《高中數(shù)學(xué)蘇教版選修22學(xué)業(yè)分層測評1 平均變化率 Word版含解析》由會員分享,可在線閱讀,更多相關(guān)《高中數(shù)學(xué)蘇教版選修22學(xué)業(yè)分層測評1 平均變化率 Word版含解析(6頁珍藏版)》請在裝配圖網(wǎng)上搜索。
1、 精品資料
學(xué)業(yè)分層測評(一)
(建議用時:45分鐘)
[學(xué)業(yè)達(dá)標(biāo)]
一、填空題
1.函數(shù)f(x)=在[2,6]上的平均變化率為________.
【解析】?。剑剑?
【答案】?。?
2.函數(shù)f(x)=log2x在區(qū)間[2,4]上的平均變化率是________.
【解析】 函數(shù)的平均變化率是==.
【答案】
3.已知某質(zhì)點的運動規(guī)律為s(t)=5t2(單位:m),則在1 s到3 s這段時間內(nèi),該質(zhì)點的平均速度為________m/s.
【解析】?。剑?0(m/s).
【答案】 20
4.在雨季潮汛期間,某水位觀測
2、員觀察千島湖水位的變化,在24 h內(nèi)發(fā)現(xiàn)水位從102.7 m上漲到105.1 m,則水位漲幅的平均變化率是________m/h.
【解析】 =0.1(m/h).
【答案】 0.1
5.已知函數(shù)f(x)=ax+b在區(qū)間[1,8]上的平均變化率為3,則實數(shù)a=________.
【解析】 對于一次函數(shù),在其定義域內(nèi)的任一區(qū)間上的平均變化率相等.與一次函數(shù)對應(yīng)直線的斜率相等.故a=3.
【答案】 3
6.已知某物體運動的速度與時間之間的關(guān)系式是v(t)=t+t3,則該物體在時間間隔內(nèi)的平均加速度為________.
【解析】 平均加速度=.
【答案】
7.設(shè)某產(chǎn)品的總成本函數(shù)為
3、C(x)=1 100+,其中x為產(chǎn)量數(shù),生產(chǎn)900個單位到1 000個單位時總成本的平均變化率為________.
【解析】 C(1 000)-C(900)=
則==.
【答案】
8.汽車行駛的路程s和時間t之間的函數(shù)圖象如圖112所示.在時間段[t0,t1],[t1,t2],[t2,t3]上的平均速度分別為1,2,3,其三者的大小關(guān)系是________.
圖112
【解析】 ∵1==kMA,
2==kAB,
3==kBC,
由圖象可知:kMA2>1.
【答案】 3>2>1
二、解答題
9.假設(shè)在生產(chǎn)8到30臺機器的情況下,生產(chǎn)x臺機器
4、的成本是c(x)=x3-6x2+15x(元),而售出x臺的收入是r(x)=x3-3x2+12x(元),則生產(chǎn)并售出10臺至20臺的過程中平均利潤是多少元?
【解】 依題意,生產(chǎn)并售出x臺所獲得的利潤是
L(x)=r(x)-c(x)=3x2-3x(元),
∴x取值從10臺至20臺的平均利潤為
=
=87(元),
故所求平均利潤為87元.
10.2015年冬至2016年春,某國北部某省冬麥區(qū)遭受嚴(yán)重干旱,根據(jù)某市農(nóng)業(yè)部門統(tǒng)計,該市小麥?zhǔn)芎得娣e如圖113所示,據(jù)圖回答:
圖113
(1)2015年11月至2015年12月間,小麥?zhǔn)芎得娣e變化大嗎?
(2)哪個時間段內(nèi),小麥?zhǔn)芎?/p>
5、面積增幅最大?
(3)從2015年11月到2016年2月,與從2016年1月到2016年2月間,試比較哪個時間段內(nèi),小麥?zhǔn)芎得娣e增幅較大?
【解】 (1)在2015年11月至2015年12月間,Δs變化不大,即小麥?zhǔn)芎得娣e變化不大.
(2)由圖形知,在2016年1月至2016年2月間,平均變化率較大,故小麥?zhǔn)芎得娣e增幅最大.
(3)在2015年11月至2016年2月間,平均變化率為,
在2016年1月至2016年2月間,平均變化率為=sB-sC,
顯 然kBC>kAB,即sB-sC>,
∴在2016年1月至2016年2月間,小麥?zhǔn)芎得娣e增幅較大.
[能力提升]
1.如圖114
6、是函數(shù)y=f(x)的圖象,則函數(shù)f(x)在區(qū)間[0,2]上的平均變化率為________.
【導(dǎo)學(xué)號:01580002】
圖114
【解析】 由函數(shù)f(x)的圖象知,
f(x)=所以,函數(shù)f(x)在區(qū)間[0,2]上的平均變化率為==.
【答案】
2.已知曲線y=-1上兩點A,B,當(dāng)Δx=1時,直線AB的斜率為________.
【解析】 ∵Δx=1,2+Δx=3,
∴f(2+Δx)-f(2)=-
=-=-.
kAB==-.
【答案】?。?
3.函數(shù)y=x3+2在區(qū)間[1,a]上的平均變化率為21,則a=________.
【解析】?。剑絘2+a+1=21.
解之得a=4或a=-5.
又∵a>1,∴a=4.
【答案】 4
4.(2016泰安檢測)巍巍泰山為我國五岳之首,有“天下第一山”之美譽,登泰山在當(dāng)?shù)赜小熬o十八,慢十八,不緊不慢又十八”的俗語來形容爬十八盤的感受,下面是一段登山路線圖.同樣是登山,但是從A處到B處會感覺比較輕松,而從B處到C處會感覺比較吃力.想想看,為什么?你能用數(shù)學(xué)語言來量化BC段曲線的陡峭程度嗎?
圖115
【解】 山路從A到B高度的平均變化率為
hAB===,
山路從B到C高度的平均變化率為
hBC===,
∵h(yuǎn)BC>hAB,
∴山路從B到C比從A到B要陡峭得多.