2022年高三數(shù)學(xué)二輪復(fù)習(xí) 1-2-7空間向量與立體幾何同步練習(xí) 理 人教版

上傳人:xt****7 文檔編號:105143642 上傳時(shí)間:2022-06-11 格式:DOC 頁數(shù):10 大?。?53.52KB
收藏 版權(quán)申訴 舉報(bào) 下載
2022年高三數(shù)學(xué)二輪復(fù)習(xí) 1-2-7空間向量與立體幾何同步練習(xí) 理 人教版_第1頁
第1頁 / 共10頁
2022年高三數(shù)學(xué)二輪復(fù)習(xí) 1-2-7空間向量與立體幾何同步練習(xí) 理 人教版_第2頁
第2頁 / 共10頁
2022年高三數(shù)學(xué)二輪復(fù)習(xí) 1-2-7空間向量與立體幾何同步練習(xí) 理 人教版_第3頁
第3頁 / 共10頁

下載文檔到電腦,查找使用更方便

9.9 積分

下載資源

還剩頁未讀,繼續(xù)閱讀

資源描述:

《2022年高三數(shù)學(xué)二輪復(fù)習(xí) 1-2-7空間向量與立體幾何同步練習(xí) 理 人教版》由會(huì)員分享,可在線閱讀,更多相關(guān)《2022年高三數(shù)學(xué)二輪復(fù)習(xí) 1-2-7空間向量與立體幾何同步練習(xí) 理 人教版(10頁珍藏版)》請?jiān)谘b配圖網(wǎng)上搜索。

1、2022年高三數(shù)學(xué)二輪復(fù)習(xí) 1-2-7空間向量與立體幾何同步練習(xí) 理 人教版 班級_______ 姓名________ 時(shí)間:45分鐘 分值:75分 總得分________ 一、選擇題:本大題共6小題,每小題5分,共30分.在每小題給出的四個(gè)選項(xiàng)中,選出符合題目要求的一項(xiàng)填在答題卡上. 1.在正方體ABCD-A1B1C1D1中,M、N分別為棱AA1和BB1的中點(diǎn),則sin〈,〉的值為(  ) A.          B. C. D. 解析:以D為原點(diǎn),DA、DC、DD1分別為x軸、y軸、z軸建系,設(shè)正方體棱長為1,則C(0,1,0),M,D1(0,0,1),N,∴=,=,∴co

2、s〈,〉==-, ∴sin〈,〉=.故選B. 答案:B 2.(xx·全國)已知直二面角α-l-β,點(diǎn)A∈α,AC⊥l,C為垂足,B∈β,BD⊥l,D為垂足,若AB=2,AC=BD=1,則D到平面ABC的距離等于(  ) A. B. C. D.1 解析:由2=(++)2 =2+2+2+2·+2·+2· =1+||2+1,所以|CD|=. 過D作DE⊥BC于E,則DE⊥面ABC,DE即為D到平面ABC的距離.在Rt△BCD中,BC2=BD2+CD2=3,∴BC=.DE·BC=BD·CD,∴DE=. 答案:C 3.在三棱錐P-ABC中,PA⊥平面ABC,∠BAC=9

3、0°,D、E、F分別是棱AB、BC、CP的中點(diǎn),AB=AC=1,PA=2,則直線PA與平面DEF所成角的正弦值為(  ) A. B. C. D. 解析:以A為原點(diǎn),AB、AC、AP所在直線分別為x軸、y軸、z軸建立如圖所示空間直角坐標(biāo)系,由AB=AC=1,PA=2,得A(0,0,0),B(1,0,0),C(0,1,0),P(0,0,2),D,E, F, ∴=(0,0,2),=,=,設(shè)面DEF的法向量為n=(x,y,z),則由得取z=1,則n=(2,0,1),設(shè)PA與平面DEF所成角為θ,則sinθ==,∴PA與平面DEF所成角為arcsin,故選C. 答案:C

4、 4.如圖所示,AC1是正方體的一條體對角線,點(diǎn)P、Q分別為其所在棱的中點(diǎn),則PQ與AC1所成的角為(  ) A.    B. C.    D. 解析:如圖,設(shè)底面中心為O,在對角面ADC1B1中,取AB1的中點(diǎn)為T,TD∥PQ,從而TD與AC1所成的角為所求.由相似可得∠AMD=,故選D. 答案:D 5.如下圖所示,在棱長為a的正方體ABCD-A1B1C1D1中,M是AA1的中點(diǎn),則點(diǎn)A到平面MBD的距離是(  ) A.a B.a C.a D.a 解析:A到面MBD的距離由等積變形可得. VA-MBD=VB-AMD.易求d=a. 答案:D 6.已

5、知平面α與β所成的二面角為80°,P為α,β外一定點(diǎn),過點(diǎn)P的一條直線與α,β所成的角都是30°,則這樣的直線有且僅有(  ) A.1條    B.2條 C.3條    D.4條 解析:如右圖,過P作α、β的垂線PC、PD,其確定的平面與棱l交于Q,過P的直線與α、β分別交于A、B兩點(diǎn),若二面角為80°,AB與平面α、β成30°,則∠CPD=100°,AB與PD、PC成60°,因此問題轉(zhuǎn)化為過P點(diǎn)與直線PD、PC所成角為60°的直線有幾條.∵<60°,<60°,∴這樣的直線有4條. 答案:D 二、填空題:本大題共4小題,每小題5分,共20分.把答案填在答題卡上. 7.(xx

6、·全國)已知點(diǎn)E、F分別在正方體ABCD-A1B1C1D1的棱BB1、CC1上,且B1E=2EB,CF=2FC1,則面AEF與面ABC所成的二面角的正切值等于________. 解析:如圖,以DA,DC,DD1為x軸、y軸、z軸建立空間直角坐標(biāo)系 設(shè)正方體的邊長為3. ∴A(3,0,0),E(3,3,1),F(xiàn)(0,3,2) ∴=(0,3,1),=(-3,3,2) 設(shè)平面AEF的法向量為n=(x,y,z), ∴? 令y=1,∴z=-3,x=-1,∴n=(-1,1,-3) 又=(0,0,3)為面ABC的一個(gè)法向量,設(shè)平面AEF與平面ABC所成的二面角為θ ∴cosθ=|cos

7、〈n,〉|== ∴sinθ== ∴tanθ==. 答案: 8.已知l1,l2是兩條異面直線,α、β、γ是三個(gè)互相平行的平面,l1、l2分別交α、β、γ于A、B、C和D、E、F,AB=4,BC=12,DF=10,又l1與α成30°角,則β與γ間的距離是________;DE=________. 解析:由直線與平面所成角的定義及平行平面距離定義易得β與γ間距離為6.由面面平行的性質(zhì)定理可得=,∴=,即=.∴DE=2.5. 答案:6 2.5 9.坐標(biāo)平面上有點(diǎn)A(-2,3)和B(4,-1),將坐標(biāo)平面沿y軸折成二面角A-Oy-B,使A,B兩點(diǎn)的距離為2,則二面角等于________.

8、 解析:如圖,AD⊥BC,BC⊥CD,∴BC⊥平面ACD,∴BC⊥AC,AB=2,BC=4,∴AC=2,AD=2,CD=4,∴cosθ==-=-. 答案:120° 10.已知正方體ABCD-A1B1C1D1的棱長為1,則直線DA1與AC間的距離為________. 解析:設(shè)n=λ+μ+是A1D和AC的公垂線段上的向量,則n·=(λ+μ+)·(-)=μ-1=0,∴μ=1.又n·=(λ+μ+)·(+)=λ+μ=0,∴λ=-1. ∴n=-++.故所求距離為 d== ==. 答案: 三、解答題:本大題共2小題,共25分.解答應(yīng)寫出文字說明、證明過程或演算步驟. 11.(1

9、2分)(xx·天津)如圖,在三棱柱ABC-A1B1C1中,H是正方形AA1B1B的中心,AA1=2,C1H⊥平面AA1B1B,且C1H=. (1)求異面直線AC與A1B1所成角的余弦值; (2)求二面角A-A1C1-B1的正弦值; (3)設(shè)N為棱B1C1的中點(diǎn),點(diǎn)M在平面AA1B1B內(nèi),且MN⊥平面A1B1C1,求線段BM的長. 解:方法一:如圖所示,建立空間直角坐標(biāo)系, 點(diǎn)B為坐標(biāo)原點(diǎn),依題意得A(2,0,0),B(0,0,0),C(,-,),A1(2,2,0),B1(0,2,0),C1(,,) (1)易得=(-,-,), =(-2,0,0). 于是cos〈,〉===

10、. 所以異面直線AC與A1B1所成角的余弦值為. (2)易知=(0,2,0),=(-,-,), 設(shè)平面AA1C1的法向量m=(x′,y′,z′), 則即 不妨令x′=,可得m=(,0,),同樣地,設(shè)平面A1B1C1的法向量n=(x,y,z),則即不妨令y=,可得n=(0,,),于是cos〈m,n〉===.從而sin〈m,n〉=. 所以二面角A-A1C1-B1的正弦值為. (3)由N為棱B1C1的中點(diǎn),得N,設(shè)M(a,b,0),則=,由MN⊥平面A1B1C1, 得 即 解得故M,因此=,所以線段BM的長||=. 方法二:(1)由于AC∥A1C1.故∠C1A1B1是異面直

11、線AC與A1B1所成的角. 因?yàn)镃1H⊥平面AA1B1B,又H為正方形AA1B1B的中心,AA1=2,C1H=,可得A1C1=B1C1=3. 因此cos∠C1A1B1==. 所以異面直線AC與A1B1所成角的余弦值為. (2)連接AC1,易知AC1=B1C1,又由于AA1=B1A1,A1C1=A1C1,所以△AC1A1≌△B1C1A1,過點(diǎn)A作AR⊥A1C1于點(diǎn)R,連接B1R,于是B1R⊥A1C1,故∠ARB1為二面角A-A1C1-B1的平面角. 在Rt△A1RB1中,B1R=A1B1·sin∠RA1B1=2·=.連接AB1,在△ARB1中,AB1=4,AR=B1R,cos∠AR

12、B1==-,從而sin∠ARB1=. 所以二面角A-A1C1-B1的正弦值為. (3)因?yàn)镸N⊥平面A1B1C1,所以MN⊥A1B1,取HB1中點(diǎn)D,連接ND.由于N是棱B1C1的中點(diǎn),所以ND∥C1H且ND=C1H=.又C1H⊥平面AA1B1B,所以ND⊥平面AA1B1B,故ND⊥A1B1.又MN∩ND=N,所以A1B1⊥平面MND,連接MD并延長交A1B1于點(diǎn)E,則ME⊥A1B1,故ME∥AA1. 由===,得DE=B1E=,延長EM交AB于點(diǎn)F,可得BF=B1E=,連接NE.在Rt△ENM中,ND⊥ME,故ND2=DE·DM,所以DM==,可得FM=,連接BM,在Rt△BFM中,

13、 BM==. 12.(13分)(xx·上海)已知ABCD-A1B1C1D1是底面邊長為1的正四棱柱,O1為A1C1與B1D1的交點(diǎn). (1)設(shè)AB1與底面A1B1C1D1所成角的大小為α,二面角A-B1D1-A1的大小為β.求證:tanβ=tanα; (2)若點(diǎn)C到平面AB1D1的距離為,求正四棱柱ABCD-A1B1C1D1的高. 解:設(shè)正四棱柱的高為h. (1)證明:連接AO1,AA1⊥底面A1B1C1D1于A1,∴AB1與底面A1B1C1D1所成的角為∠AB1A1,即∠AB1A1=α.∵AB1=AD1,O1為B1D1中點(diǎn), ∴AO1⊥B1D1,又A1O1⊥B1D1, ∴∠AO1A1是二面角A-B1D1-A1的平面角,即∠AO1A1=β ∴tanα==h,tanβ==h=tanα. (2)建立如圖空間直角坐標(biāo)系,有A(0,0,h),B1(1,0,0),D1(0,1,0),C(1,1,h) =(1,0,-h(huán)),=(0,1,-h(huán)),=(1,1,0) 設(shè)平面AB1D1的一個(gè)法向量為n=(x,y,z), ∵?, 即z=1,得n=(h,h,1) ∴點(diǎn)C到平面AB1D1的距離為d===,則h=2.

展開閱讀全文
溫馨提示:
1: 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
2: 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
3.本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
5. 裝配圖網(wǎng)僅提供信息存儲(chǔ)空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

相關(guān)資源

更多
正為您匹配相似的精品文檔
關(guān)于我們 - 網(wǎng)站聲明 - 網(wǎng)站地圖 - 資源地圖 - 友情鏈接 - 網(wǎng)站客服 - 聯(lián)系我們

copyright@ 2023-2025  zhuangpeitu.com 裝配圖網(wǎng)版權(quán)所有   聯(lián)系電話:18123376007

備案號:ICP2024067431-1 川公網(wǎng)安備51140202000466號


本站為文檔C2C交易模式,即用戶上傳的文檔直接被用戶下載,本站只是中間服務(wù)平臺,本站所有文檔下載所得的收益歸上傳人(含作者)所有。裝配圖網(wǎng)僅提供信息存儲(chǔ)空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對上載內(nèi)容本身不做任何修改或編輯。若文檔所含內(nèi)容侵犯了您的版權(quán)或隱私,請立即通知裝配圖網(wǎng),我們立即給予刪除!