2019高考數(shù)學(xué)二輪復(fù)習(xí) 專題五 解析幾何學(xué)案 理
《2019高考數(shù)學(xué)二輪復(fù)習(xí) 專題五 解析幾何學(xué)案 理》由會員分享,可在線閱讀,更多相關(guān)《2019高考數(shù)學(xué)二輪復(fù)習(xí) 專題五 解析幾何學(xué)案 理(93頁珍藏版)》請在裝配圖網(wǎng)上搜索。
1、專題五 解析幾何 [全國卷3年考情分析] 第一講 小題考法——直線與圓 考點(一) 直線的方程 主要考查直線方程、兩條直線的位置關(guān)系及三個距離公式的應(yīng)用. [典例感悟] [典例] (1)“ab=4”是“直線2x+ay-1=0與直線bx+2y-2=0平行”的( ) A.充要條件 B.充分不必要條件 C.必要不充分條件 D.既不充分也不必要條件 (2)過直線l1:x-2y+3=0與直線l2:2x+3y-8=0的交點,且到點P(0,4)距離為2的直線方程為( ) A.y=2 B.4x-3y+2=0 C.x=2 D.y=2或4x-3y+2=
2、0 [解析] (1)因為兩直線平行,所以2×2-ab=0,可得ab=4,必要性成立,又當(dāng)a=1,b=4時,滿足ab=4,但是兩直線重合,充分性不成立,故選C. (2)由得∴l(xiāng)1與l2的交點為(1,2).當(dāng)所求直線斜率不存在,即直線方程為x=1時,顯然不滿足題意. 當(dāng)所求直線斜率存在時,設(shè)該直線方程為y-2=k(x-1),即kx-y+2-k=0, ∵點P(0,4)到直線的距離為2, ∴2=,∴k=0或k=. ∴直線方程為y=2或4x-3y+2=0. [答案] (1)C (2)D [方法技巧] 直線方程問題的2個關(guān)注點 (1)求解兩條直線平行的問題時,在利用A1B2-A2B1=
3、0建立方程求出參數(shù)的值后,要注意代入檢驗,排除兩條直線重合的情況. (2)求直線方程時應(yīng)根據(jù)條件選擇合適的方程形式,同時要考慮直線斜率不存在的情況. [演練沖關(guān)] 1.(2018·洛陽模擬)已知直線l1:x+my-1=0,l2:nx+y-p=0,則“m+n=0”是“l(fā)1⊥l2”的( ) A.充分不必要條件 B.必要不充分條件 C.充要條件 D.既不充分也不必要條件 解析:選C?、偃鬽+n=0,當(dāng)m=n=0時,直線l1:x-1=0與直線l2:y-p=0互相垂直;當(dāng)m=-n≠0時,直線l1的斜率為-,直線l2的斜率為-n,∵-·(-n)=-
4、·m=-1,∴l(xiāng)1⊥l2.②當(dāng)l1⊥l2時,若m=0,l1:x-1=0,則n=0,此時m+n=0;若m≠0,則-·(-n)=-1,即-n=m,有m+n=0.故選C. 2.若直線l1:x+ay+6=0與l2:(a-2)x+3y+2a=0平行,則l1與l2間的距離為( ) A. B. C. D. 解析:選B 由l1∥l2,得(a-2)a=1×3,且a×2a≠3×6,解得a=-1,所以l1:x-y+6=0,l2:x-y+=0,所以l1與l2間的距離d==. 3.直線x+2y-3=0與直線ax+4y+b=0關(guān)于點A(1,0)對稱,則b=________. 解析:因為兩直線關(guān)于點
5、A(1,0)對稱,在直線x+2y-3=0上取兩點M(1,1),N(5,-1),M,N關(guān)于點A(1,0)對稱的點分別為M′(1,-1),N′(-3,1),則M′(1,-1),N′(-3,1)都在直線ax+4y+b=0上,即解得a=b=2. 答案:2 考點(二) 圓 的 方 程 主要考查圓的方程的求法,常涉及弦長公式、直線與圓相切等問題. [典例感悟] [典例] (1)已知三點A(1,0),B(0,),C(2,),則△ABC外接圓的圓心到原點的距離為( ) A. B. C. D. (2)已知圓C的圓心是直線x-y+1=0與x軸的交點,且圓C與直線x+
6、y+3=0相切,則圓C的方程為____________________. [解析] (1)設(shè)圓的一般方程為x2+y2+Dx+Ey+F=0(D2+E2-4F>0), ∴∴ ∴△ABC外接圓的圓心為,故△ABC外接圓的圓心到原點的距離為 =. (2)易知直線x-y+1=0與x軸的交點為(-1,0), 即圓C的圓心坐標為(-1,0). 因為直線x+y+3=0與圓C相切, 所以圓心(-1,0)到直線x+y+3=0的距離等于半徑r,即r==, 所以圓C的方程為(x+1)2+y2=2. [答案] (1)B (2)(x+1)2+y2=2 [方法技巧] 圓的方程的2種求法 待定系
7、 數(shù)法 ①根據(jù)題意,選擇方程形式(標準方程或一般方程); ②根據(jù)條件列出關(guān)于a,b,r或D、E、F的方程組; ③解出a,b,r或D、E、F,代入所選的方程中即可 幾何法 在求圓的方程過程中,常利用圓的一些性質(zhì)或定理直接求出圓心和半徑,進而可寫出標準方程.常用的幾何性質(zhì)有: ①圓心在過切點且與切線垂直的直線上; ②圓心在任一弦的中垂線上; ③兩圓內(nèi)切或外切時,切點與兩圓圓心在一條直線上 [演練沖關(guān)] 1.(2018·長沙模擬)與圓(x-2)2+y2=4關(guān)于直線y=x對稱的圓的方程是( ) A.(x-)2+(y-1)2=4 B.(x-)2+(y-)2=4 C.x2+
8、(y-2)2=4 D.(x-1)2+(y-)2=4 解析:選D 圓與圓關(guān)于直線對稱,則圓的半徑相同,只需圓心關(guān)于直線對稱即可.由題意知已知圓的圓心坐標為(2,0),半徑為2,設(shè)所求圓的圓心坐標為(a,b), 則解得 所以所求圓的圓心坐標為(1,),半徑為2. 從而所求圓的方程為(x-1)2+(y-)2=4. 2.(2018·廣州模擬)若一個圓的圓心是拋物線x2=4y的焦點,且該圓與直線y=x+3相切,則該圓的標準方程是________________. 解析:拋物線x2=4y的焦點為(0,1),即圓心為(0,1),設(shè)該圓的標準方程是x2+(y-1)2=r2(r>0),因為該圓與直
9、線y=x+3相切,所以r==,故該圓的標準方程是x2+(y-1)2=2. 答案:x2+(y-1)2=2 3.(2018·惠州調(diào)研)圓心在直線x-2y=0上的圓C與y軸的正半軸相切,圓C截x軸所得弦的長為2,則圓C的標準方程為________________. 解析:設(shè)圓心坐標為(a,b),半徑為r.由已知又圓心(a,b)到y(tǒng)軸、x軸的距離分別為|a|,|b|,所以|a|=r,|b|2+3=r2.綜上,解得a=2,b=1,r=2,所以圓心坐標為(2,1),圓C的標準方程為(x-2)2+(y-1)2=4. 答案:(x-2)2+(y-1)2=4 4.已知a∈R,方程a2x2+(a+2)y2
10、+4x+8y+5a=0表示圓,則圓心坐標是________,半徑是________. 解析:由二元二次方程表示圓的條件可得a2=a+2≠0,解得a=2或-1.當(dāng)a=2時,方程為4x2+4y2+4x+8y+10=0,即x2+y2+x+2y+=0,配方得2+(y+1)2=-<0,不表示圓;當(dāng)a=-1時,方程為x2+y2+4x+8y-5=0,配方得(x+2)2+(y+4)2=25,則圓心坐標為(-2,-4),半徑是5. 答案:(-2,-4) 5 考點(三) 直線與圓的位置關(guān)系 主要考查直線與圓位置關(guān)系的判斷、根據(jù)直線與圓的位置關(guān)系解決弦長問題、參數(shù)問題或與圓有關(guān)的最值范圍問題.
11、 [典例感悟] [典例] (1)(2019屆高三·齊魯名校聯(lián)考)已知圓x2-2x+y2-2my+2m-1=0,當(dāng)圓的面積最小時,直線y=x+b與圓相切,則b=( ) A.±1 B.1 C.± D. (2)(2018·全國卷Ⅲ)直線x+y+2=0分別與x軸,y軸交于A,B兩點,點P在圓(x-2)2+y2=2上,則△ABP面積的取值范圍是( ) A.[2,6] B.[4,8] C.[,3] D.[2,3] (3)已知點P(x,y)在圓x2+(y-1)2=1上運動,則的最大值與最小值分別為________. [解析] (1)由題意可知,圓x2-2x+y2-2
12、my+2m-1=0化為標準形式為(x-1)2+(y-m)2=m2-2m+2,圓心為(1,m),半徑r=,當(dāng)圓的面積最小時,半徑r=1,此時m=1,即圓心為(1,1),由直線和圓相切的條件可知=1,解得b=±.故選C. (2)設(shè)圓(x-2)2+y2=2的圓心為C,半徑為r,點P到直線x+y+2=0的距離為d, 則圓心C(2,0),r=, 所以圓心C到直線x+y+2=0的距離為=2, 可得dmax=2+r=3,dmin=2-r=. 由已知條件可得|AB|=2, 所以△ABP面積的最大值為|AB|·dmax=6, △ABP面積的最小值為|AB|·dmin=2. 綜上,△ABP面積的取
13、值范圍是[2,6]. (3)設(shè)=k,則k表示點P(x,y)與點A(2,1)連線的斜率.當(dāng)直線PA與圓相切時,k取得最大值與最小值.設(shè)過(2,1)的直線方程為y-1=k(x-2),即kx-y+1-2k=0.由=1,解得k=±. [答案] (1)C (2)A (3),- [方法技巧] 1.直線(圓)與圓位置關(guān)系問題的求解思路 (1)研究直線與圓的位置關(guān)系主要通過將圓心到直線的距離同半徑做比較實現(xiàn),兩圓位置關(guān)系的判斷依據(jù)是兩圓心距離與兩半徑差與和的大小關(guān)系. (2)直線與圓相切時利用“切線與過切點的半徑垂直,圓心到切線的距離等于半徑”建立關(guān)于切線斜率的等式,所以求切線方程時主要選擇點斜式
14、.過圓外一點求解切線段長的問題,可先求出圓心到圓外點的距離,再結(jié)合半徑利用勾股定理計算. 2.與圓有關(guān)最值問題的求解策略 處理與圓有關(guān)的最值問題時,應(yīng)充分考慮圓的幾何性質(zhì),并根據(jù)代數(shù)式的幾何意義,利用轉(zhuǎn)化思想和數(shù)形結(jié)合思想求解.與圓有關(guān)的最值問題,常見類型及解題思路如下: 常見類型 解題思路 圓的面積最小問題 轉(zhuǎn)化為求半徑最小問題 圓上的點到圓外的點(直 線)的距離的最值 應(yīng)先求圓心到圓外的點(直線)的距離,再加上半徑或減去半徑求得最值 μ=型 轉(zhuǎn)化為動直線斜率的最值問題 t=ax+by型 轉(zhuǎn)化為動直線截距的最值問題,或用三角代換求解 m=(x-a)2+(y-b)2
15、型 轉(zhuǎn)化為動點與定點的距離的平方的最值問題 [演練沖關(guān)] 1.(2018·寧夏銀川九中模擬)直線l:kx+y+4=0(k∈R)是圓C:x2+y2+4x-4y+6=0的一條對稱軸,過點A(0,k)作斜率為1的直線m,則直線m被圓C所截得的弦長為( ) A. B. C. D.2 解析:選C 圓C:x2+y2+4x-4y+6=0,即(x+2)2+(y-2)2=2,表示以C(-2,2)為圓心,為半徑的圓.由題意可得,直線l:kx+y+4=0經(jīng)過圓心C(-2,2),所以-2k+2+4=0,解得k=3,所以點A(0,3),故直線m的方程為y=x+3,即x-y+3=0,則圓心C到直線m
16、的距離d==,所以直線m被圓C所截得的弦長為2× =.故選C. 2.(2018·江蘇蘇州二模)已知直線l1:x-2y=0的傾斜角為α,傾斜角為2α的直線l2與圓M:x2+y2+2x-2y+F=0交于A,C兩點,其中A(-1,0),B,D在圓M上,且位于直線l2的兩側(cè),則四邊形ABCD的面積的最大值是________. 解析:由題意知,tan α=,則tan 2α==. 直線l2過點A(-1,0),則l2:y=(x+1),即4x-3y+4=0, 又A是圓M上的點,則(-1)2+2×(-1)+F=0,得F=1, 圓M的標準方程為(x+1)2+(y-1)2=1,圓心M(-1,1), 其到
17、l2的距離d==. 則|AC|=2=. 因為B,D兩點在圓上,且位于直線l2的兩側(cè),則四邊形ABCD的面積可以看成是△ABC和△ACD的面積之和,如圖所示,當(dāng)BD垂直平分AC(即BD為直徑)時,兩三角形的面積之和最大,即四邊形ABCD的面積最大,此時AC,BD相交于點E,則最大面積S=×|AC|×|BE|+×|AC|×|DE|=×|AC|×|BD|=××2=. 答案: 3.(2018·廣西桂林中學(xué)5月模擬)已知從圓C:(x+1)2+(y-2)2=2外一點P(x1,y1)向該圓引一條切線,切點為M,O為坐標原點,且有|PM|=|PO|,則當(dāng)|PM|取最小值時點P的坐標為_________
18、___. 解析:如圖所示,連接CM,CP.由題意知圓心C(-1,2),半徑r=.因為|PM|=|PO|,所以|PO|2+r2=|PC|2,所以x+y+2=(x1+1)2+(y1-2)2,即2x1-4y1+3=0.要使|PM|的值最小,只需|PO|的值最小即可.當(dāng)PO垂直于直線2x-4y+3=0時,即PO所在直線的方程為2x+y=0時,|PM|的值最小,此時點P為兩直線的交點,則解得故當(dāng)|PM|取最小值時點P的坐標為. 答案: [必備知能·自主補缺] 依據(jù)學(xué)情課下看,針對自身補缺漏;臨近高考再瀏覽,考前溫故熟主干 [主干知識要記牢] 1.直線方程的五種形式 點斜式 y-y1=k(
19、x-x1)(直線過點P1(x1,y1),且斜率為k,不能表示y軸和平行于y軸的直線) 斜截式 y=kx+b(b為直線在y軸上的截距,且斜率為k,不能表示y軸和平行于y軸的直線) 兩點式 =(直線過點P1(x1,y1),P2(x2,y2),且x1≠x2,y1≠y2,不能表示坐標軸和平行于坐標軸的直線) 截距式 +=1(a,b分別為直線的橫、縱截距,且a≠0,b≠0,不能表示坐標軸、平行于坐標軸和過原點的直線) 一般式 Ax+By+C=0(其中A,B不同時為0) 2.點到直線的距離及兩平行直線間的距離 (1)點P(x0,y0)到直線Ax+By+C=0的距離為d=. (2)
20、兩平行線l1:Ax+By+C1=0,l2:Ax+By+C2=0間的距離為d=.
3.圓的方程
(1)圓的標準方程:(x-a)2+(y-b)2=r2.
(2)圓的一般方程:x2+y2+Dx+Ey+F=0(D2+E2-4F>0).
(3)圓的直徑式方程:(x-x1)(x-x2)+(y-y1)(y-y2)=0(圓的直徑的兩端點是A(x1,y1),B(x2,y2)).
4.直線與圓位置關(guān)系的判定方法
(1)代數(shù)方法(判斷直線與圓方程聯(lián)立所得方程組的解的情況):Δ>0?相交,Δ<0?相離,Δ=0?相切.
(2)幾何方法(比較圓心到直線的距離與半徑的大小):設(shè)圓心到直線的距離為d,則d 21、相交,d>r?相離,d=r?相切.
5.圓與圓的位置關(guān)系
已知兩圓的圓心分別為O1,O2,半徑分別為r1,r2,則
(1)當(dāng)|O1O2|>r1+r2時,兩圓外離;
(2)當(dāng)|O1O2|=r1+r2時,兩圓外切;
(3)當(dāng)|r1-r2|<|O1O2|<r1+r2時,兩圓相交;
(4)當(dāng)|O1O2|=|r1-r2|時,兩圓內(nèi)切;
(5)當(dāng)0≤|O1O2|<|r1-r2|時,兩圓內(nèi)含.
[二級結(jié)論要用好]
1.直線l1:A1x+B1y+C1=0與直線l2:A2x+B2y+C2=0的位置關(guān)系
(1)平行?A1B2-A2B1=0且B1C2-B2C1≠0;
(2)重合?A1B2-A2 22、B1=0且B1C2-B2C1=0;
(3)相交?A1B2-A2B1≠0;
(4)垂直?A1A2+B1B2=0.
[針對練1] 若直線l1:mx+y+8=0與l2:4x+(m-5)y+2m=0垂直,則m=________.
解析:∵l1⊥l2,∴4m+(m-5)=0,∴m=1.
答案:1
2.若點P(x0,y0)在圓x2+y2=r2上,則圓過該點的切線方程為:x0x+y0y=r2.
[針對練2] 過點(1,)且與圓x2+y2=4相切的直線l的方程為____________.
解析:∵點(1,)在圓x2+y2=4上,
∴切線方程為x+y=4,即x+y-4=0.
答案:x+y-4 23、=0
[易錯易混要明了]
1.易忽視直線方程幾種形式的限制條件,如根據(jù)直線在兩坐標軸上的截距相等設(shè)方程時,未討論截距為0的情況,直接設(shè)為+=1;再如,未討論斜率不存在的情況直接將過定點P(x0,y0)的直線設(shè)為y-y0=k(x-x0)等.
[針對練3] 已知直線過點P(1,5),且在兩坐標軸上的截距相等,則此直線的方程為__________________.
解析:當(dāng)截距為0時,直線方程為5x-y=0;
當(dāng)截距不為0時,設(shè)直線方程為+=1,代入P(1,5),得a=6,
∴直線方程為x+y-6=0.
答案:5x-y=0或x+y-6=0
2.討論兩條直線的位置關(guān)系時,易忽視系數(shù)等于 24、零時的討論導(dǎo)致漏解,如兩條直線垂直,若一條直線的斜率不存在,則另一條直線斜率為0.如果利用直線l1:A1x+B1y+C1=0與l2:A2x+B2y+C2=0垂直的充要條件A1A2+B1B2=0,就可以避免討論.
[針對練4] 已知直線l1:(t+2)x+(1-t)y=1與l2:(t-1)x+(2t+3)y+2=0互相垂直,則t的值為________.
解析:∵l1⊥l2,∴(t+2)(t-1)+(1-t)(2t+3)=0,解得t=1或t=-1.
答案:-1或1
3.求解兩條平行線之間的距離時,易忽視兩直線系數(shù)不相等,而直接代入公式,導(dǎo)致錯解.
[針對練5] 兩平行直線3x+4y-5= 25、0與6x+8y+5=0間的距離為________.
解析:把直線6x+8y+5=0化為3x+4y+=0,故兩平行線間的距離d==.
答案:
4.易誤認為兩圓相切即為兩圓外切,忽視兩圓內(nèi)切的情況導(dǎo)致漏解.
[針對練6] 已知兩圓x2+y2-2x-6y-1=0,x2+y2-10x-12y+m=0相切,則m=________.
解析:由x2+y2-2x-6y-1=0,得(x-1)2+(y-3)2=11,由x2+y2-10x-12y+m=0,得(x-5)2+(y-6)2=61-m.當(dāng)兩圓外切時,有=+,解得m=25+10;當(dāng)兩圓內(nèi)切時,有=,解得m=25-10.
答案:25±10
A 26、級——12+4提速練
一、選擇題
1.已知直線l1:x+2ay-1=0,l2:(a+1)x-ay=0,若l1∥l2,則實數(shù)a的值為( )
A.- B.0
C.-或0 D.2
解析:選C 由l1∥l2得1×(-a)=2a(a+1),即2a2+3a=0,解得a=0或a=-.經(jīng)檢驗,當(dāng)a=0或a=-時均有l(wèi)1∥l2,故選C.
2.(2018·貴陽模擬)經(jīng)過三點A(-1,0),B(3,0),C(1,2)的圓的面積S=( )
A.π B.2π
C.3π D.4π
解析:選D 法一:設(shè)圓的方程為x2+y2+Dx+Ey+F=0(D2+E2-4F>0),將A(- 27、1,0),B(3,0),C(1,2)的坐標代入圓的方程可得解得D=-2,E=0,F(xiàn)=-3,所以圓的方程為x2+y2-2x-3=0,即(x-1)2+y2=4,所以圓的半徑r=2,所以S=4π.故選D.
法二:根據(jù)A,B兩點的坐標特征可知圓心在直線x=1上,設(shè)圓心坐標為(1,a),則r==|a-2|,所以a=0,r=2,所以S=4π,故選D.
3.已知圓(x-1)2+y2=1被直線x-y=0分成兩段圓弧,則較短弧長與較長弧長之比為( )
A.1∶2 B.1∶3
C.1∶4 D.1∶5
解析:選A (x-1)2+y2=1的圓心為(1,0),半徑為1.圓心到直線的距離d==,所以較短弧 28、所對的圓心角為,較長弧所對的圓心角為,故兩弧長之比為1∶2,故選A.
4.(2018·山東臨沂模擬)已知直線3x+ay=0(a>0)被圓(x-2)2+y2=4所截得的弦長為2,則a的值為( )
A. B.
C.2 D.2
解析:選B 由已知條件可知,圓的半徑為2,又直線被圓所截得的弦長為2,故圓心到直線的距離為,即=,得a=.
5.(2018·鄭州模擬)已知圓(x-a)2+y2=1與直線y=x相切于第三象限,則a的值是( )
A. B.-
C.± D.-2
解析:選B 依題意得,圓心(a,0)到直線x-y=0的距離等于半徑,即有=1,|a|=.又切點位于第三象限,結(jié) 29、合圖形(圖略)可知,a=-,故選B.
6.(2018·山東濟寧模擬)已知圓C過點A(2,4),B(4,2),且圓心C在直線x+y=4上,若直線x+2y-t=0與圓C相切,則t的值為( )
A.-6±2 B.6±2
C.2±6 D.6±4
解析:選B 因為圓C過點A(2,4),B(4,2),所以圓心C在線段AB的垂直平分線y=x上,又圓心C在直線x+y=4上,聯(lián)立解得x=y(tǒng)=2,即圓心C(2,2),圓C的半徑r==2.又直線x+2y-t=0與圓C相切,所以=2,解得t=6±2.
7.若過點A(1,0)的直線l與圓C:x2+y2-6x-8y+21=0相交于P,Q兩點,線段PQ的中點 30、為M,l與直線x+2y+2=0的交點為N,則|AM|·|AN|的值為( )
A.5 B.6
C.7 D.8
解析:選B 圓C的方程化成標準方程可得(x-3)2+(y-4)2=4,故圓心C(3,4),半徑為2,則可設(shè)直線l的方程為kx-y-k=0(k≠0),由得N,又直線CM與l垂直,得直線CM的方程為y-4=-(x-3).
由
得M,
則|AM|·|AN|=·=××=6.故選B.
8.(2019屆高三·湘東五校聯(lián)考)圓(x-3)2+(y-3)2=9上到直線3x+4y-11=0的距離等于2的點有( )
A.1個 B.2個
C.3個 D.4個
解析:選B 圓(x-3 31、)2+(y-3)2=9的圓心為(3,3),半徑為3,圓心到直線3x+4y-11=0的距離d==2,∴圓上到直線3x+4y-11=0的距離為2的點有2個.故選B.
9.圓x2+y2=1上的點到直線3x+4y-25=0的距離的最小值為( )
A.4 B.3
C.5 D.6
解析:選A 易知圓x2+y2=1的圓心坐標為(0,0),半徑為1,圓心到直線3x+4y-25=0的距離d==5,所以圓x2+y2=1上的點到直線3x+4y-25=0的距離的最小值為5-1=4.
10.(2019屆高三·西安八校聯(lián)考)若過點A(3,0)的直線l與曲線(x-1)2+y2=1有公共點,則直線l斜率的取值 32、范圍為( )
A.(-,) B.[-, ]
C. D.
解析:選D 數(shù)形結(jié)合可知,直線l的斜率存在,設(shè)直線l的方程為y=k(x-3),則圓心(1,0)到直線y=k(x-3)的距離應(yīng)小于等于半徑1,即≤1,解得-≤k≤,故選D.
11.在平面直角坐標系xOy中,已知A(-1,0),B(0,1),則滿足|PA|2-|PB|2=4且在圓x2+y2=4上的點P的個數(shù)為( )
A.0 B.1
C.2 D.3
解析:選C 設(shè)P(x,y),則由|PA|2-|PB|2=4,得(x+1)2+y2-x2-(y-1)2=4,所以x+y-2=0.求滿足條件的點P的個數(shù)即為求直線與圓的交點個數(shù) 33、,圓心到直線的距離d==<2=r,所以直線與圓相交,交點個數(shù)為2.故滿足條件的點P有2個.
12.在平面直角坐標系xOy中,已知點A(0,-2),點B(1,-1),P為圓x2+y2=2上一動點,則的最大值是( )
A.1 B.3
C.2 D.
解析:選C 設(shè)動點P(x,y),令=t(t>0),則=t2,整理得,(1-t2)x2+(1-t2)y2-2x+(2-4t2)y+2-4t2=0,(*)
易知當(dāng)1-t2≠0時,(*)式表示一個圓,且動點P在該圓上,
又點P在圓x2+y2=2上,所以點P為兩圓的公共點,兩圓方程相減得兩圓公共弦所在直線l的方程為x-(1-2t2)y-2+3t 34、2=0,
所以圓心(0,0)到直線l的距離d=≤,解得0 35、故a=3.
答案:3
15.過點M的直線l與圓C:(x-1)2+y2=4交于A,B兩點,C為圓心,當(dāng)∠ACB最小時,直線l的方程為____________________.
解析:易知當(dāng)CM⊥AB時,∠ACB最小,直線CM的斜率為kCM==-2,從而直線l的斜率為kl=-=,其方程為y-1=,即2x-4y+3=0.
答案:2x-4y+3=0
16.(2018·南寧、柳州模擬)過點(,0)作直線l與曲線y=相交于A,B兩點,O為坐標原點,當(dāng)△AOB的面積取最大值時,直線l的斜率等于________.
解析:令P(,0),如圖,易知|OA|=|OB|=1,所以S△AOB=|OA|·|O 36、B|·sin∠AOB=sin∠AOB≤,當(dāng)∠AOB=90°時,△AOB的面積取得最大值,此時過點O作OH⊥AB于點H,則|OH|=,于是sin∠OPH===,易知∠OPH為銳角,所以∠OPH=30°,則直線AB的傾斜角為150°,故直線AB的斜率為tan 150°=-.
答案:-
B級——難度小題強化練
1.(2018·重慶模擬)已知圓C:(x-2)2+y2=2,直線l:y=kx,其中k為[-,]上的任意一個數(shù),則事件“直線l與圓C相離”發(fā)生的概率為( )
A. B.
C. D.
解析:選D 當(dāng)直線l與圓C相離時,圓心C到直線l的距離d=>,解得k>1或k<-1,又k∈[- 37、,],所以-≤k<-1或1 38、設(shè)直線l的方程為y=kx+3,由弦長為2可知,圓心到該直線的距離為1,從而有=1,解得k=-,此時方程為y=-x+3,即3x+4y-12=0.綜上,直線l的方程為x=0或3x+4y-12=0,故選B.
3.(2018·安徽黃山二模)已知圓O:x2+y2=1,點P為直線+=1上一動點,過點P向圓O引兩條切線PA,PB,A,B為切點,則直線AB經(jīng)過定點( )
A. B.
C. D.
解析:選B 因為點P是直線+=1上的一動點,所以設(shè)P(4-2m,m).
因為PA,PB是圓x2+y2=1的兩條切線,切點分別為A,B,所以O(shè)A⊥PA,OB⊥PB,所以點A,B在以O(shè)P為直徑的圓C上,即 39、弦AB是圓O和圓C的公共弦.
因為圓心C的坐標是,且半徑的平方r2=,所以圓C的方程為(x-2+m)22=,①
又x2+y2=1,②
所以②-①得,(2m-4)x-my+1=0,即公共弦AB所在的直線方程為(2x-y)m+(-4x+1)=0,所以由得所以直線AB過定點.故選B.
4.(2018·南昌第一次模擬)如圖,在平面直角坐標系xOy中,直線y=2x+1與圓x2+y2=4相交于A,B兩點,則cos∠AOB=( )
A. B.-
C. D.-
解析:選D 法一:因為圓x2+y2=4的圓心為O(0,0),半徑為2,所以圓心O到直線y=2x+1的距離d==,所以弦長|AB|= 40、2=2.在△AOB中,由余弦定理得cos∠AOB===-.
法二:取AB的中點D,連接OD(圖略),則OD⊥AB,且∠AOB=2∠AOD,又圓心到直線的距離d==,即|OD|=,所以cos∠AOD==,故cos∠AOB=2cos2∠AOD-1=2×2-1=-.
5.已知圓C:x2+y2-2x-4y+1=0上存在兩點關(guān)于直線l:x+my+1=0對稱,經(jīng)過點M(m,m)作圓C的切線,切點為P,則|MP|=________.
解析:圓C:x2+y2-2x-4y+1=0的圓心坐標為C(1,2),半徑r=2,因為圓上存在兩點關(guān)于直線l對稱,所以直線l:x+my+1=0過點(1,2),所以1+2m+ 41、1=0,得m=-1,所以M(-1,-1),|MC|2=(1+1)2+(2+1)2=13,r2=4,所以|MP|==3.
答案:3
6.(2019屆高三·湘中名校聯(lián)考)已知m>0,n>0,若直線(m+1)x+(n+1)y-2=0與圓(x-1)2+(y-1)2=1相切,則m+n的取值范圍是____________.
解析:因為m>0,n>0,直線(m+1)x+(n+1)y-2=0與圓(x-1)2+(y-1)2=1相切,所以圓心C(1,1)到直線的距離d==1,即|m+n|=,兩邊平方并整理得m+n+1=mn≤2,即(m+n)2-4(m+n)-4≥0,解得m+n≥2+2,所以m+n的取值范圍為 42、[2+2,+∞).
答案:[2+2,+∞)第二講 小題考法——圓錐曲線的方程與性質(zhì)
考點(一)
圓錐曲線的定義與標準方程
主要考查圓錐曲線的定義及其應(yīng)用、標準方程的求法.
[典例感悟]
[典例] (1)(2017·全國卷Ⅲ)已知雙曲線C:-=1(a>0,b>0)的一條漸近線方程為y=x,且與橢圓+=1有公共焦點,則C的方程為( )
A.-=1 B.-=1
C.-=1 D.-=1
(2)(2018·重慶模擬)已知點F是拋物線y2=4x的焦點,P是該拋物線上任意一點,M(5,3),則|PF|+|PM|的最小值是( )
A.6 B.5
43、
C.4 D.3
(3)(2018·湖北十堰十三中質(zhì)檢)一個橢圓的中心在原點,焦點F1,F(xiàn)2在x軸上,P(2,)是橢圓上一點,且|PF1|,|F1F2|,|PF2|成等差數(shù)列,則橢圓的方程為( )
A.+=1 B.+=1
C.+=1 D.+=1
[解析] (1)根據(jù)雙曲線C的漸近線方程為y=x,可知=.①
又橢圓+=1的焦點坐標為(3,0)和(-3,0),
所以a2+b2=9.②
根據(jù)①②可知a2=4,b2=5,
所以C的方程為-=1.
(2)由題意知,拋物線的準線l的方程為x=-1,過點P作PE⊥l于點E,由拋物線的定義,得|PE|=|PF|,易知當(dāng)P,E,M三點 44、在同一條直線上時,|PF|+|PM|取得最小值,即(|PF|+|PM|)min=5-(-1)=6,故選A.
(3)設(shè)橢圓的標準方程為+=1(a>b>0),由點P(2,)在橢圓上,知+=1.又|PF1|,|F1F2|,|PF2|成等差數(shù)列,則|PF1|+|PF2|=2|F1F2|,即2a=2×2c,則=.又c2=a2-b2,聯(lián)立得a2=8,b2=6,故橢圓的方程為+=1.
[答案] (1)B (2)A (3)A
[方法技巧]
求解圓錐曲線標準方程的思路方法
(1)定型,即確定圓錐曲線的類型、焦點位置,從而設(shè)出標準方程.
(2)計算,即利用待定系數(shù)法求出方程中的a2,b2或p.另外 45、,當(dāng)焦點位置無法確定時,拋物線常設(shè)為y2=2px或x2=2py(p≠0),橢圓常設(shè)為mx2+ny2=1(m>0,n>0),雙曲線常設(shè)為mx2-ny2=1(mn>0).
[演練沖關(guān)]
1.(2018·合肥一模)如圖,橢圓+=1(a>0)的左、右焦點分別為F1,F(xiàn)2,過F1的直線交橢圓于M,N兩點,交y軸于點H.若F1,H是線段MN的三等分點,則△F2MN的周長為( )
A.20 B.10
C.2 D.4
解析:選D 由F1,H是線段MN的三等分點,得H是F1N的中點,又F1(-c,0),∴點N的橫坐標為c,聯(lián)立方程,得得N,∴H,
M.把點M的坐標代入橢圓方程得+=1,化簡 46、得c2=,又c2=a2-4,∴=a2-4,解得a2=5,∴a=.由橢圓的定義知|NF2|+|NF1|=|MF2|+|MF1|=2a,∴△F2MN的周長為|NF2|+|MF2|+|MN|=|NF2|+|MF2|+|NF1|+|MF1|=4a=4,故選D.
2.(2018·河北五個一名校聯(lián)考)如果點P1,P2,P3,…,P10是拋物線y2=2x上的點,它們的橫坐標依次為x1,x2,x3,…,x10,F(xiàn)是拋物線的焦點,若x1+x2+x3+…+x10=5,則|P1F|+|P2F|+|P3F|+…+|P10F|=________.
解析:由拋物線的定義可知,拋物線y2=2px(p>0)上的點P(x0 47、,y0)到焦點F的距離|PF|=x0+,在y2=2x中,p=1,所以|P1F|+|P2F|+…+|P10F|=x1+x2+…+x10+5p=10.
答案:10
3.如圖,F(xiàn)1,F(xiàn)2是雙曲線-=1(a>0)的左、右焦點,過F1的直線l與雙曲線交于點A,B,若△ABF2為等邊三角形,則雙曲線的標準方程為________________,△BF1F2的面積為________.
解析:由|AF1|-|AF2|=|BF1|=2a,|BF2|-|BF1|=2a,得|BF2|=4a,在△AF1F2中,|AF1|=6a,|AF2|=4a,
|F1F2|=2c,∠F1AF2=60°,由余弦定理得4c2= 48、36a2+16a2-2×6a×4a×,化簡得c=a,由a2+b2=c2得,a2+24=7a2,解得a=2,則雙曲線的方程為-=1,△BF1F2的面積為|BF1|·|BF2|sin∠F1BF2=×2a×4a×=8.
答案:-=1 8
考點(二)
圓錐曲線的幾何性質(zhì)
主要考查橢圓、雙曲線的離心率的計算、雙曲線漸近線的應(yīng)用以及拋物線 的有關(guān)性質(zhì).
[典例感悟]
[典例] (1)(2018·全國卷Ⅱ)雙曲線-=1(a>0,b>0)的離心率為,則其漸近線方程為( )
A.y=±x B.y=±x
C.y=±x D.y=±x
(2)(2018·全國卷Ⅱ)已知F 49、1,F(xiàn)2是橢圓C:+=1(a>b>0)的左、右焦點,A是C的左頂點,點P在過A且斜率為的直線上,△PF1F2為等腰三角形,∠F1F2P=120°,則C的離心率為( )
A. B.
C. D.
(3)(2018·全國卷Ⅲ)已知點M(-1,1)和拋物線C:y2=4x,過C的焦點且斜率為k的直線與C交于A,B兩點.若∠AMB=90°,則k=________.
[解析] (1)∵e===,
∴a2+b2=3a2,∴b=a.
∴漸近線方程為y=±x.
(2)如圖,作PB⊥x軸于點B.由題意可設(shè)|F1F2|=|PF2|=2,則c=1.
由∠F1F2P=120°,可得|PB|=,|B 50、F2|=1,
故|AB|=a+1+1=a+2,tan ∠PAB===,解得a=4,
所以e==.
(3)法一:設(shè)點A(x1,y1),B(x2,y2),
則∴y-y=4(x1-x2),
∴k==.
設(shè)AB中點M′(x0,y0),拋物線的焦點為F,分別過點A,B作準線x=-1的垂線,垂足為A′,B′,
則|MM′|=|AB|=(|AF|+|BF|)
=(|AA′|+|BB′|).
∵M′(x0,y0)為AB中點,
∴M為A′B′的中點,
∴MM′平行于x軸,
∴y1+y2=2,∴k=2.
法二:由題意知,拋物線的焦點坐標為F(1,0),
設(shè)直線方程為y=k(x-1),
51、
直線方程與y2=4x聯(lián)立,消去y,
得k2x2-(2k2+4)x+k2=0.設(shè)A(x1,y1),B(x2,y2),
則x1x2=1,x1+x2=.
由M(-1,1),得=(-1-x1,1-y1),
=(-1-x2,1-y2).
由∠AMB=90°,得·=0,
∴(x1+1)(x2+1)+(y1-1)(y2-1)=0,
∴x1x2+(x1+x2)+1+y1y2-(y1+y2)+1=0.
又y1y2=k(x1-1)·k(x2-1)=k2[x1x2-(x1+x2)+1],y1+y2=k(x1+x2-2),
∴1++1+k2-k+1=0,
整理得-+1=0,解得k=2.
[答案 52、] (1)A (2)D (3)2
[方法技巧]
1.橢圓、雙曲線離心率(離心率范圍)的求法
求橢圓、雙曲線的離心率或離心率的范圍,關(guān)鍵是根據(jù)已知條件確定a,b,c的等量關(guān)系或不等關(guān)系,然后把b用a,c代換,求的值.
2.雙曲線的漸近線的求法及用法
(1)求法:把雙曲線標準方程等號右邊的1改為零,分解因式可得.
(2)用法:①可得或的值;②利用漸近線方程設(shè)所求雙曲線的方程.
3.拋物線幾何性質(zhì)問題求解策略
涉及拋物線幾何性質(zhì)的問題常結(jié)合圖形思考,通過圖形可以直觀地看出拋物線頂點、對稱軸、開口方向等幾何特征,體現(xiàn)了數(shù)形結(jié)合思想解題的直觀性,還要注意拋物線定義的轉(zhuǎn)化應(yīng)用.
[演練沖 53、關(guān)]
1.(2018·長郡中學(xué)模擬)已知F為雙曲線C:-=1(a>0,b>0)的一個焦點,其關(guān)于雙曲線C的一條漸近線的對稱點在另一條漸近線上,則雙曲線C的離心率為( )
A. B.
C.2 D.
解析:選C 依題意,設(shè)雙曲線的漸近線y=x的傾斜角為θ,則由雙曲線的對稱性得3θ=π,θ=,=tan=,雙曲線C的離心率e= =2,選C.
2.(2018·福州四校聯(lián)考)已知拋物線C的頂點為坐標原點,對稱軸為坐標軸,直線l過拋物線C的焦點F,且與拋物線的對稱軸垂直,l與C交于A,B兩點,且|AB|=8,
M為拋物線C的準線上一點,則△ABM的面積為( )
A.16 B.18
54、
C.24 D.32
解析:選A 不妨設(shè)拋物線C:y2=2px(p>0),如圖,因為直線l過拋物線C的焦點,且與拋物線的對稱軸垂直,所以線段AB為通徑,所以2p=8,p=4,又M為拋物線C的準線上一點,所以點M到直線AB的距離即焦點到準線的距離,為4,所以△ABM的面積為×8×4=16,故選A.
3.(2018·福州模擬)過橢圓C:+=1(a>b>0)的右焦點作x軸的垂線,交C于A,B兩點,直線l過C的左焦點和上頂點.若以AB為直徑的圓與l存在公共點,則C的離心率的取值范圍是( )
A. B.
C. D.
解析:選A 由題設(shè)知,直線l:+=1,即bx-cy+bc=0,以AB 55、為直徑的圓的圓心為(c,0),根據(jù)題意,將x=c代入橢圓C的方程,得y=±,即圓的半徑r=.又圓與直線l有公共點,所以≤,化簡得2c≤b,平方整理得a2≥5c2,所以e=≤.又0 56、
C.+1 D.
(2)(2018·洛陽模擬)已知F是拋物線C1:y2=2px(p>0)的焦點,曲線C2是以F為圓心,為半徑的圓,直線4x-3y-2p=0與曲線C1,C2從上到下依次相交于點A,B,C,D,則=( )
A.16 B.4
C. D.
(3)(2018·南寧模擬)已知橢圓+=1(a>b>0)的一條弦所在的直線方程是x-y+5=0,弦的中點坐標是M(-4,1),則橢圓的離心率是( )
A. B.
C. D.
[解析] (1)拋物線y2=4cx的焦點F1(c,0),準線l:x=-c,連接PF1和EO(O為坐標原點),如圖,則|PF1|=2|EO|=2a, 57、所以點P到準線l:x=-c的距離等于2a,所以點P的橫坐標為2a-c,由點P在拋物線y2=4cx上,得P(2a-c,2).連接OP,則|OP|=|OF|=c,所以(2a-c)2+[2]2=c2,解得e==,故選D.
(2)因為直線4x-3y-2p=0過C1的焦點F(C2的圓心),
故|BF|=|CF|=,
所以=.
由拋物線的定義得|AF|-=xA,|DF|-=xD.
由整理得8x2-17px+2p2=0,即(8x-p)(x-2p)=0,可得xA=2p,xD=,故===16.故選A.
(3)設(shè)直線x-y+5=0與橢圓+=1相交于A(x1,y1),B(x2,y2)兩點,因為AB的中點 58、M(-4,1),所以x1+x2=-8,y1+y2=2.易知直線AB的斜率k==1.由兩式相減得,+=0,所以=-·,所以=,于是橢圓的離心率e===,故選C.
[答案] (1)D (2)A (3)C
[方法技巧]
處理圓錐曲線與圓相結(jié)合問題的注意點
(1)注意圓心、半徑和平面幾何知識的應(yīng)用,如直徑所對的圓周角為直角,構(gòu)成了垂直關(guān)系;弦心距、半徑、弦長的一半構(gòu)成直角三角形等.
(2)注意圓與特殊線的位置關(guān)系,如圓的直徑與橢圓長軸(短軸),與雙曲線的實軸(虛軸)的關(guān)系;圓與過定點的直線、雙曲線的漸近線、拋物線的準線的位置關(guān)系等.
[演練沖關(guān)]
1.已知橢圓的短軸長為8,點F1,F(xiàn) 59、2為其兩個焦點,點P為橢圓上任意一點,△PF1F2的內(nèi)切圓面積的最大值為,則橢圓的離心率為( )
A. B.
C. D.
解析:選C 不妨設(shè)橢圓的標準方程為+=1(a>b>0),則2b=8,即b=4,設(shè)△PF1F2內(nèi)切圓的半徑為r,則有S△PF1F2=(2a+2c)r=×2c|yP|,即r=,當(dāng)點P運動到橢圓短軸的端點時,r有最大值,此時|yP|=b,于是有=,即3a=5c,故橢圓的離心率e==.
2.(2018·全國卷Ⅲ)設(shè)F1,F(xiàn)2是雙曲線C:-=1(a>0,b>0)的左、右焦點,O是坐標原點.過F2作C的一條漸近線的垂線,垂足為P.若|PF1|=|OP|,則C的離心率為( 60、 )
A. B.2
C. D.
解析:選C 法一:不妨設(shè)一條漸近線的方程為y=x,
則F2到y(tǒng)=x的距離d==b.
在Rt△F2PO中,|F2O|=c,
所以|PO|=a,所以|PF1|=a,
又|F1O|=c,所以在△F1PO與Rt△F2PO中,
根據(jù)余弦定理得
cos∠POF1==-cos∠POF2=-,
即3a2+c2-(a)2=0,得3a2=c2,所以e==.
法二:如圖,過點F1向OP的反向延長線作垂線,垂足為P′,連接P′F2,由題意可知,四邊形PF1P′F2為平行四邊形,且△PP′F2是直角三角形.因為|F2P|=b,|F2O|=c,所以|OP|=a.
61、
又|PF1|=a=|F2P′|,|PP′|=2a,
所以|F2P|=a=b,所以c==a,
所以e==.
3.(2018·貴陽模擬)過拋物線y2=2px(p>0)的焦點F,且傾斜角為60°的直線交拋物線于A,B兩點,若|AF|>|BF|,且|AF|=2,則p=________.
解析:過點A,B向拋物線的準線x=-作垂線,垂足分別為C,D,過點B向AC作垂線,垂足為E,∵A,B兩點在拋物線上,∴|AC|=|AF|,|BD|=|BF|.
∵BE⊥AC,∴|AE|=|AF|-|BF|,
∵直線AB的傾斜角為60°,∴在Rt△ABE中,2|AE|=|AB|=|AF|+|BF|,
即2 62、(|AF|-|BF|)=|AF|+|BF|,∴|AF|=3|BF|.
∵|AF|=2,∴|BF|=,∴|AB|=|AF|+|BF|=.
設(shè)直線AB的方程為y=,代入y2=2px,得3x2-5px+=0,設(shè)A(x1,y1),B(x2,y2),∴x1+x2=p,∵|AB|=x1+x2+p=,∴p=1.
答案:1
[必備知能·自主補缺] 依據(jù)學(xué)情課下看,針對自身補缺漏;臨近高考再瀏覽,考前溫故熟主干
[主干知識要記牢]
圓錐曲線的定義、標準方程和性質(zhì)
名稱
橢圓
雙曲線
拋物線
定義
|PF1|+|PF2|=2a(2a>|F1F2|)
||PF1|-|PF2||= 63、2a(2a<|F1F2|)
|PF|=|PM|,點F不在直線l上,PM⊥l于M
標準方程
+=1(a>b>0)
-=1(a>0,b>0)
y2=2px(p>0)
圖形
幾何性質(zhì)
軸
長軸長2a,短軸長2b
實軸長2a,虛軸長2b
離心率
e== (0 64、0,|F1F2|=2c,e為橢圓的離心率.
(2)如果△PF1F2中∠F1PF2=α,則這個三角形的面積S△PF1F2=c|y0|=b2tan .
(3)橢圓的離心率e=.
2.雙曲線焦點三角形的2個結(jié)論
P(x0,y0)為雙曲線-=1(a>0,b>0)上的點,△PF1F2為焦點三角形.
(1)面積公式
S=c|y0|=r1r2sin θ=(其中|PF1|=r1,|PF2|=r2,∠F1PF2=θ).
(2)焦半徑
若P在右支上,|PF1|=ex0+a,|PF2|=ex0-a;若P在左支上,|PF1|=-ex0-a,|PF2|=-ex0+a.
3.拋物線y2=2px(p>0) 65、焦點弦AB的4個結(jié)論
(1)xA·xB=;
(2)yA·yB=-p2;
(3)|AB|=(α是直線AB的傾斜角);
(4)|AB|=xA+xB+p.
4.圓錐曲線的通徑
(1)橢圓通徑長為;
(2)雙曲線通徑長為;
(3)拋物線通徑長為2p.
5.圓錐曲線中的最值
(1)橢圓上兩點間的最大距離為2a(長軸長).
(2)雙曲線上兩點間的最小距離為2a(實軸長).
(3)橢圓焦半徑的取值范圍為[a-c,a+c],a-c與a+c分別表示橢圓焦點到橢圓上的點的最小距離與最大距離.
(4)拋物線上的點中頂點到拋物線準線的距離最短.
[易錯易混要明了]
1.利用橢圓、雙曲線的 66、定義解題時,要注意兩種曲線的定義形式及其限制條件.如在雙曲線的定義中,有兩點是缺一不可的:其一,絕對值;其二,2a<|F1F2|.如果不滿足第一個條件,動點到兩定點的距離之差為常數(shù),而不是差的絕對值為常數(shù),那么其軌跡只能是雙曲線的一支.
[針對練1] △ABC的頂點A(-5,0),B(5,0),△ABC的內(nèi)切圓圓心在直線x=3上,則頂點C的軌跡方程是________________.
解析:如圖,設(shè)內(nèi)切圓的圓心為P,過點P作AC,BC的垂線PD,PF,垂足分別為D,F(xiàn),則|AD|=|AE|=8,|BF|=|BE|=2,|CD|=|CF|,∴|CA|-|CB|=|AD|-|BF|=6.
根據(jù)雙曲線的定義,所求軌跡是以A,B為焦點,實軸長為6的雙曲線的右支,方程為-=1(x>3).
答案:-=1(x>3)
2.解決橢圓、雙曲線、拋物線問題時,要注意其焦點的位置.
[針對練2] 若橢圓+=1的離心率為,則k的值為________.
解析:當(dāng)焦點在x軸上時,a2=8+k,b2=9,e2====,解得k=4.
當(dāng)焦點在y軸上時,a2=9,b2=8+k,e2====,解得k=-.
- 溫馨提示:
1: 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
2: 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
3.本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
5. 裝配圖網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 6.煤礦安全生產(chǎn)科普知識競賽題含答案
- 2.煤礦爆破工技能鑒定試題含答案
- 3.爆破工培訓(xùn)考試試題含答案
- 2.煤礦安全監(jiān)察人員模擬考試題庫試卷含答案
- 3.金屬非金屬礦山安全管理人員(地下礦山)安全生產(chǎn)模擬考試題庫試卷含答案
- 4.煤礦特種作業(yè)人員井下電鉗工模擬考試題庫試卷含答案
- 1 煤礦安全生產(chǎn)及管理知識測試題庫及答案
- 2 各種煤礦安全考試試題含答案
- 1 煤礦安全檢查考試題
- 1 井下放炮員練習(xí)題含答案
- 2煤礦安全監(jiān)測工種技術(shù)比武題庫含解析
- 1 礦山應(yīng)急救援安全知識競賽試題
- 1 礦井泵工考試練習(xí)題含答案
- 2煤礦爆破工考試復(fù)習(xí)題含答案
- 1 各種煤礦安全考試試題含答案