2022年高考數(shù)學(xué)二輪專題突破 專題三 數(shù)列與不等式 第2講 數(shù)列的求和問(wèn)題 理

上傳人:xt****7 文檔編號(hào):105444034 上傳時(shí)間:2022-06-12 格式:DOC 頁(yè)數(shù):19 大?。?02.02KB
收藏 版權(quán)申訴 舉報(bào) 下載
2022年高考數(shù)學(xué)二輪專題突破 專題三 數(shù)列與不等式 第2講 數(shù)列的求和問(wèn)題 理_第1頁(yè)
第1頁(yè) / 共19頁(yè)
2022年高考數(shù)學(xué)二輪專題突破 專題三 數(shù)列與不等式 第2講 數(shù)列的求和問(wèn)題 理_第2頁(yè)
第2頁(yè) / 共19頁(yè)
2022年高考數(shù)學(xué)二輪專題突破 專題三 數(shù)列與不等式 第2講 數(shù)列的求和問(wèn)題 理_第3頁(yè)
第3頁(yè) / 共19頁(yè)

下載文檔到電腦,查找使用更方便

9.9 積分

下載資源

還剩頁(yè)未讀,繼續(xù)閱讀

資源描述:

《2022年高考數(shù)學(xué)二輪專題突破 專題三 數(shù)列與不等式 第2講 數(shù)列的求和問(wèn)題 理》由會(huì)員分享,可在線閱讀,更多相關(guān)《2022年高考數(shù)學(xué)二輪專題突破 專題三 數(shù)列與不等式 第2講 數(shù)列的求和問(wèn)題 理(19頁(yè)珍藏版)》請(qǐng)?jiān)谘b配圖網(wǎng)上搜索。

1、2022年高考數(shù)學(xué)二輪專題突破 專題三 數(shù)列與不等式 第2講 數(shù)列的求和問(wèn)題 理 1.(xx·福建)在等差數(shù)列{an}中,a2=4,a4+a7=15. (1)求數(shù)列{an}的通項(xiàng)公式; (2)設(shè)bn=2an-2+n,求b1+b2+b3+…+b10的值.       2.(xx·課標(biāo)全國(guó)Ⅰ)已知{an}是遞增的等差數(shù)列,a2,a4是方程x2-5x+6=0的根. (1)求{an}的通項(xiàng)公式; (2)求數(shù)列{}的前n項(xiàng)和.        高考對(duì)數(shù)列求和的考查主要以解答題的形式出現(xiàn),通過(guò)分組轉(zhuǎn)化、錯(cuò)位相減、裂項(xiàng)相消等方法求一般數(shù)列的和,體現(xiàn)轉(zhuǎn)化與化

2、歸的思想. 熱點(diǎn)一 分組轉(zhuǎn)化求和 有些數(shù)列,既不是等差數(shù)列,也不是等比數(shù)列,若將數(shù)列通項(xiàng)拆開(kāi)或變形,可轉(zhuǎn)化為幾個(gè)等差、等比數(shù)列或常見(jiàn)的數(shù)列,即先分別求和,然后再合并. 例1 等比數(shù)列{an}中,a1,a2,a3分別是下表第一、二、三行中的某一個(gè)數(shù),且a1,a2,a3中的任何兩個(gè)數(shù)不在下表的同一列. 第一列 第二列 第三列 第一行 3 2 10 第二行 6 4 14 第三行 9 8 18 (2)若數(shù)列{bn}滿足:bn=an+(-1)nln an,求數(shù)列{bn}的前n項(xiàng)和Sn.           思維升華 在處理一般

3、數(shù)列求和時(shí),一定要注意使用轉(zhuǎn)化思想.把一般的數(shù)列求和轉(zhuǎn)化為等差數(shù)列或等比數(shù)列進(jìn)行求和,在求和時(shí)要分析清楚哪些項(xiàng)構(gòu)成等差數(shù)列,哪些項(xiàng)構(gòu)成等比數(shù)列,清晰正確地求解.在利用分組求和法求和時(shí),由于數(shù)列的各項(xiàng)是正負(fù)交替的,所以一般需要對(duì)項(xiàng)數(shù)n進(jìn)行討論,最后再驗(yàn)證是否可以合并為一個(gè)公式. 跟蹤演練1 在等差數(shù)列{an}中,a3+a4+a5=84,a9=73. (1)求數(shù)列{an}的通項(xiàng)公式; (2)對(duì)任意m∈N*,將數(shù)列{an}中落入?yún)^(qū)間(9m,92m)內(nèi)的項(xiàng)的個(gè)數(shù)記為bm,求數(shù)列{bm}的前m項(xiàng)和Sm.           熱點(diǎn)二 錯(cuò)位相減法求和 錯(cuò)位相減法是

4、在推導(dǎo)等比數(shù)列的前n項(xiàng)和公式時(shí)所用的方法,這種方法主要用于求數(shù)列{an·bn}的前n項(xiàng)和,其中{an},{bn}分別是等差數(shù)列和等比數(shù)列. 例2 (xx·衡陽(yáng)聯(lián)考)已知數(shù)列{an}的前n項(xiàng)和為Sn,且有a1=2,3Sn=5an-an-1+3Sn-1(n≥2). (1)求數(shù)列{an}的通項(xiàng)公式; (2)若bn=(2n-1)an,求數(shù)列{bn}的前n項(xiàng)和Tn.       思維升華 (1)錯(cuò)位相減法適用于求數(shù)列{an·bn}的前n項(xiàng)和,其中{an}為等差數(shù)列,{bn}為等比數(shù)列;(2)所謂“錯(cuò)位”,就是要找“同類項(xiàng)”相減.要注意的是相減后得到部分,求等比數(shù)列的和,此時(shí)一定

5、要查清其項(xiàng)數(shù).(3)為保證結(jié)果正確,可對(duì)得到的和取n=1,2進(jìn)行驗(yàn)證. 跟蹤演練2 設(shè)數(shù)列{an}的前n項(xiàng)和為Sn,已知a1=1,Sn+1=2Sn+n+1(n∈N*), (1)求數(shù)列{an}的通項(xiàng)公式; (2)若bn=,求數(shù)列{bn}的前n項(xiàng)和Tn.       熱點(diǎn)三 裂項(xiàng)相消法求和 裂項(xiàng)相消法是指把數(shù)列和式中的各項(xiàng)分別裂開(kāi)后,某些項(xiàng)可以相互抵消從而求和的方法,主要適用于{}或{}(其中{an}為等差數(shù)列)等形式的數(shù)列求和. 例3 (xx·廣東韶關(guān)高三聯(lián)考)已知在數(shù)列{an}中,a1=1,當(dāng)n≥2時(shí),其前n項(xiàng)和Sn滿足S=an(Sn-). (1)求Sn的表

6、達(dá)式; (2)設(shè)bn=,數(shù)列{bn}的前n項(xiàng)和為T(mén)n,證明Tn<.           思維升華 (1)裂項(xiàng)相消法的基本思想就是把通項(xiàng)an分拆成an=bn+k-bn(k≥1,k∈N*)的形式,從而達(dá)到在求和時(shí)某些項(xiàng)相消的目的,在解題時(shí)要善于根據(jù)這個(gè)基本思想變換數(shù)列{an}的通項(xiàng)公式,使之符合裂項(xiàng)相消的條件. (2)常化的裂項(xiàng)公式 ①=(-); ②=(-); ③=(-). 跟蹤演練3 (1)已知數(shù)列{an},an=,其前n項(xiàng)和Sn=9,則n=________. (2)(xx·江蘇)設(shè)數(shù)列{an}滿足a1=1,且an+1-an=n+1(n∈N*),則數(shù)

7、列前10項(xiàng)的和為_(kāi)_______. 1.已知數(shù)列{an}的通項(xiàng)公式為an=,其前n項(xiàng)和為Sn,若存在實(shí)數(shù)M,滿足對(duì)任意的n∈N*,都有Sn0),且4a3是a1與2a2的等差中項(xiàng). (1)求{an}的通項(xiàng)公式; (2)設(shè)bn=,求數(shù)列{bn}的前n項(xiàng)和Tn.         提醒:完成作業(yè) 專題三 第2講 二輪專題強(qiáng)化練 專題三 第2講 數(shù)列的求和問(wèn)題 A組 專題通關(guān) 1.已知數(shù)列1,3,5,7,…,則其前n

8、項(xiàng)和Sn為(  ) A.n2+1- B.n2+2- C.n2+1- D.n2+2- 2.已知在數(shù)列{an}中,a1=-60,an+1=an+3,則|a1|+|a2|+|a3|+…+|a30|等于(  ) A.445 B.765 C.1 080 D.3 105 3.在等差數(shù)列{an}中,a1=-2 012,其前n項(xiàng)和為Sn,若-=2 002,則S2 014的值等于(  ) A.2 011 B.-2 012 C.2 014 D.-2 013 4.已知數(shù)列{an}滿足a1=1,a2=3,an+1an-1=an(n≥2),則數(shù)列{an}的前40項(xiàng)和S40等于( 

9、 ) A.20 B.40 C.60 D.80 5.(xx·紹興模擬)+++…+的值為(  ) A. B.- C.-(+) D.-+ 6.設(shè)f(x)=,若S=f()+f()+…+f(),則S=________. 7.(xx·浙江名校聯(lián)考)在數(shù)列{an}中,a1=1,an+2+(-1)nan=1,記Sn是數(shù)列{an}的前n項(xiàng)和,則S60=________. 8.設(shè)Sn為數(shù)列{an}的前n項(xiàng)和,若(n∈N*)是非零常數(shù),則稱該數(shù)列為“和等比數(shù)列”;若數(shù)列{cn}是首項(xiàng)為2,公差為d(d≠0)的等差數(shù)列,且數(shù)列{cn}是“和等比數(shù)列”,則d=________. 9.(xx·北

10、京)已知{an}是等差數(shù)列,滿足a1=3, a4=12,數(shù)列{bn}滿足b1=4,b4=20,且{bn-an}為等比數(shù)列. (1)求數(shù)列{an}和{bn}的通項(xiàng)公式; (2)求數(shù)列{bn}的前n項(xiàng)和. 10.(xx·山東)設(shè)數(shù)列{an}的前n項(xiàng)和為Sn.已知2Sn=3n+3. (1)求數(shù)列{an}的通項(xiàng)公式; (2)若數(shù)列{bn}滿足anbn=log3an,求{bn}的前n項(xiàng)和Tn. B組 能力提高 11.?dāng)?shù)列{an}滿足a1=2,an=,其前n項(xiàng)積為T(mén)n,則T2 016等于(  ) A

11、. B.- C.1 D.-1 12.已知數(shù)列{an}滿足an+1=+,且a1=,則該數(shù)列的前2 016項(xiàng)的和等于(  ) A.1 509 B.3 018 C.1 512 D.2 016 13.已知lg x+lg y=1,且Sn=lg xn+lg(xn-1y)+lg(xn-2y2)+…+lg yn,則Sn=________. 14.(xx·湖南)設(shè)數(shù)列{an}的前n項(xiàng)和為Sn,已知a1=1,a2=2,且an+2=3Sn-Sn+1+3, n∈N*. (1)證明:an+2=3an; (2)求Sn. 學(xué)生用書(shū)答案精析 第2講 數(shù)列

12、的求和問(wèn)題 高考真題體驗(yàn) 1.解 (1)設(shè)等差數(shù)列{an}的公差為d, 由已知得 解得 所以an=a1+(n-1)d=n+2. (2)由(1)可得bn=2n+n, 所以b1+b2+b3+…+b10=(2+1)+(22+2)+(23+3)+…+(210+10) =(2+22+23+…+210)+(1+2+3+…+10) =+ =(211-2)+55 =211+53=2 101. 2.解 (1)方程x2-5x+6=0的兩根為2,3, 由題意得a2=2,a4=3. 設(shè)數(shù)列{an}的公差為d,則a4-a2=2d, 故d=,從而a1=. 所以{an}的通項(xiàng)公式為an=n+

13、1. (2)設(shè){}的前n項(xiàng)和為Sn. 由(1)知=,則 Sn=++…++, Sn=++…++. 兩式相減得 Sn=+(+…+)- =+(1-)-. 所以Sn=2-. 熱點(diǎn)分類突破 例1 解 (1)當(dāng)a1=3時(shí),不合題意; 當(dāng)a1=2時(shí),當(dāng)且僅當(dāng)a2=6,a3=18時(shí),符合題意; 當(dāng)a1=10時(shí),不合題意. 因此a1=2,a2=6,a3=18,所以公比q=3. 故an=2·3n-1 (n∈N*). (2)因?yàn)閎n=an+(-1)nln an =2·3n-1+(-1)nln(2·3n-1) =2·3n-1+(-1)n[ln 2+(n-1)ln 3] =2·3n-

14、1+(-1)n(ln 2-ln 3)+(-1)nnln 3, 所以Sn=2(1+3+…+3n-1)+[-1+1-1+…+(-1)n]·(ln 2-ln 3)+[-1+2-3+…+(-1)nn]ln 3. 當(dāng)n為偶數(shù)時(shí), Sn=2×+ln 3 =3n+ln 3-1; 當(dāng)n為奇數(shù)時(shí), Sn=2×-(ln 2-ln 3)+ln 3 =3n-ln 3-ln 2-1. 綜上所述,Sn= 跟蹤演練1 解 (1)因?yàn)閧an}是一個(gè)等差數(shù)列, 所以a3+a4+a5=3a4=84,所以a4=28. 設(shè)數(shù)列{an}的公差為d, 則5d=a9-a4=73-28=45,故d=9. 由a4

15、=a1+3d得28=a1+3×9,即a1=1, 所以an=a1+(n-1)d=1+9(n-1)=9n-8(n∈N*). (2)對(duì)m∈N*,若9m

16、. (2)bn=(2n-1)22-n, Tn=1×21+3×20+5×2-1+…+(2n-1)·22-n, Tn=1×20+3×2-1+…+(2n-3)·22-n+(2n-1)·21-n, ∴Tn=2+2(20+2-1+…+22-n)-(2n-1)·21-n =2+-(2n-1)21-n =6-(2n+3)×21-n, ∴Tn=12-(2n+3)×22-n. 跟蹤演練2 解 (1)∵Sn+1=2Sn+n+1,當(dāng)n≥2時(shí),Sn=2Sn-1+n, ∴an+1=2an+1, ∴an+1+1=2(an+1), 即=2(n≥2),① 又S2=2S1+2,a1=S1=1, ∴a2

17、=3,∴=2, ∴當(dāng)n=1時(shí),①式也成立, ∴an+1=2n,即an=2n-1(n∈N*). (2)∵an=2n-1, ∴bn===, ∴Tn=+++…+, Tn=++…++, ∴Tn=2(+++…+-) =2--=2-. 例3 (1)解 當(dāng)n≥2時(shí),an=Sn-Sn-1代入S=an(Sn-),得2SnSn-1+Sn-Sn-1=0,由于Sn≠0, 所以-=2, 所以{}是首項(xiàng)為1,公差為2的等差數(shù)列, 從而=1+(n-1)×2=2n-1, 所以Sn=. (2)證明 因?yàn)閎n== =(-), 所以Tn=[(1-)+(-)+…+(-)] =(1-)<, 所以Tn

18、<. 跟蹤演練3 (1)99 (2) 解析 (1)因?yàn)閍n= =-, 所以Sn=a1+a2+a3+…+an-1+an=(-1)+(-)+(-)+…+(-)+(-)=-1. 由-1=9,解得n=99. (2)∵a1=1,an+1-an=n+1,∴a2-a1=2,a3-a2=3,…,an-an-1=n,將以上n-1個(gè)式子相加得an-a1=2+3+…+n=,即an=, 令bn=, 故bn==2, 故S10=b1+b2+…+b10 =2=. 高考押題精練 1.1 解析 因?yàn)閍n===-, 所以Sn=(-)+(-)+…+[-] =1-, 由于1-<1,所以M的最小值為1.

19、 2.解 (1)當(dāng)n=1時(shí),S1=a(S1-a1+1), 所以a1=a, 當(dāng)n≥2時(shí),Sn=a(Sn-an+1),① Sn-1=a(Sn-1-an-1+1),② 由①-②,得an=a×an-1, 即=a, 故{an}是首項(xiàng)a1=a,公比等于a的等比數(shù)列, 所以an=a×an-1=an. 故a2=a2,a3=a3. 由4a3是a1與2a2的等差中項(xiàng),可得8a3=a1+2a2, 即8a3=a+2a2, 因?yàn)閍≠0,整理得8a2-2a-1=0, 即(2a-1)(4a+1)=0, 解得a=或a=-(舍去), 故an=()n=. (2)由(1),得bn==(2n+1)×2

20、n, 所以Tn=3×2+5×22+7×23+…+(2n-1)×2n-1+(2n+1)×2n,① 2Tn=3×22+5×23+7×24+…+(2n-1)×2n+(2n+1)×2n+1,② 由①-②,得-Tn=3×2+2(22+23+…+2n)-(2n+1)×2n+1 =6+2×-(2n+1)·2n+1 =-2+2n+2-(2n+1)·2n+1 =-2-(2n-1)·2n+1, 所以Tn=2+(2n-1)·2n+1. 二輪專題強(qiáng)化練答案精析 第2講 數(shù)列的求和問(wèn)題 1.A [因?yàn)閍n=2n-1+, 所以Sn=+ =n2+1-.] 2.B [∵an+1=an+3,∴an

21、+1-an=3. ∴{an}是以-60為首項(xiàng),3為公差的等差數(shù)列. ∴an=-60+3(n-1)=3n-63. 令an≤0,得n≤21. ∴前20項(xiàng)都為負(fù)值. ∴|a1|+|a2|+|a3|+…+|a30| =-(a1+a2+…+a20)+a21+…+a30 =-2S20+S30. ∵Sn=n=×n, ∴|a1|+|a2|+|a3|+…+|a30|=765.] 3.C [等差數(shù)列中,Sn=na1+d,=a1+(n-1),即數(shù)列{}是首項(xiàng)為a1=-2 012,公差為的等差數(shù)列;因?yàn)椋? 002,所以,(2 012-10)=2 002,=1,所以,S2 014=2 014·

22、 [(-2 012)+(2 014-1)×1]=2 014,選C.] 4.C [由an+1=(n≥2),a1=1,a2=3,可得a3=3,a4=1,a5=,a6=,a7=1,a8=3,…,這是一個(gè)周期為6的數(shù)列,一個(gè)周期內(nèi)的6項(xiàng)之和為,又40=6×6+4,所以S40=6×+1+3+3+1=60.] 5.C [∵== =(-), ∴+++…+=(1-+-+-+…+-) =(--) =-(+).] 6.1 007 解析 ∵f(x)=,∴f(1-x)==, ∴f(x)+f(1-x)=+=1. S=f()+f()+…+f(),① S=f()+f()+…+f(),② ①+②得,2

23、S=[f()+f()]+[f()+f()]+…+[f()+f()]=2 014, ∴S==1 007. 7.480 解析 方法一 依題意得,當(dāng)n是奇數(shù)時(shí),an+2-an=1,即數(shù)列{an}中的奇數(shù)項(xiàng)依次形成首項(xiàng)為1、公差為1的等差數(shù)列,a1+a3+a5+…+a59=30×1+×1=465; 當(dāng)n是偶數(shù)時(shí),an+2+an=1,即數(shù)列{an}中的相鄰的兩個(gè)偶數(shù)項(xiàng)之和均等于1,a2+a4+a6+a8+…+a58+a60=(a2+a4)+(a6+a8)+…+(a58+a60)=15. 因此,該數(shù)列的前60項(xiàng)和S60=465+15=480. 方法二 ∵an+2+(-1)nan=1,∴a3-a

24、1=1,a5-a3=1,a7-a5=1,…,且a4+a2=1,a6+a4=1,a8+a6=1,…,∴{a2n-1}為等差數(shù)列,且a2n-1=1+(n-1)×1=n,即a1=1,a3=2,a5=3,a7=4, ∴S4=a1+a2+a3+a4=1+1+2=4,S8-S4=a5+a6+a7+a8=3+4+1=8, S12-S8=a9+a10+a11+a12=5+6+1=12,…, ∴S60=4×15+×4=480. 8.2 解析 由題意可知,數(shù)列{cn}的前n項(xiàng)和為Sn=,前2n項(xiàng)和為S2n=,所以==2+=2+.因?yàn)閿?shù)列{cn}是“和等比數(shù)列”,即為非零常數(shù),所以d=2. 9.解 (1

25、)設(shè)等差數(shù)列{an}的公差為d,由題意得 d===3, 所以an=a1+(n-1)d=3n(n=1,2,…). 設(shè)等比數(shù)列{bn-an}的公比為q,由題意得 q3===8,解得q=2. 所以bn-an=(b1-a1)qn-1=2n-1. 從而bn=3n+2n-1(n=1,2,…). (2)由(1)知bn=3n+2n-1(n=1,2,…). 數(shù)列{3n}的前n項(xiàng)和為n(n+1), 數(shù)列{2n-1}的前n項(xiàng)和為=2n-1. 所以,數(shù)列{bn}的前n項(xiàng)和為n(n+1)+2n-1. 10.解 (1)因?yàn)?Sn=3n+3, 所以2a1=3+3,故a1=3, 當(dāng)n>1時(shí),2Sn-

26、1=3n-1+3, 此時(shí)2an=2Sn-2Sn-1=3n-3n-1=2×3n-1, 即an=3n-1, 所以an= (2)因?yàn)閍nbn=log3an,所以b1=, 當(dāng)n>1時(shí),bn=31-nlog33n-1=(n-1)·31-n. 所以T1=b1=; 當(dāng)n>1時(shí),Tn=b1+b2+b3+…+bn=+(1×3-1+2×3-2+…+(n-1)×31-n), 所以3Tn=1+(1×30+2×3-1+…+(n-1)×32-n), 兩式相減,得2Tn=+(30+3-1+3-2+…+32-n)-(n-1)×31-n =+-(n-1)×31-n =-,所以Tn=-, 經(jīng)檢驗(yàn),n=1時(shí)

27、也適合. 綜上可得Tn=-. 11.C [由an=,得an+1=. ∵a1=2,∴a2=-3,a3=-,a4=,a5=2,a6=-3. 故數(shù)列{an}具有周期性,周期為4, ∵a1a2a3a4=1, ∴T2 016=T4=1.] 12.C [因?yàn)閍1=, 又an+1=+, 所以a2=1,從而a3=,a4=1, 即得an= 故數(shù)列的前2 016項(xiàng)的和等于 S2 016=1 008×(1+)=1 512.] 13.n2 解析 因?yàn)閘g x+lg y=1,所以lg(xy)=1. 因?yàn)镾n=lg xn+lg(xn-1y)+lg(xn-2y2)+…+ lg(xyn-1)+

28、lg yn, 所以Sn=lg yn+lg(xyn-1)+…+lg(xn-2y2)+ lg(xn-1y)+lg xn, 兩式相加,得2Sn=(lg xn+lg yn)+[lg(xn-1y)+lg(xyn-1)]+…+(lg yn+lg xn)=lg(xn·yn)+lg(xn-1y·xyn-1)+…+lg(yn·xn)=n[lg(xy)+lg(xy)+…+lg(xy)]=n2lg(xy)=n2,所以Sn=n2. 14.(1)證明 由條件,對(duì)任意n∈N*,有an+2=3Sn-Sn+1+3, 因而對(duì)任意n∈N*,n≥2,有an+1=3Sn-1-Sn+3. 兩式相減,得an+2-an+1=3

29、an-an+1,即an+2=3an,n≥2. 又a1=1,a2=2,所以a3=3S1-S2+3=3a1-(a1+a2)+3=3a1, 故對(duì)一切n∈N*,an+2=3an. (2)解 由(1)知,an≠0,所以=3.于是數(shù)列{a2n-1}是首項(xiàng)a1=1,公比為3等比數(shù)列;數(shù)列{a2n}是首項(xiàng)a2=2,公比為3的等比數(shù)列.因此a2n-1=3n-1,a2n=2×3n-1. 于是S2n=a1+a2+…+a2n =(a1+a3+…+a2n-1)+(a2+a4+…+a2n) =(1+3+…+3n-1)+2(1+3+…+3n-1)=3(1+3+…+3n-1)=. 從而S2n-1=S2n-a2n=-2×3n-1 =(5×3n-2-1). 綜上所述, Sn=

展開(kāi)閱讀全文
溫馨提示:
1: 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
2: 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
3.本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
5. 裝配圖網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

相關(guān)資源

更多
正為您匹配相似的精品文檔
關(guān)于我們 - 網(wǎng)站聲明 - 網(wǎng)站地圖 - 資源地圖 - 友情鏈接 - 網(wǎng)站客服 - 聯(lián)系我們

copyright@ 2023-2025  zhuangpeitu.com 裝配圖網(wǎng)版權(quán)所有   聯(lián)系電話:18123376007

備案號(hào):ICP2024067431號(hào)-1 川公網(wǎng)安備51140202000466號(hào)


本站為文檔C2C交易模式,即用戶上傳的文檔直接被用戶下載,本站只是中間服務(wù)平臺(tái),本站所有文檔下載所得的收益歸上傳人(含作者)所有。裝配圖網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)上載內(nèi)容本身不做任何修改或編輯。若文檔所含內(nèi)容侵犯了您的版權(quán)或隱私,請(qǐng)立即通知裝配圖網(wǎng),我們立即給予刪除!