2019-2020學(xué)年新教材高中數(shù)學(xué) 第三章 函數(shù) 3.1 函數(shù)的概念與性質(zhì) 3.1.2 函數(shù)的單調(diào)性 第1課時 單調(diào)性的定義與證明學(xué)案 新人教B版必修第一冊

上傳人:彩*** 文檔編號:104818683 上傳時間:2022-06-11 格式:DOC 頁數(shù):11 大小:2.44MB
收藏 版權(quán)申訴 舉報 下載
2019-2020學(xué)年新教材高中數(shù)學(xué) 第三章 函數(shù) 3.1 函數(shù)的概念與性質(zhì) 3.1.2 函數(shù)的單調(diào)性 第1課時 單調(diào)性的定義與證明學(xué)案 新人教B版必修第一冊_第1頁
第1頁 / 共11頁
2019-2020學(xué)年新教材高中數(shù)學(xué) 第三章 函數(shù) 3.1 函數(shù)的概念與性質(zhì) 3.1.2 函數(shù)的單調(diào)性 第1課時 單調(diào)性的定義與證明學(xué)案 新人教B版必修第一冊_第2頁
第2頁 / 共11頁
2019-2020學(xué)年新教材高中數(shù)學(xué) 第三章 函數(shù) 3.1 函數(shù)的概念與性質(zhì) 3.1.2 函數(shù)的單調(diào)性 第1課時 單調(diào)性的定義與證明學(xué)案 新人教B版必修第一冊_第3頁
第3頁 / 共11頁

下載文檔到電腦,查找使用更方便

22 積分

下載資源

還剩頁未讀,繼續(xù)閱讀

資源描述:

《2019-2020學(xué)年新教材高中數(shù)學(xué) 第三章 函數(shù) 3.1 函數(shù)的概念與性質(zhì) 3.1.2 函數(shù)的單調(diào)性 第1課時 單調(diào)性的定義與證明學(xué)案 新人教B版必修第一冊》由會員分享,可在線閱讀,更多相關(guān)《2019-2020學(xué)年新教材高中數(shù)學(xué) 第三章 函數(shù) 3.1 函數(shù)的概念與性質(zhì) 3.1.2 函數(shù)的單調(diào)性 第1課時 單調(diào)性的定義與證明學(xué)案 新人教B版必修第一冊(11頁珍藏版)》請在裝配圖網(wǎng)上搜索。

1、第1課時 單調(diào)性的定義與證明 (教師獨具內(nèi)容) 課程標(biāo)準(zhǔn):借助函數(shù)圖像,會用符號語言表達(dá)函數(shù)的單調(diào)性、最大值、最小值,理解它們的作用和實際意義. 教學(xué)重點:函數(shù)單調(diào)性的定義及其應(yīng)用,函數(shù)單調(diào)性的證明. 教學(xué)難點:函數(shù)單調(diào)性的證明. 【情境導(dǎo)學(xué)】(教師獨具內(nèi)容) 下圖是某市一天24小時內(nèi)的氣溫變化圖,從圖中你能發(fā)現(xiàn)什么? 提示:從圖像上可以看出0~4時氣溫下降,4~14時氣溫逐漸上升,14~24時氣溫又逐漸下降. 學(xué)習(xí)了本節(jié)內(nèi)容——函數(shù)的單調(diào)性,可以使我們更好地認(rèn)識圖形,并用圖形中所揭示的規(guī)律與趨勢來指導(dǎo)我們的生活與工作. 【知識導(dǎo)學(xué)】 知識點一 增函數(shù)與減函數(shù)的定義

2、 一般地,設(shè)函數(shù)y=f(x)的定義域為D,且I?D: (1)如果對任意x1,x2∈I,當(dāng)x1>x2時,都有f(x1)>f(x2),則稱y=f(x)在I上是增函數(shù)(也稱在I上單調(diào)遞增). (2)如果對任意x1,x2∈I,當(dāng)x1>x2時,都有f(x1)

3、對任意x∈D,都有f(x)≤f(x0),則稱f(x)的最大值為f(x0),而x0稱為f(x)的最大值點;如果對任意x∈D,都有f(x)≥f(x0),則稱f(x)的最小值為f(x0),而x0稱為f(x)的最小值點.最大值和最小值統(tǒng)稱為最值,最大值點和最小值點統(tǒng)稱為最值點. 【新知拓展】 1.當(dāng)函數(shù)f(x)在其定義域內(nèi)的兩個區(qū)間A,B上都是增(減)函數(shù)時,不能說f(x)在A∪B上是增(減)函數(shù),如f(x)=在(-∞,0)上是減函數(shù),在(0,+∞)上是減函數(shù),不能說f(x)=在定義域(-∞,0)∪(0,+∞)上是減函數(shù),事實上,取x1=-1<1=x2,有f(-1)=-1<1=f(1),不符合減函

4、數(shù)的定義. 2.函數(shù)的單調(diào)性是函數(shù)在某個區(qū)間上的性質(zhì) (1)這個區(qū)間可以是整個定義域. 例如,y=x在整個定義域(-∞,+∞)上是增函數(shù),y=-x在整個定義域(-∞,+∞)上是減函數(shù). (2)這個區(qū)間也可以是定義域的真子集. 例如,y=x2在定義域(-∞,+∞)上不具有單調(diào)性,但在(-∞,0]上是減函數(shù),在[0,+∞)上是增函數(shù). (3)有的函數(shù)不具有單調(diào)性. 例如,函數(shù)y=它的定義域為R,但不具有單調(diào)性;y=x+1,x∈Z,它的定義域不是區(qū)間,也不能說它在定義域上具有單調(diào)性. 3.區(qū)間端點的寫法 對于單獨的一點,因為它的函數(shù)值是唯一確定的常數(shù),沒有增減變化,所以不存在單調(diào)性

5、問題,因此在寫單調(diào)區(qū)間時,可以包括端點,也可以不包括端點,但對于某些無意義的點,單調(diào)區(qū)間就一定不包括這些點. 例如,y=x2的單調(diào)遞增區(qū)間是[0,+∞),也可以記為(0,+∞),但函數(shù)y=在(0,+∞)上是減函數(shù),就不能寫成y=在[0,+∞)上為減函數(shù). 4.對最大(小)值定義的理解 (1)最值首先是一個函數(shù)值,即存在一個自變量x0,使f(x0)等于最值,如f(x)=-x2(x∈R)的最大值為0,有f(0)=0. (2)對于定義域內(nèi)的任意元素x,都有f(x)≤f(x0)(或f(x)≥f(x0)),“任意”兩字不可?。? (3)使函數(shù)f(x)取得最大(小)值的自變量的值有時可能不止一個.

6、 (4)函數(shù)f(x)在其定義域(某個區(qū)間)內(nèi)的最大值的幾何意義是其圖像上最高點的縱坐標(biāo);最小值的幾何意義是其圖像上最低點的縱坐標(biāo). 1.判一判(正確的打“√”,錯誤的打“×”) (1)所有函數(shù)在定義域上都具有單調(diào)性.(  ) (2)定義在(a,b)上的函數(shù)f(x),若存在x1,x2∈(a,b),使得x1

7、)任何函數(shù)都有最大值或最小值.(  ) 答案 (1)× (2)× (3)× (4)√ (5)× 2.做一做(請把正確的答案寫在橫線上) (1)已知函數(shù)f(x)=x的圖像如圖1所示,①從左至右圖像是上升的還是下降的:________. ②在區(qū)間________上,隨著x的增大,f(x)的值________,在此區(qū)間上函數(shù)是增函數(shù)還是減函數(shù):________. (2)已知函數(shù)f(x)=-2x+1的圖像如圖2所示,①從左至右圖像是上升的還是下降的:________. ②在區(qū)間________上,隨著x的增大,f(x)的值________,在此區(qū)間上函數(shù)是增函數(shù)還是減函數(shù):________

8、. (3)函數(shù)y=-x2的單調(diào)遞增區(qū)間為________,單調(diào)遞減區(qū)間為________. (4)函數(shù)f(x)=x2在[0,1]上的最大值是________. 答案 (1)①上升的?、?-∞,+∞) 增大 增函數(shù) (2)①下降的?、?-∞,+∞) 減小 減函數(shù) (3)(-∞,0] [0,+∞) (4)1 題型一 函數(shù)單調(diào)性的判斷與證明 例1 用函數(shù)單調(diào)性的定義證明: (1)函數(shù)f(x)=-2x2+3x+3在上是增函數(shù); (2)函數(shù)f(x)=在(-3,+∞)上是減函數(shù). [證明] (1)設(shè)x1,x2是上的任意兩個實數(shù),且x10,f(x2)-f(

9、x1)=(-2x+3x2+3)-(-2x+3x1+3)=2x-2x+3x2-3x1=2(x1+x2)(x1-x2)-3(x1-x2)=[2(x1+x2)-3]·(x1-x2).因為x1f(x1), 所以函數(shù)f(x)=-2x2+3x+3在上是增函數(shù). (2)設(shè)x1,x2是(-3,+∞)上的任意兩個實數(shù),且x10, f(x2)-f(x1)=-=. 因為x2-x1>0,所以-(x2-x1)<0, 由x1,x2∈

10、(-3,+∞),得x1>-3,x2>-3, 即x1+3>0,x2+3>0,所以f(x2)0, f(x2)-f(x1)=-=. 因為x2-x1>0,所以-(x2-x1)<0, 由x1,x2∈(-∞,-3),得x1<-3,x2<-3, 即x1+3<0,x2+3<0,所以f(x2)

11、睛 函數(shù)單調(diào)性的判斷 判斷函數(shù)f(x)的單調(diào)性通常有定義法和圖像法兩種.而證明單調(diào)性一般要用定義法,其一般步驟為: (1)設(shè)元:設(shè)x1,x2為區(qū)間上的任意兩個變量,且x10, f(x2)-f(x1)=- ==. ∵x1

12、>0,x1+2>0,x2+2>0,∴f(x2)>f(x1), ∴函數(shù)f(x)=在區(qū)間(0,+∞)上是增函數(shù). 題型二 求函數(shù)的單調(diào)區(qū)間 例2 畫出函數(shù)y=-x2+2|x|+3的圖像,并指出函數(shù)的單調(diào)區(qū)間. [解] 當(dāng)x≥0時, y=-x2+2x+3=-(x-1)2+4, 當(dāng)x<0時, y=-x2-2x+3=-(x+1)2+4, 即y= 作出函數(shù)的圖像如下圖所示: 所以函數(shù)在(-∞,-1)和[0,1)上是增函數(shù), 在[-1,0)和[1,+∞)上是減函數(shù). 金版點睛 求函數(shù)的單調(diào)區(qū)間 (1)求函數(shù)單調(diào)區(qū)間的常用方法有: ①轉(zhuǎn)化為已學(xué)的函數(shù)(如一次函數(shù),二次函數(shù)等

13、)利用其單調(diào)性來判斷;②圖像法;③定義法. (2)求函數(shù)的單調(diào)區(qū)間時應(yīng)首先明確函數(shù)的定義域,必須在函數(shù)的定義域內(nèi)進行.  作出函數(shù)f(x)=的圖像,并指出函數(shù)的單調(diào)區(qū)間. 解 函數(shù)f(x)=的圖像如圖所示. 由圖像可知,函數(shù)的單調(diào)遞減區(qū)間為(-∞,1]和(1,2];單調(diào)遞增區(qū)間為(2,+∞). 題型三 利用函數(shù)的單調(diào)性比較大小 例3 已知函數(shù)f(x)在區(qū)間(0,+∞)上是減函數(shù),試比較f(a2-a+1)與f的大?。? [解] ∵a2-a+1=2+≥, ∴與a2-a+1都是區(qū)間(0,+∞)上的值. 又f(x)在區(qū)間(0,+∞)上是減函數(shù), ∴f≥f(a2-

14、a+1). 金版點睛 利用函數(shù)的單調(diào)性比較大小 利用函數(shù)的單調(diào)性可以比較函數(shù)值或自變量的大小.在解決比較函數(shù)值的問題時,要注意將對應(yīng)的自變量轉(zhuǎn)化到同一個單調(diào)區(qū)間上.  若函數(shù)f(x)在區(qū)間(-∞,+∞)上是減函數(shù),則下列關(guān)系式一定成立的是(  ) A.f(a)>f(2a) B.f(a2)2a,因為函數(shù)f(x)在(-∞,+∞)上為減函數(shù),所以f(a)

15、)>f(a),故B不正確.當(dāng)a=0時,a2+a=a=0,所以f(a2+a)=f(a),故C不正確.因為a2+1>a2,函數(shù)f(x)在(-∞,+∞)上為減函數(shù),所以f(a2+1)

16、 利用函數(shù)的單調(diào)性解不等式的實質(zhì)是單調(diào)性的逆用,如果f(x1)g(1-2t),求t的取值范圍. 解 ∵函數(shù)g(x)在R上為增函數(shù),且g(t)>g(1-2t), ∴t>1-2t.∴t>,即t的取值范圍為. 題型五 利用函數(shù)的單調(diào)性求參數(shù)的取值范圍 例5 已知函數(shù)f(x)=x2+2(a-1)x+2在區(qū)間(-∞,4]上是遞減的,

17、求實數(shù)a的取值范圍. [解] f(x)=x2+2(a-1)x+2=[x+(a-1)]2-(a-1)2+2, ∴此二次函數(shù)圖像的對稱軸為x=1-a. ∴f(x)的單調(diào)減區(qū)間為(-∞,1-a]. ∵f(x)在(-∞,4]上是減函數(shù), ∴對稱軸x=1-a必須在直線x=4的右側(cè)或與其重合. ∴1-a≥4,解得a≤-3. 金版點睛 利用函數(shù)的單調(diào)性求參數(shù)的取值范圍 已知函數(shù)的單調(diào)性求參數(shù)的取值范圍的方法是:視參數(shù)為已知數(shù),依據(jù)函數(shù)的圖像或單調(diào)性的定義,確定函數(shù)的單調(diào)區(qū)間,與已知單調(diào)區(qū)間比較求參數(shù).  若函數(shù)f(x)=4x2+mx+5-m在[-2,+∞)上是增函數(shù),則實數(shù)m的取

18、值范圍為________. 答案 [16,+∞) 解析 由題意可知,二次函數(shù)圖像的對稱軸是直線x=-,若函數(shù)f(x)在[-2,+∞)上是增函數(shù),則需滿足-≤-2,即m≥16. 題型六 利用函數(shù)的單調(diào)性求最大(小)值 例6 求函數(shù)f(x)=-在區(qū)間[2,6]上的最大值和最小值. [解] 任取x1,x2∈[2,6],且x10. 于是<0,即f(x1)-f(x2)<0,所以f(x1)

19、[2,6]的左、右端點處分別取得最小值和最大值, 即f(x)max=f(6)=-,f(x)min=f(2)=-. 金版點睛 利用函數(shù)的單調(diào)性求最值 (1)利用函數(shù)的單調(diào)性求最值是求函數(shù)最值的常用方法,特別是當(dāng)函數(shù)的圖像不易作出時,單調(diào)性幾乎成為首選方法. (2)注意對問題中求最值的區(qū)間與函數(shù)的單調(diào)區(qū)間之間的關(guān)系進行辨析;注意對問題中求最值的區(qū)間的端點值的取舍.  求函數(shù)f(x)=在區(qū)間[1,2]上的最大值和最小值. 解 任取x1,x2,使1≤x1

20、x1+x2)<12,又10, 故f(x1)-f(x2)>0. 所以函數(shù)f(x)=在區(qū)間[1,2]上為減函數(shù), 所以f(x)max=f(1)=-,f(x)min=f(2)=-4. 1.函數(shù)f(x)的定義域為(a,b),且對其內(nèi)任意實數(shù)x1,x2均有(x1-x2)[f(x1)-f(x2)]<0,則函數(shù)f(x)在(a,b)上是(  ) A.增函數(shù) B.減函數(shù) C.不增不減函數(shù) D.既增又減函數(shù) 答案 B 解析 ∵(x1-x2)[f(x1)-f(x2)]<0? 或 即當(dāng)x1f(x2)或當(dāng)x1>x2時, f(x1

21、)

22、,3]上為減函數(shù),所以函數(shù)y=在[2,3]上的最小值為ymin==.故選B. 4.若二次函數(shù)f(x)=x2-2ax+m在(-∞,2]上是減函數(shù),則a的取值范圍是________. 答案 [2,+∞) 解析 題中二次函數(shù)圖像的對稱軸為x=a,由二次函數(shù)的圖像,知函數(shù)在(-∞,a]上單調(diào)遞減,∴a≥2. 5.用單調(diào)性的定義證明:函數(shù)f(x)=x+在[1,+∞)上是增函數(shù). 證明 設(shè)x1,x2∈[1,+∞),且x11,1->0. ∴f(x1)-f(x2)<0,即f(x1)

展開閱讀全文
溫馨提示:
1: 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
2: 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
3.本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
5. 裝配圖網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

相關(guān)資源

更多
正為您匹配相似的精品文檔
關(guān)于我們 - 網(wǎng)站聲明 - 網(wǎng)站地圖 - 資源地圖 - 友情鏈接 - 網(wǎng)站客服 - 聯(lián)系我們

copyright@ 2023-2025  zhuangpeitu.com 裝配圖網(wǎng)版權(quán)所有   聯(lián)系電話:18123376007

備案號:ICP2024067431-1 川公網(wǎng)安備51140202000466號


本站為文檔C2C交易模式,即用戶上傳的文檔直接被用戶下載,本站只是中間服務(wù)平臺,本站所有文檔下載所得的收益歸上傳人(含作者)所有。裝配圖網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對上載內(nèi)容本身不做任何修改或編輯。若文檔所含內(nèi)容侵犯了您的版權(quán)或隱私,請立即通知裝配圖網(wǎng),我們立即給予刪除!