《2022年人教A版高中數(shù)學(xué) 必修五 1-2-3應(yīng)用舉例 面積與證明教案》由會(huì)員分享,可在線(xiàn)閱讀,更多相關(guān)《2022年人教A版高中數(shù)學(xué) 必修五 1-2-3應(yīng)用舉例 面積與證明教案(4頁(yè)珍藏版)》請(qǐng)?jiān)谘b配圖網(wǎng)上搜索。
1、2022年人教A版高中數(shù)學(xué) 必修五 1-2-3應(yīng)用舉例 面積與證明教案
●教學(xué)目標(biāo)
知識(shí)與技能:能夠運(yùn)用正弦定理、余弦定理等知識(shí)和方法進(jìn)一步解決有關(guān)三角形的問(wèn)題, 掌握三角形的面積公式的簡(jiǎn)單推導(dǎo)和應(yīng)用
過(guò)程與方法:本節(jié)課補(bǔ)充了三角形新的面積公式,巧妙設(shè)疑,引導(dǎo)學(xué)生證明,同時(shí)總結(jié)出該公式的特點(diǎn),循序漸進(jìn)地具體運(yùn)用于相關(guān)的題型。另外本節(jié)課的證明題體現(xiàn)了前面所學(xué)知識(shí)的生動(dòng)運(yùn)用,教師要放手讓學(xué)生摸索,使學(xué)生在具體的論證中靈活把握正弦定理和余弦定理的特點(diǎn),能不拘一格,一題多解。只要學(xué)生自行掌握了兩定理的特點(diǎn),就能很快開(kāi)闊思維,有利地進(jìn)一步突破難點(diǎn)。
情感態(tài)度與價(jià)值觀(guān):讓學(xué)生進(jìn)一步鞏固所學(xué)的知識(shí),
2、加深對(duì)所學(xué)定理的理解,提高創(chuàng)新能力;進(jìn)一步培養(yǎng)學(xué)生研究和發(fā)現(xiàn)能力,讓學(xué)生在探究中體驗(yàn)愉悅的成功體驗(yàn)
●教學(xué)重點(diǎn)
推導(dǎo)三角形的面積公式并解決簡(jiǎn)單的相關(guān)題目
●教學(xué)難點(diǎn)
利用正弦定理、余弦定理來(lái)求證簡(jiǎn)單的證明題
●教學(xué)過(guò)程
Ⅰ.課題導(dǎo)入
[創(chuàng)設(shè)情境]
師:以前我們就已經(jīng)接觸過(guò)了三角形的面積公式,今天我們來(lái)學(xué)習(xí)它的另一個(gè)表達(dá)公式。在
ABC中,邊BC、CA、AB上的高分別記為h、h、h,那么它們?nèi)绾斡靡阎吅徒潜硎荆?
生:h=bsinC=csinB
h=csinA=asinC
h=asinB=bsinaA
師:根據(jù)以前學(xué)過(guò)的三角形面積公式S=ah,應(yīng)用以上求出的高的公式如
3、h=bsinC代入,可以推導(dǎo)出下面的三角形面積公式,S=absinC,大家能推出其它的幾個(gè)公式嗎?
生:同理可得,S=bcsinA, S=acsinB
師:除了知道某條邊和該邊上的高可求出三角形的面積外,知道哪些條件也可求出三角形的面積呢?
生:如能知道三角形的任意兩邊以及它們夾角的正弦即可求解
Ⅱ.講授新課
[范例講解]
例7、在A(yíng)BC中,根據(jù)下列條件,求三角形的面積S(精確到0.1cm)
(1)已知a=14.8cm,c=23.5cm,B=148.5;
(2)已知B=62.7,C=65.8,b=3.16cm;
(3)已知三邊的長(zhǎng)分別為a=41.4cm,b=27.3cm,c=
4、38.7cm
分析:這是一道在不同已知條件下求三角形的面積的問(wèn)題,與解三角形問(wèn)題有密切的關(guān)系,我們可以應(yīng)用解三角形面積的知識(shí),觀(guān)察已知什么,尚缺什么?求出需要的元素,就可以求出三角形的面積。
解:(1)應(yīng)用S=acsinB,得
S=14.823.5sin148.5≈90.9(cm)
(2)根據(jù)正弦定理,
=
c =
S = bcsinA = b
A = 180-(B + C)= 180-(62.7+ 65.8)=51.5
S = 3.16≈4.0(cm)
5、
(3)根據(jù)余弦定理的推論,得
cosB =
=
≈0.7697
sinB = ≈≈0.6384
應(yīng)用S=acsinB,得
S ≈41.438.70.6384≈511.4(cm)
例8、如圖,在某市進(jìn)行城市環(huán)境建設(shè)中,要把一個(gè)三角形的區(qū)域改造成室內(nèi)公園,經(jīng)過(guò)測(cè)量得到這個(gè)三角形區(qū)域的三條邊長(zhǎng)分別為68m,88m,127m,這個(gè)區(qū)域的面積是多少?(精確到0.1cm)?
師:你能把這一實(shí)際問(wèn)題化歸為一道數(shù)學(xué)題目嗎?
生:本題可轉(zhuǎn)化為已知三角形的三邊,求角的問(wèn)題,再利用三角形的面積公式求解。
由學(xué)生解答,老師巡視并對(duì)學(xué)生解答進(jìn)行講評(píng)小結(jié)。
解:設(shè)a=68m,
6、b=88m,c=127m,根據(jù)余弦定理的推論,
cosB=
=≈0.7532
sinB=0.6578
應(yīng)用S=acsinB
S ≈681270.6578≈2840.38(m)
答:這個(gè)區(qū)域的面積是2840.38m。
例3、在A(yíng)BC中,求證:
(1)
(2)++=2(bccosA+cacosB+abcosC)
分析:這是一道關(guān)于三角形邊角關(guān)系恒等式的證明問(wèn)題,觀(guān)察式子左右兩邊的特點(diǎn),聯(lián)想到用正弦定理來(lái)證明
證明:(1)根據(jù)正弦定理,可設(shè)
= = = k
顯然 k0,所以
左邊=
7、 ==右邊
(2)根據(jù)余弦定理的推論,
右邊=2(bc+ca+ab)
=(b+c- a)+(c+a-b)+(a+b-c)
=a+b+c=左邊
變式練習(xí)1:已知在A(yíng)BC中,B=30,b=6,c=6,求a及ABC的面積S
提示:解有關(guān)已知兩邊和其中一邊對(duì)角的問(wèn)題,注重分情況討論解的個(gè)數(shù)。
答案:a=6,S=9;a=12,S=18
變式練習(xí)2:判斷滿(mǎn)足下列條件的三角形形狀,
(1)acosA = bcosB
(2)sinC =
提示:利用正弦定理或余弦定理,“化邊為角”或“化角為邊”
(1)師:大家嘗試分別用兩個(gè)定理進(jìn)行證明。
生1:(余
8、弦定理)得
a=b
c=
根據(jù)邊的關(guān)系易得是等腰三角形或直角三角形
生2:(正弦定理)得
sinAcosA=sinBcosB,
sin2A=sin2B,
2A=2B,
A=B
根據(jù)邊的關(guān)系易得是等腰三角形
師:根據(jù)該同學(xué)的做法,得到的只有一種情況,而第一位同學(xué)的做法有兩種,請(qǐng)大家思考,誰(shuí)的正確呢?
生:第一位同學(xué)的正確。第二位同學(xué)遺漏了另一種情況,因?yàn)閟in2A=sin2B,有可能推出2A與2B兩個(gè)角互補(bǔ),即2A+2B=180,A+B=90
(2)(解略)直角三角形
Ⅲ.課堂練習(xí)
課本第18頁(yè)練習(xí)第1、2題
Ⅳ.課時(shí)小結(jié)
利用正弦定理或余弦定理將已知條件轉(zhuǎn)化為只含邊的式子或只含角的三角函數(shù)式,然后化簡(jiǎn)并考察邊或角的關(guān)系,從而確定三角形的形狀。特別是有些條件既可用正弦定理也可用余弦定理甚至可以?xún)烧呋煊谩?
Ⅴ.課后作業(yè)
課本第20頁(yè)練習(xí)第12、14、15題