2022年高三數學第一輪復習單元講座 第38講 導數、定積分教案 新人教版
《2022年高三數學第一輪復習單元講座 第38講 導數、定積分教案 新人教版》由會員分享,可在線閱讀,更多相關《2022年高三數學第一輪復習單元講座 第38講 導數、定積分教案 新人教版(11頁珍藏版)》請在裝配圖網上搜索。
1、2022年高三數學第一輪復習單元講座 第38講 導數、定積分教案 新人教版 一.課標要求: 1.導數及其應用 (1)導數概念及其幾何意義 ① 通過對大量實例的分析,經歷由平均變化率過渡到瞬時變化率的過程,了解導數概念的實際背景,知道瞬時變化率就是導數,體會導數的思想及其內涵; ②通過函數圖像直觀地理解導數的幾何意義。 (2)導數的運算 ① 能根據導數定義求函數y=c,y=x,y=x2,y=x3,y=1/x,y=x 的導數; ② 能利用給出的基本初等函數的導數公式和導數的四則運算法則求簡單函數的導數,能求簡單的復合函數(僅限于形如f(ax+b))的導數; ③ 會使用導數公式表。
2、 (3)導數在研究函數中的應用 ① 結合實例,借助幾何直觀探索并了解函數的單調性與導數的關系;能利用導數研究函數的單調性,會求不超過三次的多項式函數的單調區(qū)間; ② 結合函數的圖像,了解函數在某點取得極值的必要條件和充分條件;會用導數求不超過三次的多項式函數的極大值、極小值,以及閉區(qū)間上不超過三次的多項式函數最大值、最小值;體會導數方法在研究函數性質中的一般性和有效性。 (4)生活中的優(yōu)化問題舉例 例如,使利潤最大、用料最省、效率最高等優(yōu)化問題,體會導數在解決實際問題中的作用。 (5)定積分與微積分基本定理 ① 通過實例(如求曲邊梯形的面積、變力做功等),從問題情境中了解定積分的
3、實際背景;借助幾何直觀體會定積分的基本思想,初步了解定積分的概念; ② 通過實例(如變速運動物體在某段時間內的速度與路程的關系),直觀了解微積分基本定理的含義。 (6)數學文化 收集有關微積分創(chuàng)立的時代背景和有關人物的資料,并進行交流;體會微積分的建立在人類文化發(fā)展中的意義和價值。具體要求見本《標準》中"數學文化"的要求。 二.命題走向 導數是高中數學中重要的內容,是解決實際問題的強有力的數學工具,運用導數的有關知識,研究函數的性質:單調性、極值和最值是高考的熱點問題。在高考中考察形式多種多樣,以選擇題、填空題等主觀題目的形式考察基本概念、運算及導數的應用,也經常以解答題形式和其它數
4、學知識結合起來,綜合考察利用導數研究函數的單調性、極值、最值,估計xx年高考繼續(xù)以上面的幾種形式考察不會有大的變化: (1)考查形式為:選擇題、填空題、解答題各種題型都會考察,選擇題、填空題一般難度不大,屬于高考題中的中低檔題,解答題有一定難度,一般與函數及解析幾何結合,屬于高考的中低檔題; (2)07年高考可能涉及導數綜合題,以導數為數學工具考察:導數的物理意義及幾何意義,復合函數、數列、不等式等知識。 定積分是新課標教材新增的內容,主要包括定積分的概念、微積分基本定理、定積分的簡單應用,由于定積分在實際問題中非常廣泛,因而07年的高考預測會在這方面考察,預測07年高考呈現(xiàn)以下幾個特點
5、: (1)新課標第1年考察,難度不會很大,注意基本概念、基本性質、基本公式的考察及簡單的應用;高考中本講的題目一般為選擇題、填空題,考查定積分的基本概念及簡單運算,屬于中低檔題; (2)定積分的應用主要是計算面積,諸如計算曲邊梯形的面積、變速直線運動等實際問題要很好的轉化為數學模型。 三.要點精講 1.導數的概念 函數y=f(x),如果自變量x在x處有增量,那么函數y相應地有增量=f(x+)-f(x),比值叫做函數y=f(x)在x到x+之間的平均變化率,即=。 如果當時,有極限,我們就說函數y=f(x)在點x處可導,并把這個極限叫做f(x)在點x處的導數,記作f’(x)或y’|。
6、 即f(x)==。 說明: (1)函數f(x)在點x處可導,是指時,有極限。如果不存在極限,就說函數在點x處不可導,或說無導數。 (2)是自變量x在x處的改變量,時,而是函數值的改變量,可以是零。 由導數的定義可知,求函數y=f(x)在點x處的導數的步驟(可由學生來歸納): (1)求函數的增量=f(x+)-f(x); (2)求平均變化率=; (3)取極限,得導數f’(x)=。 2.導數的幾何意義 函數y=f(x)在點x處的導數的幾何意義是曲線y=f(x)在點p(x,f(x)) 處的切線的斜率。也就是說,曲線y=f(x)在點p(x,f(x))處的切線的斜率是f’(x)
7、。相應地,切線方程為y-y=f/(x)(x-x)。 3.常見函數的導出公式. ?。ǎ保–為常數) (2) ?。ǎ常 。ǎ矗? 4.兩個函數的和、差、積的求導法則 法則1:兩個函數的和(或差)的導數,等于這兩個函數的導數的和(或差), 即: ( 法則2:兩個函數的積的導數,等于第一個函數的導數乘以第二個函數,加上第一個 函數乘以第二個函數的導數,即: 若C為常數,則.即常數與函數的積的導數等于常數乘以函數的導數: 法則3兩個函數的商的導數,等于分子的導數與分母的積,減去分母的導數與分子的積,再除以分母的平方:‘=(v0)。 形如y=f的函數稱為復合函數。
8、復合函數求導步驟:分解——求導——回代。法則:y'|= y'| ·u'| 5.導數的應用 (1)一般地,設函數在某個區(qū)間可導,如果,則為增函數;如果,則為減函數;如果在某區(qū)間內恒有,則為常數; (2)曲線在極值點處切線的斜率為0,極值點處的導數為0;曲線在極大值點左側切線的斜率為正,右側為負;曲線在極小值點左側切線的斜率為負,右側為正; (3)一般地,在區(qū)間[a,b]上連續(xù)的函數f在[a,b]上必有最大值與最小值。①求函數?在(a,b)內的極值; ②求函數?在區(qū)間端點的值?(a)、?(b); ③將函數? 的各極值與?(a)、?(b)比較,其中最大的是最大值,其中最小的是最小值。 6.
9、定積分
(1)概念
設函數f(x)在區(qū)間[a,b]上連續(xù),用分點a=x0 10、nx+C;=-cosx+C(表中C均為常數)。
(2)定積分的性質
①(k為常數);
②;
③(其中a<c<b。
(3)定積分求曲邊梯形面積
由三條直線x=a,x=b(a
11、是瞬時速度。
解析:(1)指時間改變量;
指時間改變量。
。
其余各段時間內的平均速度,事先刻在光盤上,待學生回答完第一時間內的平均速度后,即用多媒體出示,讓學生思考在各段時間內的平均速度的變化情況。
(2)從(1)可見某段時間內的平均速度隨變化而變化,越小,越接近于一個定值,由極限定義可知,這個值就是時,的極限,
V==
=(6+=3g=29.4(米/秒)。
例2.求函數y=的導數。
解析:,
,
=-。
點評:掌握切的斜率、 瞬時速度,它門都是一種特殊的極限,為學習導數的定義奠定基礎。
題型2:導數的基本運算
例3.(1)求的導數;
(2)求的 12、導數;
(3)求的導數;
(4)求y=的導數;
(5)求y=的導數。
解析:(1),
(2)先化簡,
(3)先使用三角公式進行化簡.
(4)y’==;
(5)y=-x+5-
y’=3*(x)'-x'+5'-9)'=3*-1+0-9*(-)=。
點評:(1)求導之前,應利用代數、三角恒等式等變形對函數進行化簡,然后求導,這樣可以減少運算量,提高運算速度,減少差錯;(2)有的函數雖然表面形式為函數的商的形式,但在求導前利用代數或三角恒等變形將函數先化簡,然后進行求導.有時可以避免使用商的求導法則,減少運算量。
例4.寫出由下列函數復合而成的函數:
(1)y 13、=cosu,u=1+ (2)y=lnu, u=lnx
解析:(1)y=cos(1+);
(2)y=ln(lnx)。
點評:通過對y=(3x-2展開求導及按復合關系求導,直觀的得到=..給出復合函數的求導法則,并指導學生閱讀法則的證明。
題型3:導數的幾何意義
例5.(1)(06安徽卷)若曲線的一條切線與直線垂直,則的方程為( )
A. B. C. D.
(2)(06全國II)過點(-1,0)作拋物線的切線,則其中一條切線為( )
(A) (B) (C) (D)
解析:(1)與直線垂直的直線為,即在某一點 14、的導數為4,而,所以在(1,1)處導數為4,此點的切線為,故選A;
(2),設切點坐標為,則切線的斜率為2,且,于是切線方程為,因為點(-1,0)在切線上,可解得=0或-4,代入可驗正D正確,選D。
點評:導數值對應函數在該點處的切線斜率。
例6.(1)(06湖北卷)半徑為r的圓的面積S(r)=r2,周長C(r)=2r,若將r看作(0,+∞)上的變量,則(r2)`=2r ,式可以用語言敘述為:圓的面積函數的導數等于圓的周長函數。對于半徑為R的球,若將R看作(0,+∞)上的變量,請你寫出類似于的式子: ;式可以用語言敘述為: 15、 。
(2)(06湖南卷)曲線和在它們交點處的兩條切線與軸所圍成的三角形面積是 。
解析:(1)V球=,又 故式可填,用語言敘述為“球的體積函數的導數等于球的表面積函數。”;
(2)曲線和在它們的交點坐標是(1,1),兩條切線方程分別是y=-x+2和y=2x-1,它們與軸所圍成的三角形的面積是。
點評:導數的運算可以和幾何圖形的切線、面積聯(lián)系在一起,對于較復雜問題有很好的效果。
題型4:借助導數處理單調性、極值和最值
例7.(1)(06江西卷)對于R上可導的任意函數f(x),若滿足(x- 16、1)30,則必有( )
A.f(0)+f(2)<2f(1) B. f(0)+f(2)£2f(1)
C.f(0)+f(2)32f(1) D. f(0)+f(2)>2f(1)
(2)(06天津卷)函數的定義域為開區(qū)間,導函數在內的圖象如圖所示,則函數在開區(qū)間內有極小值點( )
A.1個 B.2個 C.3個 D. 4個
(3)(06全國卷I)已知函數。(Ⅰ)設,討論的單調性;(Ⅱ)若對任意恒有,求的取值范圍。
解析:(1)依題意,當x31時,f¢(x)30,函數f(x)在( 17、1,+¥)上是增函數;當x<1時,f¢(x)£0,f(x)在(-¥,1)上是減函數,故f(x)當x=1時取得最小值,即有f(0)3f(1),f(2)3f(1),故選C;
(2)函數的定義域為開區(qū)間,導函數在內的圖象如圖所示,函數在開區(qū)間內有極小值的點即函數由減函數變?yōu)樵龊瘮档狞c,其導數值為由負到正的點,只有1個,選A。
(3):(Ⅰ)f(x)的定義域為(-∞,1)∪(1,+∞).對f(x)求導數得 f '(x)= e-ax。
(ⅰ)當a=2時, f '(x)= e-2x, f '(x)在(-∞,0), (0,1)和(1,+ ∞)均大于0, 所以f(x)在(-∞,1), (1,+∞).為增 18、函數;
(ⅱ)當00, f(x)在(-∞,1), (1,+∞)為增函數.;
(ⅲ)當a>2時, 0<<1, 令f '(x)=0 ,解得x1= - , x2= ;
當x變化時, f '(x)和f(x)的變化情況如下表:
x
(-∞, -)
(-,)
(,1)
(1,+∞)
f '(x)
+
-
+
+
f(x)
↗
↘
↗
↗
f(x)在(-∞, -), (,1), (1,+∞)為增函數, f(x)在(-,)為減函數。
(Ⅱ)(ⅰ)當0f(0)=1;
(ⅱ)當a 19、>2時, 取x0= ∈(0,1),則由(Ⅰ)知 f(x0) 20、區(qū)間;(Ⅱ)討論f(x)的極值。
解析:(1),令可得x=0或2(2舍去),當-1£x<0時,>0,當0 21、際問題的能力。
題型5:導數綜合題
例9.(06廣東卷)設函數分別在處取得極小值、極大值.平面上點的坐標分別為、,該平面上動點滿足,點是點關于直線的對稱點.求
(I)求點的坐標;
(II)求動點的軌跡方程.
解析: (Ⅰ)令解得;
當時,, 當時,,當時,。
所以,函數在處取得極小值,在取得極大值,故,。
所以, 點A、B的坐標為。
(Ⅱ) 設,,
,
,所以。
又PQ的中點在上,所以,消去得。
點評:該題是導數與平面向量結合的綜合題。
例10.(06湖南卷)已知函數,數列{}滿足:證明:(ⅰ);(ⅱ)。
證明: (I).先用數學歸納法證明,n=1,2,3,…
22、 (i).當n=1時,由已知顯然結論成立。
(ii).假設當n=k時結論成立,即。
因為0 23、它下部的形狀是高為1m的正六棱柱,上部的形狀是側棱長為3m的正六棱錐(如右圖所示)。試問當帳篷的頂點O到底面中心的距離為多少時,帳篷的體積最大?
本小題主要考查利用導數研究函數的最大值和最小值的基礎知識,以及運用數學知識解決實際問題的能力。
解析:設OO1為x m,則由題設可得正六棱錐底面邊長為(單位:m)。
于是底面正六邊形的面積為(單位:m2):
。
帳篷的體積為(單位:m3):
求導數,得;
令解得x=-2(不合題意,舍去),x=2。
當1 24、篷的體積最大。
點評:結合空間幾何體的體積求最值,理解導數的工具作用。
例12.(06浙江卷)已知函數f(x)=x+ x,數列|x|(x>0)的第一項x=1,以后各項按如下方式取定:曲線x=f(x)在處的切線與經過(0,0)和(x,f (x))兩點的直線平行(如圖)求證:當n時,
(Ⅰ)x
(Ⅱ)。
證明:(I)因為所以曲線在處的切線斜率
因為過和兩點的直線斜率是所以.
(II)因為函數當時單調遞增,而
,
所以,即因此
又因為令則
因為所以
因此 故
點評:本題主要考查函數的導數、數列、不等式等基礎知識,以及不等式的證明,同時考查邏輯推理能力。
題型7 25、:定積分
例13.計算下列定積分的值
(1);(2);(3);(4);
解析:(1)
(2)因為,所以;
(3)
(4)
例14.(1)一物體按規(guī)律x=bt3作直線運動,式中x為時間t內通過的距離,媒質的阻力正比于速度的平方.試求物體由x=0運動到x=a時,阻力所作的功。
(2)拋物線y=ax2+bx在第一象限內與直線x+y=4相切.此拋物線與x軸所圍成的圖形的面積記為S.求使S達到最大值的a、b值,并求Smax.
解析:(1)物體的速度。
媒質阻力,其中k為比例常數,k>0。
當x=0時,t=0;當x=a時,,
又ds=vdt,故阻力所作的功為:
( 26、2)依題設可知拋物線為凸形,它與x軸的交點的橫坐標分別為x1=0,x2=-b/a,所以(1)
又直線x+y=4與拋物線y=ax2+bx相切,即它們有唯一的公共點,
由方程組
得ax2+(b+1)x-4=0,其判別式必須為0,即(b+1)2+16a=0.
于是代入(1)式得:
,;
令S'(b)=0;在b>0時得唯一駐點b=3,且當0<b<3時,S'(b)>0;當b>3時,S'(b)<0.故在b=3時,S(b)取得極大值,也是最大值,即a=-1,b=3時,S取得最大值,且。
點評:應用好定積分處理平面區(qū)域內的面積。
五.思維總結
1.本講內容在高考中以填空題和解答題為主
主要考查:
(1)函數的極限;
(2)導數在研究函數的性質及在解決實際問題中的應用;
(3)計算曲邊圖形的面積和旋轉體的體積。
2.考生應立足基礎知識和基本方法的復習,以課本題目為主,以熟練技能,鞏固概念為目標。
- 溫馨提示:
1: 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
2: 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
3.本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
5. 裝配圖網僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。