2018版高考數(shù)學(xué)二輪復(fù)習(xí) 第3部分 考前增分策略 專題1 考前教材重溫 4數(shù)列與不等式教學(xué)案 理
《2018版高考數(shù)學(xué)二輪復(fù)習(xí) 第3部分 考前增分策略 專題1 考前教材重溫 4數(shù)列與不等式教學(xué)案 理》由會員分享,可在線閱讀,更多相關(guān)《2018版高考數(shù)學(xué)二輪復(fù)習(xí) 第3部分 考前增分策略 專題1 考前教材重溫 4數(shù)列與不等式教學(xué)案 理(11頁珍藏版)》請?jiān)谘b配圖網(wǎng)上搜索。
1、 4. 數(shù)列與不等式 ■要點(diǎn)重溫…………………………………………………………………………· 1.等差數(shù)列及其性質(zhì) (1){an}等差數(shù)列?an+1-an=d(d為常數(shù))或an+1-an=an-an-1 (n≥2) ?2an=an+1+an-1(n≥2,n∈N*) ?an=an+b?Sn=An2+Bn. (2)等差數(shù)列的性質(zhì) ①an=am+(n-m)d; ②當(dāng)m+n=p+q時,則有am+an=ap+aq,特別地,當(dāng)m+n=2p時,則有am+an=2ap. ③Sn=na1+d=n2+n是關(guān)于n的二次函數(shù)且常數(shù)項(xiàng)為0. ④Sn,S2n-Sn,S3n-S2n成等差數(shù)列. [應(yīng)用1
2、] 已知等差數(shù)列{an}的前n項(xiàng)和為Sn,且S10=12,S20=17,則S30為( ) A.15 B.20 C.25 D.30 [答案] A 2.等比數(shù)列及其性質(zhì) (1){an}等比數(shù)列? ?=q(q為常數(shù),q≠0)(a1≠0)?an=a1·qn-1. [應(yīng)用2] x=是a、x、b成等比數(shù)列的( ) 【導(dǎo)學(xué)號:07804176】 A.充分不必要條件 B.必要不充分條件 C.充要條件 D.既不充分又不必要條件 [解析] 若x=a=0,x=成立,但a、x、b不成等比數(shù)列, 所以充分性不成立;反之,若a、x、b成等比數(shù)列,則x2=ab?x=±,所以x=不一定成立,必
3、要性不成立.所以選D. [答案] D (2)等比數(shù)列的性質(zhì) 當(dāng)m+n=p+q時,則有am·an=ap·aq,特別地,當(dāng)m+n=2p時,則有am·an=a. [應(yīng)用3] (1)在等比數(shù)列{an}中,a3+a8=124,a4a7=-512,公比q是整數(shù),則a10=________. (2)各項(xiàng)均為正數(shù)的等比數(shù)列{an}中,若a5·a6=9,則log3a1+log3a2+…+log3a10=________. [答案] (1)512 (2)10 (3)求等比數(shù)列前n項(xiàng)和時,首先要判斷公比q是否為1,再由q的情況選擇求和公式的形式,當(dāng)不能判斷公比q是否為1時,要對q分q=1和q≠1兩種情
4、形討論求解. [應(yīng)用4] 設(shè)等比數(shù)列{an}的前n項(xiàng)和為Sn,若S3+S6=S9,則數(shù)列的公比q是________. [解析]?、佼?dāng)q=1時,S3+S6=9a1,S9=9a1, ∴S3+S6=S9成立. ②當(dāng)q≠1時,由S3+S6=S9 得+= ∴q9-q6-q3+1=0,即(q3-1)(q6-1)=0. ∵q≠1,∴q3-1≠0,∴q6=1,∴q=-1. [答案] 1或-1 3.求數(shù)列通項(xiàng)的常見類型及方法 (1)已知數(shù)列的前幾項(xiàng),求數(shù)列的通項(xiàng)公式,可采用歸納、猜想法. [應(yīng)用5] 如圖10(1),將一個邊長為1的正三角形的每條邊三等分,以中間一段為邊向外作正三角形,并擦
5、去中間一段,得到圖10(2),如此繼續(xù)下去,得圖10(3)……,試探求第n個圖形的邊長an和周長Cn. 圖10(1) 圖10(2) 圖10(3) [答案] an=,Cn=×(3×4n-1) (2)如果給出的遞推關(guān)系式符合等差或等比數(shù)列的定義,可直接利用等差或等比數(shù)列的公式寫出通項(xiàng)公式. (3)疊加法(迭加法): an=(an-an-1)+(an-1-an-2)+…+(a2-a1)+a1; 疊乘法(迭乘法): =··……·. [應(yīng)用6] 已知a1=1,an+1=2nan,求an. [答案] an=2 (4)已知Sn與an的關(guān)系,利用關(guān)系式an=求an. [應(yīng)用
6、7] 已知數(shù)列{an}的前n項(xiàng)和Sn=2n+1,則an=________. [解析] 當(dāng)n=1時,a1=S1=3. n≥2時,an=Sn-Sn-1=(2n+1)-(2n-1+1)=2n-2n-1=2n-1. 所以an=. [答案] (5)構(gòu)造轉(zhuǎn)化法:轉(zhuǎn)化為等差或等比數(shù)列求通項(xiàng)公式. [應(yīng)用8] 已知f(x)是定義在R上不恒為零的函數(shù),對于任意的x,y∈R,都有f(xy)=xf(y)+yf(x)成立.?dāng)?shù)列{an}滿足an=f(2n)(n∈N*),且a1=2,則數(shù)列{an}的通項(xiàng)公式為an=________. [解析] 令x=2,y=2n-1,則f(xy)=f(2n)=2f(2n-
7、1)+2n-1f(2),即an=2an-1+2n,=+1,所以數(shù)列是首項(xiàng)為1,公差為1的等差數(shù)列,由此可得=1+(n-1)×1=n, 即an=n·2n. [答案] n·2n 4.?dāng)?shù)列求和的方法 (1)公式法:等差數(shù)列、等比數(shù)列求和公式; (2)分組求和法; (3)倒序相加法; (4)錯位相減法; (5)裂項(xiàng)法. 如:=-;=. [應(yīng)用9] 求和:Sn=1+2x+3x2+…+nxn-1. [答案] Sn= (6)并項(xiàng)法 數(shù)列求和時要明確:項(xiàng)數(shù)、通項(xiàng),并注意根據(jù)通項(xiàng)的特點(diǎn)選取合適的方法. [應(yīng)用10] 數(shù)列{an}滿足an+an+1=(n∈N,n≥1),若a2=1,S
8、n是{an}的前n項(xiàng)和,則S21的值為________. 【導(dǎo)學(xué)號:07804177】 [答案] 5.研究數(shù)列{an}的單調(diào)性的方法: (1)an+1-an ,如an=2n-4n-5; (2) ,an=; (3)an=f(n)增減性,轉(zhuǎn)化為研究函數(shù)f(x)的增減性,如an=. [應(yīng)用11] 若an=,求數(shù)列{an}中的最大項(xiàng). [答案] a3= 6.兩個不等式相乘時,必須注意同向同正時才能相乘,同時要注意“同號可倒”,即a>b>0?<;a. [應(yīng)用12] 若實(shí)數(shù)a,b∈R且a>b,則下列不等式恒成立的是( ) A.a(chǎn)2>b2 B.>1 C.2a>2b
9、 D.lg(a-b)>0 [解析] 根據(jù)函數(shù)的圖象(圖略)與不等式可知:當(dāng)a>b時,2a>2b,故選C. [答案] C 7.用基本不等式“≥ (a,b>0)”求最值(或值域)時,要注意到條件“一正、二定、三相等”;在解答題,遇到利用基本不等式求最值的問題,要交待清楚取等號的條件.常用技巧: (1)對不能出現(xiàn)定值的式子進(jìn)行適當(dāng)配湊. (2)對已知條件的最值可代入(常數(shù)代換法)或消元. (3)當(dāng)題中等號條件不成立,可考慮從函數(shù)的單調(diào)性入手求最值. [應(yīng)用13] (1)若log4(3a+4b)=log2,則a+b的最小值是( ) A.6+2 B.7+2 C.6+4 D.7+4
10、[解析] 由題意得所以 又log4(3a+4b)=log2, 所以log4(3a+4b)=log4(ab), 所以3a+4b=ab,故+=1. 所以a+b=(a+b)=7++≥7+2 =7+4, 當(dāng)且僅當(dāng)=時取等號. [答案] D (2)已知0<x<1<y,則logxy+logyx的值域是________. 【導(dǎo)學(xué)號:07804178】 [答案] (-∞,-2] (3)函數(shù)f(x)=的值域是________. [答案] 8.求解線性規(guī)劃問題時,不能準(zhǔn)確把握目標(biāo)函數(shù)的幾何意義導(dǎo)致錯解,如是指已知區(qū)域內(nèi)的點(diǎn)與點(diǎn)(-2,2)連線的斜率,而(x-1)2+(y-1)2是指
11、已知區(qū)域內(nèi)的點(diǎn)到點(diǎn)(1,1)的距離的平方等.同時解線性規(guī)劃問題,要注意邊界的虛實(shí);注意目標(biāo)函數(shù)中y的系數(shù)的正負(fù). [應(yīng)用14] 若實(shí)數(shù)x,y滿足,且x2+y2的最大值等于34,則正實(shí)數(shù)a的值等于( ) A. B. C. D.3 [解析] 做出可行域,如圖所示,x2+y2表示點(diǎn)(x,y)與(0,0)距離的平方,由圖知,可行域中的點(diǎn)B離(0,0)最遠(yuǎn),故x2+y2的最大值為+32=34?a=,故選B. [答案] B 9.解答不等式恒成立問題的常用方法 (1)結(jié)合二次函數(shù)的圖象和性質(zhì)用判別式法,當(dāng)x的取值為全體實(shí)數(shù)時,一般應(yīng)用此法. (2)從函數(shù)的最值入手考慮,如大于零恒成立可
12、轉(zhuǎn)化最小值大于零.
(3)能分離變量的,盡量把參變量和變量分離出來.
(4)數(shù)形結(jié)合,結(jié)合圖形進(jìn)行分析,從整體上把握圖形.
[應(yīng)用15] 如果kx2+2kx-(k+2)<0恒成立,則實(shí)數(shù)k的取值范圍是________.
【導(dǎo)學(xué)號:07804179】
A.-1≤k≤0 B.-1≤k<0
C.-1 13、)]max.
[應(yīng)用16] 已知函數(shù)f(x)= ,其中a∈R,若對任意非零實(shí)數(shù)x1,存在唯一實(shí)數(shù)x2(x1≠x2),使得f(x1)=f(x2)成立,則實(shí)數(shù)k的最小值為( )
A.-8 B.-6
C.6 D.8
[解析] 由數(shù)形結(jié)合討論知f(x)在(-∞,0)遞減,在(0,+∞)遞增,
∴ ? ? ,令g(a)=,則g(a)=-1(0≤a<1)且g′(a)=-(0≤a<1),
∴g(a)在上遞減,在上遞增,
即kmin=g=8.
[答案] D
■查缺補(bǔ)漏…………………………………………………………………………·
1.已知實(shí)數(shù)x,y滿足ax
- 溫馨提示:
1: 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
2: 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
3.本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
5. 裝配圖網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 領(lǐng)導(dǎo)班子2024年度民主生活會對照檢查材料范文(三篇)
- 金融工作主題黨課講稿范文(匯編)
- 鍋爐必備學(xué)習(xí)材料
- 鍋爐設(shè)備的檢修
- 主題黨課講稿:走中國特色金融發(fā)展之路加快建設(shè)金融強(qiáng)國(范文)
- 鍋爐基礎(chǔ)知識:啟爐注意事項(xiàng)技術(shù)問答題
- 領(lǐng)導(dǎo)班子2024年度民主生活會“四個帶頭”對照檢查材料范文(三篇)
- 正常運(yùn)行時影響鍋爐汽溫的因素和調(diào)整方法
- 3.鍋爐檢修模擬考試復(fù)習(xí)題含答案
- 司爐作業(yè)人員模擬考試試卷含答案-2
- 3.鍋爐閥門模擬考試復(fù)習(xí)題含答案
- 某公司鍋爐安全檢查表
- 3.工業(yè)鍋爐司爐模擬考試題庫試卷含答案
- 4.司爐工考試題含答案解析
- 發(fā)電廠鍋爐的運(yùn)行監(jiān)視和調(diào)整