1)+1+52(k+1)+1=81×34k+1+25×52k+1+25×34k+1-25×34k+1 =56×34k+1+25

6、(34k+1+52k+1). 答案:A 8.?dāng)?shù)列{an}的前n項(xiàng)和Sn=n2·an(n≥2),而a1=1通過計(jì)算a2,a3,a4,猜想an等于(  ) A. B. C. D. 解析:由a2=S2-S1=4a2-1得a2== 由a3=S3-S2=9a3-4a2得a3=a2==. 由a4=S4-S3=16a4-9a3得a4=a3==,猜想an=. 答案:B 9.用數(shù)學(xué)歸納法證明(n+1)(n+2)…(n+n)=2n×1×3×…×(2n-1)(n∈N+)時(shí),從k到k+1,左邊需要增加的代數(shù)式為(  ) A.2k+1 B.2(

7、2k+1) C. D. 解析:當(dāng)n=k時(shí)左邊的最后一項(xiàng)是2k,n=k+1時(shí)左邊的最后一項(xiàng)是2k+2, 而左邊各項(xiàng)都是連續(xù)的,所以n=k+1時(shí)比n=k時(shí)左邊少了(k+1),而多了 (2k+1)·(2k+2).因此增加的代數(shù)式是=2(2k+1). 答案:B 10.把正整數(shù)按如圖所示的規(guī)律排序,則從2 018到2 020的箭頭方向依次為(  ) A.↓→ B.→↓ C.↑→ D.→↑ 解析:由2 018=4×504+2,而an=4n是每一個(gè)下邊不封閉的正方形左上頂點(diǎn)的數(shù),故應(yīng)選D. 答案:D 11.用數(shù)學(xué)歸納法證明1+2+3+…+n2=,則當(dāng)n=k

8、+1時(shí)左端應(yīng) 在n=k的基礎(chǔ)上加上(  ) A.k2 B.(k+1)2 C. D.(k2+1)+(k2+2)+…+(k+1)2 解析:∵當(dāng)n=k時(shí),左端=1+2+3+…+k2, 當(dāng)n=k+1時(shí),左端=1+2+3+…+k2+(k2+1)+(k2+2)+…+(k+1)2. 故當(dāng)n=k+1時(shí),左端應(yīng)在n=k的基礎(chǔ)上加上(k2+1)+(k2+2)+…+(k+1)2,故應(yīng)選D. 答案:D 12.若k棱柱有f(k)個(gè)對角面,則k+1棱柱的對角面的個(gè)數(shù)為(  ) A.2f(k) B.f(k)+k-1 C.f(k)+k D.f(k)+2 解析:如圖所示是k+1棱柱的一個(gè)橫截面,顯

9、然從k棱柱到k+1棱柱,增加了從Ak+1發(fā)出的對角線k-2條,即相應(yīng)對角面k-2個(gè),以及A1Ak棱變?yōu)閷蔷€(變?yōu)橄鄳?yīng)的對角面).故 f(k+1)=f(k)+(k-2)+1=f(k)+k-1. 答案:B 二、填空題(本大題共4小題,每小題4分,共16分,把答案填在題中的橫線上) 13.已知n為正偶數(shù),用數(shù)學(xué)歸納法證明1-+-+…+=2時(shí),若已假設(shè)n=k(k≥2為偶數(shù))時(shí)命題為真,則還需要用歸納假設(shè)再證n=________時(shí)等式成立. 解析:∵n=k為偶數(shù),∴下一個(gè)偶數(shù)為n=k+2. 答案:k+2 14.在數(shù)列{an}中,a1=1,且Sn,Sn+1,2S1成等差數(shù)列,則S2,S

10、3,S4分別為________,猜想Sn=________. 解析:S1=1,2Sn+1=Sn+2S1. 當(dāng)n=1時(shí),2S2=S1+2=3,S2=; 當(dāng)n=2時(shí),2S3=S2+2,S3=; 當(dāng)n=3時(shí),2S4=S3+2,S4=. 猜想Sn=. 答案:、、  15.設(shè)f(n)=…,用數(shù)學(xué)歸納法證明f(n)≥3.在“假設(shè)n=k時(shí)成立”后,f(k+1)與f(k)的關(guān)系是f(k+1)=f(k)·________. 解析:當(dāng)n=k時(shí), f(k)=…; 當(dāng)n=k+1時(shí),f(k+1) =…, 所以應(yīng)乘·. 答案:· 16. 有以下四個(gè)命題: (1)

11、2n>2n+1(n≥3). (2)2+4+6+…+2n=n2+n+2(n≥1). (3)凸n邊形內(nèi)角和為f(n)=(n-1)π(n≥3). (4)凸n邊形對角線條數(shù)f(n)=(n≥4). 其中滿足“假設(shè)n=k(k∈N+,k≥n0)時(shí)命題成立,則當(dāng)n=k+1時(shí)命題也成立.”但不滿足“當(dāng)n=n0(n0是題中給定的n的初始值)時(shí)命題成立”的命題序號是________. 解析:當(dāng)n取第一個(gè)值時(shí)經(jīng)驗(yàn)證(2),(3),(4)均不成立,(1)不符合題意,對于(4)假設(shè)n=k(k∈N+,k≥n0)時(shí)命題成立,則當(dāng)n=k+1時(shí)命題不成立.所以(2)(3)正確. 答案:(2)(3) 三、解答題

12、(本大題共有6小題,共74分,解答應(yīng)寫出文字說明、證明過程或演算步驟) 17.(12分)用數(shù)學(xué)歸納法證明對于整數(shù)n≥0,An=11n+2+122n+1能被133整除. 證明:(1)當(dāng)n=0時(shí),A0=112+12=133能被133整除. (2)假設(shè)n=k時(shí),Ak=11k+2+122k+1能被133整除. 當(dāng)n=k+1時(shí), Ak+1=11k+3+122k+3=11·11k+2+122·122k+1 =11·11k+2+11·122k+1+(122-11)·122k+1. =11·(11k+2+122k+1)+133·

13、;122k+1. ∴n=k+1時(shí),命題也成立. 根據(jù)(1)(2),對于任意整數(shù)n≥0,命題都成立. 18.(12分)設(shè){xn}是由x1=2,xn+1=+(n∈N+)定義的數(shù)列,求證:xn<+. 證明:(1)當(dāng)n=1時(shí),x1=2<+1,不等式成立. (2)假設(shè)當(dāng)n=k(k≥1)時(shí),不等式成立,即xk<+,那么,當(dāng)n=k+1時(shí),xk+1=+. 由歸納假設(shè),xk<+,則<+, >.∵xk>,∴<. ∴xk+1=+<++=+≤+. 即xk+1<+. ∴當(dāng)n=k+1時(shí),不等式xn<+成立. 綜上,得xn<+(n

14、∈N+). 19.(12分)證明:tan α·tan 2α+tan 2α·tan 3α+…+tan(n-1)α·tan nα= -n(n≥2,n∈N+). 證明:(1)當(dāng)n=2時(shí),左邊=tan α·tan 2α, 右邊=-2=·-2 =-2 ===tan α·tan 2α=左邊,等式成立. (2)假設(shè)當(dāng)n=k(k≥2,k∈N+)時(shí)等式成立,即 tan α·tan 2α+tan 2α·tan 3α+…+tan(k-1)α·tan kα=-k. 當(dāng)n=k+1時(shí), tan α·ta

15、n 2α+tan 2α·tan 3α+…+tan(k-1)α·tan kα+tan kα·tan(k+1)α =-k+tan kα·tan(k+1)α =-k =[1+tan(k+1)α·tan α]-k =[tan(k+1)α-tan α]-k =-(k+1), 所以當(dāng)n=k+1時(shí),等式也成立. 由(1)和(2)知,當(dāng)n≥2,n∈N+時(shí)等式恒成立. 20.(12分)數(shù)列{an}滿足Sn=2n-an(n∈N+). (1)計(jì)算a1,a2,a3,a4,并由此猜想通項(xiàng)公式an; (2)用數(shù)學(xué)歸納法證明(1)中的猜想. 解析:(1

16、)當(dāng)n=1時(shí),a1=S1=2-a1,∴a1=1. 當(dāng)n=2時(shí),a1+a2=S2=2×2-a2,∴a2=. 當(dāng)n=3時(shí),a1+a2+a3=S3=2×3-a3,∴a3=. 當(dāng)n=4時(shí),a1+a2+a3+a4=S4=2×4-a4, ∴a4=. 由此猜想an=(n∈N+). (2)證明:當(dāng)n=1時(shí),a1=1,結(jié)論成立. 假設(shè)n=k(k≥1且k∈N*)時(shí),結(jié)論成立,即ak=, 那么n=k+1(k≥1且k∈N+)時(shí), ak+1=Sk+1-Sk=2(k+1)-ak+1-2k+ak=2+ak-ak+1. ∴2ak+1=2+ak,∴ak+1===. 這表明n=

17、k+1時(shí),結(jié)論成立, 所以an=(n∈N+). 21.(13分)在平面內(nèi)有n條直線,每兩條直線都相交,任何三條直線不共點(diǎn),求證:這n條直線分平面為個(gè)部分. 證明:(1)當(dāng)n=1時(shí),一條直線把平面分成兩部分,而f(1)==2,所以命題成立. (2)假設(shè)當(dāng)n=k(k≥1)時(shí)命題成立,即k條直線把平面分成f(k)=個(gè)部分. 則當(dāng)n=k+1時(shí),即增加一條直線l,因?yàn)槿魏蝺蓷l直線都相交,所以l與k條直線都相交,有k個(gè)交點(diǎn);又因?yàn)槿魏稳龡l直線不共點(diǎn),所以這k個(gè)交點(diǎn)不同于k條直線的交點(diǎn),且k個(gè)交點(diǎn)也互不相同,如此k個(gè)交點(diǎn)把直線l分成k+1段,每一段把它所在的平面區(qū)域分為兩部分,故新增加了k+1個(gè)平

18、面部分. 所以f(k+1)=f(k)+k+1=+k+1==. 所以當(dāng)n=k+1時(shí)命題也成立. 由(1)(2)可知當(dāng)n∈N+時(shí),命題成立, 即平面上通過同一點(diǎn)的n條直線分平面為個(gè)部分. 22.(13分)設(shè)x1>0,x1≠1,且xn+1=,n∈N+.用數(shù)學(xué)歸納法證明:如果0<x1<1,則xn<xn+1. 證明:用數(shù)學(xué)歸納法證明: 如果0<x1<1,則0<xn<1. (1)n=1時(shí),x2=, 因?yàn)?<x1<1,所以(x1-1)3<0. 則有x+3x1<3x+1, 故x2==<1. 故n=1時(shí)命題成立. (2)當(dāng)n=k(k≥1)時(shí)命題成立, 即0<xk<1,(xk-1)3<0. 也有x+3xk<3x+1,即<1. 故xk+1==<1. 且xk+1>0. 由(1)、(2)知n∈N+時(shí)命題都成立. xn-xn+1=xn- = =<0,于是xn<xn+1. 最新精品資料

展開閱讀全文
溫馨提示:
1: 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
2: 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
3.本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
5. 裝配圖網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

相關(guān)資源

更多
正為您匹配相似的精品文檔
關(guān)于我們 - 網(wǎng)站聲明 - 網(wǎng)站地圖 - 資源地圖 - 友情鏈接 - 網(wǎng)站客服 - 聯(lián)系我們

copyright@ 2023-2025  zhuangpeitu.com 裝配圖網(wǎng)版權(quán)所有   聯(lián)系電話:18123376007

備案號:ICP2024067431-1 川公網(wǎng)安備51140202000466號


本站為文檔C2C交易模式,即用戶上傳的文檔直接被用戶下載,本站只是中間服務(wù)平臺,本站所有文檔下載所得的收益歸上傳人(含作者)所有。裝配圖網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對上載內(nèi)容本身不做任何修改或編輯。若文檔所含內(nèi)容侵犯了您的版權(quán)或隱私,請立即通知裝配圖網(wǎng),我們立即給予刪除!