2022年高三數(shù)學(xué)總復(fù)習(xí) 基本不等式教案 理

上傳人:xt****7 文檔編號:105137134 上傳時(shí)間:2022-06-11 格式:DOC 頁數(shù):5 大?。?36.02KB
收藏 版權(quán)申訴 舉報(bào) 下載
2022年高三數(shù)學(xué)總復(fù)習(xí) 基本不等式教案 理_第1頁
第1頁 / 共5頁
2022年高三數(shù)學(xué)總復(fù)習(xí) 基本不等式教案 理_第2頁
第2頁 / 共5頁
2022年高三數(shù)學(xué)總復(fù)習(xí) 基本不等式教案 理_第3頁
第3頁 / 共5頁

下載文檔到電腦,查找使用更方便

9.9 積分

下載資源

還剩頁未讀,繼續(xù)閱讀

資源描述:

《2022年高三數(shù)學(xué)總復(fù)習(xí) 基本不等式教案 理》由會(huì)員分享,可在線閱讀,更多相關(guān)《2022年高三數(shù)學(xué)總復(fù)習(xí) 基本不等式教案 理(5頁珍藏版)》請?jiān)谘b配圖網(wǎng)上搜索。

1、2022年高三數(shù)學(xué)總復(fù)習(xí) 基本不等式教案 理 教材分析 “”的證明學(xué)生比較容易理解,學(xué)生難理解的是“當(dāng)且僅當(dāng)a=b時(shí)取‘=’號”的真正數(shù)學(xué)內(nèi)涵,所謂“當(dāng)且僅當(dāng)”就是“充分必要”. 教學(xué)重點(diǎn)是定理及其應(yīng)用,難點(diǎn)是利用定理求函數(shù)的最值問題,進(jìn)而解決一些實(shí)際問題. 教學(xué)目標(biāo) 1. 理解兩個(gè)實(shí)數(shù)的平方和不小于它們積的2倍這一重要不等式的證明,并能從幾何意義的角度去解釋,形成數(shù)形結(jié)合的完美統(tǒng)一. 2. 理解兩個(gè)正數(shù)的算術(shù)平均數(shù)不小于它們的幾何平均數(shù)定理的證明,及其幾何意義,會(huì)用這兩個(gè)重要不等式解決簡單的實(shí)際應(yīng)用題. 3. 通過定理的證明培養(yǎng)學(xué)生的邏輯推理能力,通過定理的應(yīng)用揭示數(shù)學(xué)

2、的應(yīng)用價(jià)值. 任務(wù)分析 這節(jié)內(nèi)容從實(shí)際問題情境展開探討,“如要圍成面積為16m2的一個(gè)矩形,所需繩子最短是多少?即設(shè)長為x,寬為,則周長為l=2x+2×,求當(dāng)x取何值時(shí),l最?。弊寣W(xué)生去猜測,去思考,充分調(diào)動(dòng)學(xué)生的積極性,激發(fā)學(xué)生的想象和猜想能力.當(dāng)學(xué)生猜想它應(yīng)為正方形這一結(jié)論時(shí),教師適時(shí)引導(dǎo)如何去證明猜想的正確性,激發(fā)學(xué)生的求知欲望,從而達(dá)到由問題到結(jié)論的證明,開闊學(xué)生的思路,陶冶學(xué)生的情操. 教學(xué)設(shè)計(jì) 一、問題情境 教師出示問題,引導(dǎo)學(xué)生分析、思考:某工廠要建造一個(gè)長方體形無蓋貯水池,其容積為4800m3,深為3m.如果池底每平方米的造價(jià)為150元,池壁每平方米的造價(jià)為120元

3、,怎樣設(shè)計(jì)水池能使總造價(jià)最低?最低總造價(jià)是多少元? 二、建立模型 1. 通過比較a2+b2與2ab的大小,引入重要不等式. ∵a2+b2-2ab=(a-b)2, ∴當(dāng)a≠b時(shí),(a-b)2>0; 當(dāng)a=b時(shí),(a-b)2=0. 即(a-b)2≥0,從而有a2+b2≥2ab. 2. 結(jié)論明晰 定理1 如果a,b∈R,那么a2+b2≥2ab(當(dāng)且僅當(dāng)a=b時(shí),取“=”號). 思考:對于定理1和定理2,當(dāng)且僅當(dāng)a=b時(shí)取“=”號的具體含義是什么? 三、解釋應(yīng)用 [例 題] 1. 已知x,y都是正數(shù),求證: 小結(jié);上述結(jié)論是我們用定理求最值的依據(jù),可簡述為和為定值

4、積最大,積為定值和最?。? 2. 設(shè)法解決本節(jié)課開始提出的問題. 因此,當(dāng)水池的底面是邊長為40m的正方形時(shí),水池的總造價(jià)最低,最低總造價(jià)為297600元. 3.0求證:在直徑為d的圓內(nèi)接矩形中,面積最大的是正方形,并且這個(gè)正方形的面積等于d2. 2. 設(shè)計(jì)一幅宣傳畫,要求畫面面積為4840cm2,畫面的寬與高的比為λ(λ<1),畫面的上、下各留8cm的空白,左、右各留5cm的空白.問:怎樣確定畫面的高與寬的尺寸,才能使宣傳畫所用紙張面積最小? 答:當(dāng)畫面高為88cm、寬為55cm時(shí),所用紙張面積最小. 3. 用一段長為L(m)的籬笆圍成一個(gè)邊靠墻的矩形菜園,問:當(dāng)這個(gè)矩

5、形的長、寬各為多少時(shí),菜園的面積最大,最大面積是多少? 上述兩種解答的答案不同,哪一種方法是錯(cuò)誤的,為什么? 四、拓展延伸 點(diǎn) 評 這篇案例由實(shí)際問題引入課題,既自然,又能引起學(xué)生的興趣,激發(fā)起學(xué)生的求知欲望,為本節(jié)重點(diǎn)的突破打下良好的基礎(chǔ).由學(xué)生已有知識歸納和總結(jié)得到這節(jié)課的兩個(gè)定理,使學(xué)生易于理解和接受.由典型例題的證明,歸納出一般結(jié)論,培養(yǎng)了學(xué)生的邏輯推理能力.由練習(xí)的變形培養(yǎng)了學(xué)生靈活處理問題的能力.對實(shí)際問題的解決體現(xiàn)了數(shù)學(xué)的應(yīng)用價(jià)值.重要不等式靈活變形的使用不僅加深了對推理的理解,同時(shí)突破了對本節(jié)難點(diǎn)“等號成立的條件”的理解.“拓展延伸”給學(xué)生以發(fā)揮的空間,啟發(fā)學(xué)生由已知到未知的探索能力. 總之,關(guān)注基本不等式與現(xiàn)實(shí)的聯(lián)系是這篇案例的突出特點(diǎn),“問題驅(qū)動(dòng)式”的設(shè)計(jì)是這篇案例成功的關(guān)鍵,而“從問題出發(fā)構(gòu)建模型,反過來,又利用建立的模型解決開始的問題”的設(shè)計(jì)又可以使學(xué)生領(lǐng)略到學(xué)習(xí)數(shù)學(xué)的成功和勝利喜悅.

展開閱讀全文
溫馨提示:
1: 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
2: 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
3.本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
5. 裝配圖網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

相關(guān)資源

更多
正為您匹配相似的精品文檔
關(guān)于我們 - 網(wǎng)站聲明 - 網(wǎng)站地圖 - 資源地圖 - 友情鏈接 - 網(wǎng)站客服 - 聯(lián)系我們

copyright@ 2023-2025  zhuangpeitu.com 裝配圖網(wǎng)版權(quán)所有   聯(lián)系電話:18123376007

備案號:ICP2024067431-1 川公網(wǎng)安備51140202000466號


本站為文檔C2C交易模式,即用戶上傳的文檔直接被用戶下載,本站只是中間服務(wù)平臺,本站所有文檔下載所得的收益歸上傳人(含作者)所有。裝配圖網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對上載內(nèi)容本身不做任何修改或編輯。若文檔所含內(nèi)容侵犯了您的版權(quán)或隱私,請立即通知裝配圖網(wǎng),我們立即給予刪除!