2022年人教A版高中數(shù)學(xué) 高三一輪 第八章 平面解析幾何 8-6 雙曲線《教案》

上傳人:xt****7 文檔編號(hào):105614324 上傳時(shí)間:2022-06-12 格式:DOC 頁(yè)數(shù):11 大小:178.50KB
收藏 版權(quán)申訴 舉報(bào) 下載
2022年人教A版高中數(shù)學(xué) 高三一輪 第八章 平面解析幾何 8-6 雙曲線《教案》_第1頁(yè)
第1頁(yè) / 共11頁(yè)
2022年人教A版高中數(shù)學(xué) 高三一輪 第八章 平面解析幾何 8-6 雙曲線《教案》_第2頁(yè)
第2頁(yè) / 共11頁(yè)
2022年人教A版高中數(shù)學(xué) 高三一輪 第八章 平面解析幾何 8-6 雙曲線《教案》_第3頁(yè)
第3頁(yè) / 共11頁(yè)

下載文檔到電腦,查找使用更方便

9.9 積分

下載資源

還剩頁(yè)未讀,繼續(xù)閱讀

資源描述:

《2022年人教A版高中數(shù)學(xué) 高三一輪 第八章 平面解析幾何 8-6 雙曲線《教案》》由會(huì)員分享,可在線閱讀,更多相關(guān)《2022年人教A版高中數(shù)學(xué) 高三一輪 第八章 平面解析幾何 8-6 雙曲線《教案》(11頁(yè)珍藏版)》請(qǐng)?jiān)谘b配圖網(wǎng)上搜索。

1、2022年人教A版高中數(shù)學(xué) 高三一輪 第八章 平面解析幾何 8-6 雙曲線《教案》 【教學(xué)目標(biāo)】 1. 了解雙曲線的定義、幾何圖形和標(biāo)準(zhǔn)方程,知道其簡(jiǎn)單的幾何性質(zhì)(范圍、對(duì)稱性、頂點(diǎn)、離心率、 漸近線). 2.理解數(shù)形結(jié)合的思想.  3.了解雙曲線的簡(jiǎn)單應(yīng)用. 【重點(diǎn)難點(diǎn)】 1.教學(xué)重點(diǎn):掌握雙曲線的定義、幾何圖形、標(biāo)準(zhǔn)方程及簡(jiǎn)單性質(zhì); 2.教學(xué)難點(diǎn):學(xué)會(huì)對(duì)知識(shí)進(jìn)行整理達(dá)到系統(tǒng)化,提高分析問(wèn)題和解決問(wèn)題的能力; 【教學(xué)策略與方法】 自主學(xué)習(xí)、小組討論法、師生互動(dòng)法 【教學(xué)過(guò)程】 教學(xué)流程 教師活動(dòng) 學(xué)生活動(dòng) 設(shè)計(jì)意圖

2、 環(huán)節(jié)二: 考綱傳真: 1.了解雙曲線的定義、幾何圖形和標(biāo)準(zhǔn)方程,知道其簡(jiǎn)單的幾何性質(zhì)(范圍、對(duì)稱性、頂點(diǎn)、離心率、漸近線). 2.理解數(shù)形結(jié)合的思想. 3.了解雙曲線的簡(jiǎn)單應(yīng)用. 真題再現(xiàn); 1.(xx·全國(guó)Ⅰ,5)已

3、知方程-=1表示雙曲線,且該雙曲線兩焦點(diǎn)間的距離為4,則n的取值范圍是(  ) A.(-1,3) B.(-1,) C.(0,3) D.(0,) 解析 ∵方程-=1表示雙曲線,∴(m2+n)·(3m2-n)>0,解得-m2

4、.2 解析 離心率e=,由正弦定理得e====.故選A. 答案 A 3.(xx·全國(guó)Ⅱ,11)已知A,B為雙曲線E的左,右頂點(diǎn),點(diǎn)M在E上,△ABM為等腰三角形,且頂角為120°,則E的離心率為(  ) A. B.2 C. D. 解析 如圖,設(shè)雙曲線E的方程為-=1(a>0,b>0),則|AB|=2a,由雙曲線的對(duì)稱性,可設(shè)點(diǎn)M(x1,y1)在第一象限內(nèi),過(guò)M作MN⊥x軸于點(diǎn)N(x1,0),∵△ABM為等腰三角形,且∠ABM=120°,∴|BM|=|AB|=2a,∠MBN=60°,∴y1=|MN|=|BM|sin∠MBN=2asin 60°=a,x1=|OB|+|BN|=a

5、+2acos 60°=2a.將點(diǎn)M(x1,y1)的坐標(biāo)代入-=1,可得a2=b2,∴e===,選D. 答案 D 4.(xx·全國(guó)Ⅰ,5)已知M(x0,y0)是雙曲線C:-y2=1上的一點(diǎn),F(xiàn)1,F(xiàn)2是C的兩個(gè)焦點(diǎn),若·<0,則y0的取值范圍是(  ) A. B. C. D. 解析 由題意知M在雙曲線C:-y2=1上,又在x2+y2=3內(nèi)部,由得y=±, 所以-0)的距離之差的絕對(duì)值為常數(shù)2a(2a<2c)的點(diǎn)的軌跡叫做雙曲線.這兩個(gè)定點(diǎn)叫做雙曲

6、線的焦點(diǎn),兩焦點(diǎn)間的距離叫做焦距. 2.集合P={M|||MF1|-|MF2||=2a},|F1F2|=2c,其中a,c為常數(shù)且a>0,c>0. (1)當(dāng)2a<|F1F2|時(shí),M點(diǎn)的軌跡是雙曲線; (2)當(dāng)2a=|F1F2|時(shí),M點(diǎn)的軌跡是兩條射線; (3)當(dāng)2a>|F1F2|時(shí),M點(diǎn)不存在. 知識(shí)點(diǎn)2 雙曲線的標(biāo)準(zhǔn)方程和幾何性質(zhì) 標(biāo)準(zhǔn)方程 -=1(a>0,b>0) -=1(a>0,b>0) 圖形 性質(zhì) 范圍 x≥a或x≤-a y≤-a或y≥a 對(duì)稱性 對(duì)稱軸:坐標(biāo)軸;對(duì)稱中心:原點(diǎn) 頂點(diǎn) A1(-a,0),A2(a,0) A1(0,-a),A2(0

7、,a) 漸近線 y=±x y=±x 離心率 e=,e∈(1,+∞),其中c= 實(shí)虛軸 線段A1A2叫做雙曲線的實(shí)軸,它的長(zhǎng)|A1A2|=2a;線段B1B2叫做雙曲線的虛軸,它的長(zhǎng)|B1B2|=2b;a叫做雙曲線的實(shí)半軸長(zhǎng),b叫做雙曲線的虛半軸長(zhǎng) a,b,c的關(guān)系 c2=a2+b2(c>a>0,c>b>0) 1.必會(huì)結(jié)論;(1)雙曲線為等軸雙曲線?雙曲線的離心率e=?雙曲線的兩條漸近線互相垂直. (2)漸近線的斜率與雙曲線的焦點(diǎn)位置的關(guān)系:當(dāng)焦點(diǎn)在x軸上時(shí),漸近線斜率為±,當(dāng)焦點(diǎn)在y軸上時(shí),漸近線斜率為±. (3)漸近線與離心率-=1(a>0,b>0)的一條漸近線的斜

8、率為=. (4)過(guò)雙曲線的焦點(diǎn)垂直于實(shí)軸的直線被雙曲線截的弦長(zhǎng)為. (5)與雙曲線-=1(a>0,b>0)有共同漸近線的方程為-=t(t≠0). 2.必清誤區(qū);直線與雙曲線交于一點(diǎn)時(shí),不一定相切,例如:當(dāng)直線與雙曲線的漸近線平行時(shí),直線與雙曲線相交于一點(diǎn),但不是相切;反之,當(dāng)直線與雙曲線相切時(shí),直線與雙曲線僅有一個(gè)交點(diǎn). 考點(diǎn)分項(xiàng)突破 考點(diǎn)一:雙曲線的定義及應(yīng)用 1.已知雙曲線C的離心率為2,焦點(diǎn)為F1、F2,點(diǎn)A在C上.若|F1A|=2|F2A|,則cos∠AF2F1=(  ) A. B. C D. 【解析】  由e==2得,c=2a,如圖,由雙曲線的定義

9、得|F1A|-|F2A|=2a,又|F1A|=2|F2A|,故|F1A|=4a,|F2A|=2a, ∴cos∠AF2F1==. 【答案】 A 2.已知F1,F(xiàn)2為雙曲線-=1的左、右焦點(diǎn),P(3,1)為雙曲線內(nèi)一點(diǎn),點(diǎn)A在雙曲線上,則|AP|+|AF2|的最小值為(  ) A.+4 B.-4 C.-2 D.+2 【解析】 由題意知,|AP|+|AF2|=|AP|+|AF1|-2a,要求|AP|+|AF2|的最小值,只需求|AP|+|AF1|的最小值,當(dāng)A,P,F(xiàn)1三點(diǎn)共線時(shí),取得最小值,則|AP|+|AF1|=|PF1|=,∴|AP|+|AF2|=|AP|+|

10、AF1|-2a=-2.故選C.【答案】 C 3.已知F為雙曲線C:-=1的左焦點(diǎn),P,Q為雙曲線C上的點(diǎn).若PQ的長(zhǎng)等于虛軸長(zhǎng)的2倍,點(diǎn)A(5,0)在線段PQ上,則△PQF的周長(zhǎng)為_(kāi)_______. 【解析】 由雙曲線C:-=1,知a=3,b=4,則c==5,|PQ|=4b=16.∴F(-5,0),點(diǎn)A(5,0)為右焦點(diǎn).又右焦點(diǎn)A(5,0)在線段PQ上,知點(diǎn)P、Q在雙曲線的右支上.根據(jù)雙曲線定義,|PF|-|PA|=6,|QF|-|QA|=6.相加得,|PF|+|QF|-(|PA|+|QA|)=12, 于是|PF|+|QF|=12+|PQ|=28.從而△PQF的周長(zhǎng)為|PF|+|QF|

11、+|PQ|=44.【答案】 44 歸納;“焦點(diǎn)三角形”中常用到的知識(shí)點(diǎn)及技巧 1.常用知識(shí)點(diǎn):在“焦點(diǎn)三角形”中,正弦定理、余弦定理、雙曲線的定義經(jīng)常使用. 2.技巧:經(jīng)常結(jié)合||PF1|-|PF2||=2a,運(yùn)用平方的方法,建立它與|PF1||PF2|的聯(lián)系. 提醒:利用雙曲線的定義解決問(wèn)題,要注意三點(diǎn): (1)距離之差的絕對(duì)值.(2)2a<|F1F2|.(3)焦點(diǎn)所在坐標(biāo)軸的位置. 考點(diǎn)二: 雙曲線的標(biāo)準(zhǔn)方程與幾何性質(zhì) (1)(xx·江西高考)過(guò)雙曲線C:-=1的右頂點(diǎn)作x軸的垂線,與C的一條漸近線相交于點(diǎn)A.若以C的右焦點(diǎn)為圓心、半徑為4的圓經(jīng)過(guò)A,O兩點(diǎn)(O為坐標(biāo)原點(diǎn)),

12、則雙曲線C的方程為(  ) A.-=1 B.-=1 C.-=1 D.-=1 (2)(xx·全國(guó)卷Ⅱ)已知A,B為雙曲線E的左,右頂點(diǎn),點(diǎn)M在E上,△ABM為等腰三角形,且頂角為120°,則E的離心率為(  ) A. B.2 C. D. 【解析】 (1)由雙曲線C:-=1知,右頂點(diǎn)為(a,0),不妨設(shè)雙曲線C的一條漸近線為y=x.將x=a代入上式,得交點(diǎn)A(a,b),記雙曲線C的右焦點(diǎn)為F,則F(c,0),依題意,|OF|=|FA|=4, ∴解得故雙曲線C的標(biāo)準(zhǔn)方程為-=1,故選A. (2)不妨取點(diǎn)M在第一象限,如圖所示,設(shè)雙曲線方程為-=1(a>

13、0,b>0),則|BM|=|AB|=2a,∠MBx=180°-120°=60°, ∴M點(diǎn)的坐標(biāo)為.∵M(jìn)點(diǎn)在雙曲線上,∴-=1,a=b,∴c=a,e==.故選D.【答案】 (1)A (2)D 跟蹤訓(xùn)練:1.(xx·全國(guó)卷Ⅰ)已知M(x0,y0)是雙曲線C:-y2=1上的一點(diǎn),F(xiàn)1,F(xiàn)2是C的兩個(gè)焦點(diǎn),若·<0,則y0的取值范圍是(  ) A. B. C. D. 【解析】 由題意知a=,b=1,c=,∴F1(-,0),F(xiàn)2(,0),∴=(--x0,-y0),=(-x0,-y0).∵·<0,∴(--x0)(-x0)+y<0,即x-3+y<0.∵點(diǎn)M(x0,y0)在雙曲線上,

14、∴-y=1,即x=2+2y,∴2+2y-3+y<0, ∴-0,b>0)的一條漸近線平行于直線l:y=2x+10,雙曲線的一個(gè)焦點(diǎn)在直線l上,則雙曲線的方程為(  ) A.-=1 B.-=1 C.-=1 D.-=1 【解析】 依題意,由直線l:y=2x+10.令y=0,得雙曲線的一個(gè)焦點(diǎn)為(-5,0),∴c=5,則a2+b2=25,①又雙曲線-=1的一條漸近線為y=2x.所以=2,即b=2a,②聯(lián)立方程①②,得a2=5,b2=20. 故所求雙曲線方程為-=1,故選A.【答案】 A 歸納:

15、1.求雙曲線的標(biāo)準(zhǔn)方程的方法 (1)定義法:由條件判定動(dòng)點(diǎn)的軌跡是雙曲線,求出a2,b2,寫(xiě)出方程. (2)待定系數(shù)法:即“先定位,后定量”,如果不能確定焦點(diǎn)的位置,應(yīng)注意分類討論或恰當(dāng)設(shè)置簡(jiǎn)化討論. 常見(jiàn)設(shè)法有:①與雙曲線-=1共漸近線的可設(shè)為-=λ(λ≠0);②若漸近線方程為y=±x,則可設(shè)為-=λ(λ≠0);③若過(guò)兩個(gè)已知點(diǎn),則設(shè)為+=1(mn<0). 2.求雙曲線離心率或離心率范圍的兩種方法:一種是直接建立e的關(guān)系式求e或e的范圍;另一種是建立a,b,c的齊次關(guān)系式,將b用a,c表示,令兩邊同除以a或a2化為e的關(guān)系式,進(jìn)而求解. 3.求曲線-=1(a>0,b>0)的漸近線的

16、方法是令-=0,即得兩漸近線方程±=0. 考點(diǎn)三: 雙曲線與直線、圓、橢圓的綜合問(wèn)題 (1)已知雙曲線-=1與直線y=2x有交點(diǎn),則雙曲線離心率的取值范圍為(  ) A.(1,) B.(1,] C.(,+∞) D.[,+∞) (2)如圖,F(xiàn)1,F(xiàn)2是橢圓C1:+y2=1與雙曲線C2的公共焦點(diǎn),A,B分別是C1,C2在第二、四象限的公共點(diǎn).若四邊形AF1BF2為矩形,則C2的離心率是(  ) A. B. C. D. 【解析】 (1)∵雙曲線的一條漸近線方程為y=x, 則由題意得>2,∴e==>=,故選C. (2)由橢圓C1:+y2=

17、1知焦點(diǎn)F1(-,0),F(xiàn)2(,0),由于四邊形AF1BF2為矩形,知AF1⊥AF2,因此|AF1|+|AF2|=4,①|(zhì)AF1|2+|AF2|2=|F1F2|2=12,②聯(lián)立①②得|AF2|-|AF1|=2,于是雙曲線C2中,有2a=2,2c=2,故雙曲線C2的離心率e===,故選D.【答案】 (1)C (2)D 跟蹤訓(xùn)練:1.(xx·山東高考)已知a>b>0,橢圓C1的方程為+=1,雙曲線C2的方程為-=1,C1與C2的離心率之積為,則C2的漸近線方程為(  ) A.x±y=0 B.x±y=0 C.x±2y=0 D.2x±y=0 【解析】 由題意知e1=,e2=,

18、∴e1·e2=·==.又∵a2=b2+c,c=a2+b2,∴c=a2-b2, ∴==1-4,即1-4=,解得=±,∴=.令-=0,解得bx±ay=0,∴x±y=0.【答案】 A 2.設(shè)F為雙曲線C:-=1(a>0,b>0)的右焦點(diǎn),過(guò)點(diǎn)F且斜率為-1的直線l與雙曲線C的兩條漸近線分別交于A,B兩點(diǎn),若=-3,則雙曲線C的離心率e=(  ) A. B. C. D. 【解析】 設(shè)F(c,0),則過(guò)雙曲線-=1(a>0,b>0)的右焦點(diǎn)F作斜率為-1的直線為y=-(x-c),而雙曲線的漸近線方程是y=±x,由得B,由得A,=,=,又=-3,則=-3·,即b=a,則c==a,則e

19、==.故選D. 【答案】 D 歸納:解決與雙曲線有關(guān)綜合問(wèn)題的方法 1.解決雙曲線與橢圓、圓、拋物線的綜合問(wèn)題時(shí),要充分利用橢圓、圓、拋物線的幾何性質(zhì)得出變量間的關(guān)系,再結(jié)合雙曲線的幾何性質(zhì)求解. 2.解決直線與雙曲線的綜合問(wèn)題,通常是聯(lián)立直線方程與雙曲線方程,消元求解一元二次方程即可,但一定要注意數(shù)形結(jié)合,結(jié)合圖形注意取舍. 。 學(xué)生通過(guò)對(duì)高考真題的解決,發(fā)現(xiàn)自己對(duì)知識(shí)的掌握情況。 學(xué)生通過(guò)對(duì)高考真題的解決,感受高考題的考察視

20、角。 教師引導(dǎo)學(xué)生及時(shí)總結(jié),以幫助學(xué)生形成完整的認(rèn)知結(jié)構(gòu)。 引導(dǎo)學(xué)生通過(guò)對(duì)基礎(chǔ)知識(shí)的逐點(diǎn)掃描,來(lái)澄清概念,加強(qiáng)理解。從而為后面的練習(xí)奠定基礎(chǔ). 在解題中注意引導(dǎo)學(xué)生自主分析和解

21、決問(wèn)題,教師及時(shí)點(diǎn)撥從而提高學(xué)生的解題能力和興趣。 教師引導(dǎo)學(xué)生及時(shí)總結(jié),以幫助學(xué)生形成完整的認(rèn)知結(jié)構(gòu)。 通過(guò)對(duì)考綱的解讀和分析。讓學(xué)生明確考試要求,做到有的放矢

22、 由常見(jiàn)問(wèn)題的解決和總結(jié),使學(xué)生形成解題模塊,提高模式識(shí)別能力和解題效率。 教師引導(dǎo)學(xué)生及時(shí)總結(jié),以幫助學(xué)生形成完整的認(rèn)知結(jié)構(gòu)。 引導(dǎo)學(xué)生對(duì)所學(xué)的知識(shí)進(jìn)行小結(jié),由利于學(xué)生對(duì)已有的知識(shí)結(jié)構(gòu)進(jìn)行編碼處理,加強(qiáng)理解記憶,提高解題技能。 環(huán)節(jié)三: 課堂小結(jié): 1.了解雙曲線的定義、幾何圖形和標(biāo)準(zhǔn)方程,知道其簡(jiǎn)單的幾何性質(zhì)(范圍、對(duì)稱性、頂點(diǎn)、離心率、漸近線). 2.理解數(shù)形結(jié)合的思想.  3.了解雙曲線的簡(jiǎn)單應(yīng)用. 學(xué)生回顧,總結(jié). 引導(dǎo)學(xué)生對(duì)學(xué)習(xí)過(guò)程進(jìn)行反思,為在今后的學(xué)習(xí)中,進(jìn)行有效調(diào)控打下良好的基礎(chǔ)。 環(huán)節(jié)四: 課后作業(yè):學(xué)生版練與測(cè) 學(xué)生通過(guò)作業(yè)進(jìn)行課外反思,通過(guò)思考發(fā)散鞏固所學(xué)的知識(shí)。

展開(kāi)閱讀全文
溫馨提示:
1: 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
2: 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
3.本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
5. 裝配圖網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

相關(guān)資源

更多
正為您匹配相似的精品文檔
關(guān)于我們 - 網(wǎng)站聲明 - 網(wǎng)站地圖 - 資源地圖 - 友情鏈接 - 網(wǎng)站客服 - 聯(lián)系我們

copyright@ 2023-2025  zhuangpeitu.com 裝配圖網(wǎng)版權(quán)所有   聯(lián)系電話:18123376007

備案號(hào):ICP2024067431號(hào)-1 川公網(wǎng)安備51140202000466號(hào)


本站為文檔C2C交易模式,即用戶上傳的文檔直接被用戶下載,本站只是中間服務(wù)平臺(tái),本站所有文檔下載所得的收益歸上傳人(含作者)所有。裝配圖網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)上載內(nèi)容本身不做任何修改或編輯。若文檔所含內(nèi)容侵犯了您的版權(quán)或隱私,請(qǐng)立即通知裝配圖網(wǎng),我們立即給予刪除!