ZL50裝載機總體及工作裝置設計
購買設計請充值后下載,,資源目錄下的文件所見即所得,都可以點開預覽,,資料完整,充值下載可得到資源目錄里的所有文件。。?!咀ⅰ浚篸wg后綴為CAD圖紙,doc,docx為WORD文檔,原稿無水印,可編輯。。。帶三維備注的都有三維源文件,由于部分三維子文件較多,店主做了壓縮打包,都可以保證打開的,三維預覽圖都是店主用電腦打開后截圖的,具體請見文件預覽,有不明白之處,可咨詢QQ:1304139763
防止活塞銷冷擠壓工藝中出現(xiàn)流動缺陷的新方法
D.J.Lee ,D.J.Kim, B.M.Kim
精密機械工程系,研究生院,釜山國家大學,釜山,韓國
機械設計工程部門,研究生院,釜山國家大學,釜山,韓國
機械工程系,工程研究中心,釜山國家大學,釜山,韓國編號3
Janjeon-董,Kumjeong-顧,釜山609-735,韓國
摘要:
這份報告主要研究的是作為汽車零部件之一的活塞銷的流動缺陷。在聯(lián)合冷擠壓制活塞銷的工藝中,起皺就是一種流動缺陷,它是由死金屬區(qū)引起的。具有這種缺陷的部件帶有很明顯的外部特征,特征是被一微小而且厚的塊狀物嵌入材料中,這種缺陷對保證尺寸精度和降低材料損失是不利的,活塞銷的這種缺陷對于其強度和疲勞壽命也有不利的影響。因此,在工藝設計的早期預測并防止這種缺陷是非常重要的。防止其產(chǎn)生的最好方法就是通過控制材料流動來限制或減少死金屬區(qū)。有限元模擬分析方法被應用于流動缺陷研究分析當中,這份研究報告提出了通過去除死金屬區(qū)防止產(chǎn)生流動缺陷的新工藝方法——有限元分析法。將有限元分析的結果與實驗結果做比較,結果表明有限元分析的結果與實驗結果相符合。
關鍵詞:
流動缺陷;活塞銷釘;材料流動控制;前后雙向冷擠壓;死金屬區(qū);有限元分析
1、序言
冷加工是一種及其重要而且經(jīng)濟的加工方法,尤其對于大批量制件的加工,其優(yōu)點更為突出。由于冷加工具有高的成品率、精確的尺寸精度、良好的表面光潔度,優(yōu)良的機械加工性和冶金工藝性等優(yōu)點,因此冷加工是工業(yè)生產(chǎn)當中應用最為廣泛的零件加工工藝。
冷鍛制件廣泛應用于飛機制造、摩托車、螺母和螺栓等生產(chǎn)制造。但是,冷鍛制件也有可能產(chǎn)生缺陷,這主要取決于金屬材料的變形過程、成形加工的外部條件和材料的流動方式等??裳由斓牧鸭y缺陷是由材料的引應力狀態(tài)和變形過程引起的;流動缺陷是由不穩(wěn)定的材料流動引起的;低的尺寸精度是由低的模具尺寸精度和摩擦情況引起的,總之,鍛壓制件的缺陷主要包括兩類,分別是內(nèi)部缺陷和外部缺陷。
這些缺陷危害到產(chǎn)品的質量和制造成本,因此,在工藝設計中的早期預防是非常重要的。利用有限元分析法中的不同可用標準來研究大型鍛件的可延伸裂紋缺陷。KIM和KIM對兩道加強筋進行冷擠壓件的內(nèi)部和外部缺陷研究,并還在進行一種防止產(chǎn)生這些缺陷的加工工藝設計。
這份報告是一份關于汽車活塞銷產(chǎn)生的缺陷的測試報告,而這種活塞銷是采用前后雙向聯(lián)合擠壓的方式支撐的。這份報告中也提出了新的工藝方法可在工藝設計的早期防止產(chǎn)生流動缺陷,而這些新工藝方案是通過有限元分析研究得出的,實驗證明,這些新工藝方案是可行的。
2、成形工藝與缺陷形成分析
2.1、成形工藝
活塞銷是汽車零部件當中用來連接活塞與曲軸的并傳遞動力的部件,當采用冷沖壓制活塞銷時,設計要求必須保證前后雙向沖壓時具有相同的高度并且不能出現(xiàn)鍛壓缺陷,因為活塞銷在周期性大載荷作用下工作。制作活塞銷的材料是AISI-4135H合金鋼,它具有如下材料流動性 σ=768.06*ε0.139 ,潤滑措施是采用潤滑油類的磷鍍在活塞銷表面進行潤滑,經(jīng)試驗測試摩擦系數(shù)M為0.1。
加工活塞銷釘以前用的是多步驟加工法(如圖3所示),前兩步通過導圓角和沖出非圓形的基準孔等預處理工序來減少缺陷的產(chǎn)生,從而可以提高尺寸精度和模具壽命,第三步和第四步相同,分別是從前后雙向沖出圓形的腹板,最后一步是修整工序,從而得到活塞銷的形狀,然而,用普通加工方法加工的結果顯示:第三步的早期會在腹板部位形成缺陷,更嚴重的是在缺陷產(chǎn)生的部位出現(xiàn)了一種不一致的流動形式,這種形式是一種非常壞的流動形式的延伸
圖1 活塞銷釘?shù)男螤詈统叽? 圖2 活塞銷釘?shù)牧鲃尤毕?
圖3活塞銷釘傳統(tǒng)的形成過程
2.2用有限元分析預測缺陷的產(chǎn)生
塑性變形組織分布和有效應力對比圖的應用,暗示著有限元精密塑造程序在成形與缺陷分析領域中的商業(yè)價值。最初的坯料直徑為30mm,深度為61mm,最終成品的體積為43.118,這種成形工藝看上去類似于普通加工結果。
最大的裂縫值可以結算出斷裂缺陷產(chǎn)生的可能性,在這個沖壓過程中,其大小只有0.08mm,而且分布在坯料和沖床活塞沖頭接觸的端部。因此,可以避免流動缺陷的產(chǎn)生,因此這種缺陷并不能產(chǎn)生可延展的裂紋。金屬流動的流線圖是由Altan和Knoerr提出的,他們正在從事這種缺陷的分析研究,隨著沖頭沖壓深度的增加,劇烈變動的流線出現(xiàn)了不同的流動速度,從而導致實驗中缺陷的產(chǎn)生(如圖5所示)。
所以金屬流動只出現(xiàn)在第四步的反向沖壓而不出現(xiàn)在正向沖壓,并且在靠近腹板處的金屬被拔起形成一條筋,很像是重疊缺陷,因此,活塞銷的流動缺陷產(chǎn)生并發(fā)展的原因是:正反沖壓時由于死金屬區(qū)域產(chǎn)生而造成的金屬流動速度的不同,這種現(xiàn)象在像活塞銷這種薄壁件沖出尺寸精度高,材料損耗少的孔的制件中是非常明顯的。對于活塞銷這類工作溫度高,載荷大而且為交變載荷的零件來說,這種流動缺陷的產(chǎn)生會對其強度和疲勞壽命產(chǎn)生有害的影響。因此,有必要研究一種新工藝來防止產(chǎn)生流動缺陷。
圖4有效的負荷和裂縫價值的關系
圖5金屬流動和速度的關系
3.防止缺陷的工藝分析與設計
流動缺陷產(chǎn)生的原因是金屬限制死金屬區(qū)域的流動。為了在傳統(tǒng)工藝中早期的沖壓部位(第三步)消除死金屬區(qū),正沖壓或反沖壓工藝被改為聯(lián)合正反沖壓工藝,這種工藝在兩個完全相反的方向上同時進行同樣地動作。由于正反兩向不同的沖壓率和沖壓長度,要使兩個方向上同時完成材料流動是很困難的,因此在提前完成材料流動就會出現(xiàn)傳統(tǒng)工藝一樣出現(xiàn)的死金屬區(qū)。
因此,在活塞銷成形這種情況下,兩個方向的沖壓率和沖壓長度都是1.89和51mm。目前,一項關于活塞銷的沖壓長度的調(diào)查研究正在進行開模正反沖壓工藝的分析,兩個方向上的沖壓長度是不同的,正向沖壓長度長為24.9mm,反向沖壓長度如圖6所示要比正向的短。
反向金屬流動必須強制性的被限制才能滿足設計要求,而這就意為著死金屬區(qū)會產(chǎn)生。因此,要想在兩個方向上得到相同的沖壓長度,提出了三種控制金屬流動的方法,這三種方法都不同程度的強制限制金屬流動。
圖6反向沖壓長度
3.1 改變初加工的形狀
在正反雙向沖壓之前,為了保證從腹板中心處起正反兩個方向的沖壓長度相等,就得要求初加工要將反向沖壓筋的長度設計與雙向沖壓長度24.9mm有所不同。圖7展示了這種改進的工藝的結果,圖8展示了在這種情況下采用正反雙向沖壓工藝時最后一步中金屬的流動。從模擬實驗的結果可以得出,兩個方向的沖壓筋的長度都是51mm,這恰好滿足設計要求和活塞銷的尺寸要求。另外,死金屬區(qū)的金屬流動形式相同,而不像采用普通加工時會產(chǎn)生流動缺陷,而且在兩個方向上的流動速度也是連續(xù)變化的,這就意為著金屬流動在整個過程中是一致的,不會出現(xiàn)限制其流動的死金屬區(qū)。
圖七 多級樣板的修改過程 圖八金屬網(wǎng)的流動
3.2 驅動沖壓模膛
驅動模膛工藝被用來控制金屬流動從而滿足設計要求,這種設備采用向相反方向運動的模膛先與已經(jīng)沖壓成形的一側接觸(如圖9所示),這樣就有助于加快后沖壓方向上的金屬流動而減慢先沖壓方向上的金屬流動速度,采用這種工藝制作的活塞銷,由于反方向沖壓提前完成,而此時活塞正沿著這個方向移動從而增加了金屬沿著這個方向的流動,這個工藝的首要變化因素是沖頭與活塞的相對速率和金屬材料與活塞之間的摩擦條件。
在這個研究中,由于摩擦系數(shù)m=0.1(在毛胚材料和模膛之間),模擬實驗只與相對速率這一變量有關。如果相對速率小于滿足同時成型最合適的速率,則在反向方向上的沖壓過程就會比正向沖壓提前完成,這樣的話就會像采用普通加工一樣在相同部位產(chǎn)生流動缺陷,相反,如果相對速率大于最適宜的速率,則正向沖壓過程就會比反向沖壓過程提前完成,這樣就會在相反地部位產(chǎn)生缺陷。
因此,為了滿足設計要求,采用半分法可以找出最佳的相對速率,從結果來看,最佳的相對速率是0.48,圖10和11顯示了相對速率分別為0.1 、0.48、1.0時采用一次沖壓變形過程和金屬流動情況。圖11(c)顯示了當采用最佳相對速率0.48時的金屬流動形式,它記錄了一個可以防止缺陷產(chǎn)生的流動形式。
圖9軸向移動的箱體示意圖
圖10根據(jù)相對速度比率變化的活塞銷釘形態(tài)
圖11根據(jù)相對速度比率比較的金屬
3.3 修改模具結構
這種被提出的修改模具結構的工藝可以限制金屬在反方向上的流動,而在這個方向上容易提前完成變形,從而可以實現(xiàn)在兩個方向上同時完成變形,采用這種工藝時,為了能在兩個方向上同時完成變形過程而得到相同的變形長度,卸料器又被設計者重新采用,它是一種使沖頭從制件中抽出的裝置。如果采用普通加工工藝中的固定式卸料器,則由于材料流動受到限制,會出現(xiàn)死金屬區(qū),而此時產(chǎn)生的部位與采用雙向沖壓時產(chǎn)生在中間位置不同。
因此,一種利用彈簧彈力的結構可以推遲金屬材料沿反方向的流動。圖12顯示了這種模具結構,采用這種方法,選用合適的彈簧彈力對于滿足變形同時完成的要求來講是很重要的,因而有限元模擬可以計算出這種必要地彈力。從模擬結果來看,需要給卸料器施加5噸的彈力。圖13展示了這種工藝下金屬流動形式,與其它改進的工藝方法相比,這種工藝在死金屬區(qū)沒有出現(xiàn)不連續(xù)的流動速度,此處的金屬流動形式是相同的。
圖12使用沖壓模板的凹模模子結構示意圖 圖13使用沖壓模板的金屬流動
4.結果和實驗
通過有限元分析法分析出的三種方法中是適合防止金屬的流動缺陷。每個方法的情況如下。第一種方法是初步加工的產(chǎn)品需要三級過程(預制, 正反壓擠,穿孔)并且有一個簡單的模具結構;第二方法是使用沿軸方向移動的沖孔模板;第三種方法是軸向移動的箱體需要二級過程(前后壓擠,穿孔)并且有一個復雜的模具結構。關于在里面形成的負荷,這三個方法都非常相似。
特別是在沿軸方向移動的大約10噸的箱體情況下形成最大的負荷比其他方法小,因為在穿孔過程中沿軸方向移動的箱體會增加材料的流動。通過表1分析出的方法為形成做出了比較。在這項研究過程中,一個用在初步加工產(chǎn)品的實驗被進行,并且為了證實模擬結果所以使用一個250噸能力的多級樣板。在穿孔之前,為了金屬的觀察蝕刻流動能夠正常被進行,所以必須為活塞銷做一個流動缺陷檢查。圖14就是表示這個實驗結果,這種方法改變了初步加工的產(chǎn)品。實驗結果證明了在缺陷區(qū)域內(nèi)金屬流動的缺陷是相同的,并且滿足形成同時完成和在兩個擠壓方向長度相同。這種過程和模擬的結果相符。
傳統(tǒng)方法
初步加工的產(chǎn)品的使用
沖壓模板的使用
移動箱體的用途
最大負荷(噸)
97.2
96.3
96.1
84.0
擠壓的過程
2個階段
2個階段
1個階段
1個階段
缺陷
存在
不存在
不存在
不存在
表1 各個方法的比較
圖14 對流動缺陷的消除
5.結論
在這項研究過程中,流動缺陷過程和預防缺陷的過程都已經(jīng)被有限元分析重新設計。,缺陷的原因已經(jīng)被分析,并且通過分析已經(jīng)模擬出了結果。從模擬結果中可以看出,有限元分析方法是可以防止流動缺陷并且滿足生產(chǎn)過程中控制材料的流動狀態(tài)。通過有限元分析的結果和實驗的結果做比較,可以得出以下幾個結論:
(1)活塞銷里存在流動缺陷的原因是材料限制死金屬區(qū)域的流動。消除這個區(qū)域最重要的是控制材料的流動。
(2)初步加工的產(chǎn)品設計和改變模具結構是使用軸向運動的擠壓箱來消除擠壓過程中出現(xiàn)的流動缺陷。
(3)被提出的方法滿足了工藝的要求,向前擠壓的長度部分和落后的部分都是相同的,這些已經(jīng)由實驗所證實。
參考文獻:
[1] T.Altan,S.I.Oh,L.Gegel,Metal forming,ASM(1983).
[2] T. Okamoto,T. Fukuda,H. Hagita,Source Book on Cold Forming,ASTM,1997,pp. 216–226.
[3] S.W.Oh,T.H.Kim,B.M.Kim,J.C.Choi,KSME 19 (12) (1995) 3121–3129.
[4] R.C.Batra,N.V.Nechitailo,Int.J.Plast. 13 (4) (1997) 291–306.
[5] A.S. Wifi,A.Abdel-Hamid,N. El-Abbasi, J. Mater. Process. Technol.
77 (1998) 285–293.
[6] D.J. Kim,B.M. Kim,J. KSTP 8 (6) (1999) 612–619.
[7] D.C. Ko,Pusan National University Dissertation,1998.
[8] T. Altan,M. Knoerr,J. Mater. Process. Technol. 35 (1992) 275–302.
[9] K. Osakata,X. Wang,S. Hanami,J. Mater. Process. Technol. 71 (1997) 105–112.
10
摘要
沖壓制品已在工業(yè),農(nóng)業(yè),國防和日常生活中的方面得到廣泛應用,特別是在機械業(yè)中則為突出。機械產(chǎn)品的外殼大部分是沖壓制品,產(chǎn)品性能的提高要求高素質的沖壓模具和沖壓性能,成型工藝和制品的設計。
沖壓制品的成型方法很多。其主要用于是沖孔,落料,彎曲,拉伸等。而沖壓模,約占成型總數(shù)的60%以上。當然如利用電氣控制,可實現(xiàn)半自動化或自動化作業(yè)。
冷沖沖裁模主要用于金屬制品的成型,它是沖壓制品生產(chǎn)中十分重要的工藝裝置。沖壓模的基本組成是:上下模座、下模墊板、下模固定板、凹模鑲塊、抬料釘、導料板、卸料板,導柱導套、卸料板彈釘、卸料板等。
沖裁模成型的廣泛適用,正是我這個設計的根本出發(fā)點。
關鍵詞:沖孔、落料
Abstract
Stamping products has been extensively applied in the industry, agriculture, national defense and in the daily lives of area, especially in the machinery industry. Mechanical products is the most pressing housing products, and the improvement of product performance requires of high-quality performance stamping molds ,stamping,process and product design.
There are many ways of molding products of stamping. Piercing is mainly used for blanking, bending, stretching, etc. And Stamping molds almost form more than 60 percent of the total number. For example ,Electrical Control can be realized as semi-automatic or automatic operation.
Cold-metal stamping die mainly used for the molding products, and it is very important in the production of stamping technology devices. The basic component of stamping molds is block model from top to bottom, mould plate, fixed-plate of mould plate, die inserts, raising nails, I. plate
, plate unloading I. Introduction sets column, unloading bombs nail plate, plate Discharge and so on.
The widely application of blanking moulding is exactly the basic perpose of my design.
Key words: Piercing、Blanking
目 錄
1 緒論 1
1.1 沖壓的概念、特點及應用 1
1.2 沖壓的基本工序及模具 2
1.3 沖壓技術的現(xiàn)狀及發(fā)展方向 3
1.3.1 沖壓成形理論及沖壓工藝方面 3
1.3.2 沖模是實現(xiàn)沖壓生產(chǎn)的基本條件 4
1.3.3 沖壓設備和沖壓生產(chǎn)自動化方面 5
1.3.4 沖壓標準化及專業(yè)化生產(chǎn)方面 6
1.4 設計要求 7
2 沖裁工藝設計 8
2.1 沖裁件的工藝分析 8
2.1.1 材料特性分析 8
2.1.2 沖裁件的結構工藝性分析 8
2.2 沖壓工藝方案的確定 9
3 排樣設計及材料利用率計算 11
3.1 排樣方案的確定 11
3.2 搭邊的選取 11
3.3 送料步距、條料寬度及導料銷與條料間距計算 12
3.4 材料利用率的計算 13
4 沖裁工藝計算 14
4.1 沖裁力和壓力中心的計算 14
4.1.1 沖裁力的計算 14
4.1.2 卸料力、推料力和頂件力的計算 15
4.1.3 壓力中心的計算 16
4.1.4壓力機的選擇 17
4.1.5 曲柄壓力機的主要技術參數(shù) 18
4.1.6曲柄壓力機的選用 19
4.2 凸凹模刃口尺寸的計算 19
4.2.1 落料刃口尺寸的計算 21
4.2.2 沖孔刃口尺寸計算 22
5 模具主要零部件結構和設計 24
5.1 卸料裝置 24
5.1.1 橡膠的選用 25
5.2 出件裝置 28
5.3 定位零件 28
5.4 凹模的設計 29
5.5 凸凹模的設計 31
5.6 凸模的設計 31
5.7 模架 32
5.7.1 模板 32
5.7.2 導向零件 33
5.8 聯(lián)接與固定零件 34
5.8.1 模柄 34
5.8.2 凸模固定板與墊板 34
5.8.3 螺紋緊固件 34
5.8.4 圓柱銷 35
6 確定裝配基準 37
7 總結 38
致謝 39
參考文獻 40
1 緒論
1.1 沖壓的概念、特點及應用
沖壓是利用安裝在沖壓設備(主要是壓力機)上的模具對材料施加壓力,使其產(chǎn)生分離或塑性變形,從而獲得所需零件(俗稱沖壓或沖壓件)的一種壓力加工方法。沖壓通常是在常溫下對材料進行冷變形加工,且主要采用板料來加工成所需零件,所以也叫冷沖壓或板料沖壓。沖壓是材料壓力加工或塑性加工的主要方法之一,隸屬于材料成型工程術。
沖壓所使用的模具稱為沖壓模具,簡稱沖模。沖模是將材料(金屬或非金屬)批量加工成所需沖件的專用工具。沖模在沖壓中至關重要,沒有符合要求的沖模,批量沖壓生產(chǎn)就難以進行;沒有先進的沖模,先進的沖壓工藝就無法實現(xiàn)。沖壓工藝與模具、沖壓設備和沖壓材料構成沖壓加工的三要素,只有它們相互結合才能得出沖壓件。
與機械加工及塑性加工的其它方法相比,沖壓加工無論在技術方面還是經(jīng)濟方面都具有許多獨特的優(yōu)點。主要表現(xiàn)如下:
(1) 沖壓加工的生產(chǎn)效率高,且操作方便,易于實現(xiàn)機械化與自動化。這是因為沖壓是依靠沖模和沖壓設備來完成加工,普通壓力機的行程次數(shù)為每分鐘可達幾十次,高速壓力要每分鐘可達數(shù)百次甚至千次以上,而且每次沖壓行程就可能得到一個沖件。
(2)沖壓時由于模具保證了沖壓件的尺寸與形狀精度,且一般不破壞沖壓件的表面質量,而模具的壽命一般較長,所以沖壓的質量穩(wěn)定,互換性好,具有“一模一樣”的特征。
(3)沖壓可加工出尺寸范圍較大、形狀較復雜的零件,如小到鐘表的秒表,大到汽車縱梁、覆蓋件等,加上沖壓時材料的冷變形硬化效應,沖壓的強度和剛度均較高。
(4)沖壓一般沒有切屑碎料生成,材料的消耗較少,且不需其它加熱設備,因而是一種省料,節(jié)能的加工方法,沖壓件的成本較低。
但是,沖壓加工所使用的模具一般具有專用性,有時一個復雜零件需要數(shù)套模具才能加工成形,且模具 制造的精度高,技術要求高,是技術密集形產(chǎn)品。所以,只有在沖壓件生產(chǎn)批量較大的情況下,沖壓加工的優(yōu)點才能充分體現(xiàn),從而獲得較好的經(jīng)濟效益。
沖壓地、在現(xiàn)代工業(yè)生產(chǎn)中,尤其是大批量生產(chǎn)中應用十分廣泛。相當多的工業(yè)部門越來越多地采用沖壓法加工產(chǎn)品零部件,如汽車、農(nóng)機、儀器、儀表、電子、航空、航天、家電及輕工等行業(yè)。在這些工業(yè)部門中,沖壓件所占的比重都相當?shù)拇?,少則60%以上,多則90%以上。不少過去用鍛造=鑄造和切削加工方法制造的零件,現(xiàn)在大多數(shù)也被質量輕、剛度好的沖壓件所代替。因此可以說,如果生產(chǎn)中不諒采用沖壓工藝,許多工業(yè)部門要提高生產(chǎn)效率和產(chǎn)品質量、降低生產(chǎn)成本、快速進行產(chǎn)品更新?lián)Q代等都是難以實現(xiàn)的。
1.2 沖壓的基本工序及模具
由于沖壓加工的零件種類繁多,各類零件的形狀、尺寸和精度要求又各不相同,因而生產(chǎn)中采用的沖壓工藝方法也是多種多樣的。概括起來,可分為分離工序和成形工序兩大類;分離工序是指使坯料沿一定的輪廓線分離而獲得一定形狀、尺寸和斷面質量的沖壓(俗稱沖裁件)的工序;成形工序是指使坯料在不破裂的條件下產(chǎn)生塑性變形而獲得一定形狀和尺寸的沖壓件的工序。
上述兩類工序,按基本變形方式不同又可分為沖裁、彎曲、拉深和成形四種基本工序,每種基本工序還包含有多種單一工序。
在實際生產(chǎn)中,當沖壓件的生產(chǎn)批量較大、尺寸較少而公差要求較小時,若用分散的單一工序來沖壓是不經(jīng)濟甚至難于達到要求。這時在工藝上多采用集中的方案,即把兩種或兩種以上的單一工序集中在一副模具內(nèi)完成,稱為組合的方法不同,又可將其分為復合-級進和復合-級進三種組合方式。
復合沖壓——在壓力機的一次工作行程中,在模具的同一工位上同時完成兩種或兩種以上不同單一工序的一種組合方法式。
級進沖壓——在壓力機上的一次工作行程中,按照一定的順序在同一模具的不同工位上完面兩種或兩種以上不同單一工序的一種組合方式。
復合-級進——在一副沖模上包含復合和級進兩種方式的組合工序。
沖模的結構類型也很多。通常按工序性質可分為沖裁模、彎曲模、拉深模和成形模等;按工序的組合方式可分為單工序模、復合模和級進模等。但不論何種類型的沖模,都可
凸型墊片沖模 班級 農(nóng)機1001學生 駱龍敏指導老師 樊十全 主要內(nèi)容 1 沖裁工藝設計 3 沖裁工藝計算 2 排樣設計及利用率計算 4 模具主要零部件結構和設計 沖裁工藝設計 設計要求 材料為08F 材料厚度為0 8mm 制件尺寸精度按圖紙要求 大批量生產(chǎn) 沖裁工業(yè)設計 方案的確定 該工件有兩道加工工序 沖孔 落料 可以有以下三種方案 方案一 先落料后沖孔 采用簡單模生產(chǎn) 方案二 落料和沖孔連續(xù)加工 采用級進模生產(chǎn) 方案三 落料和沖孔復合加工 采用復合模生產(chǎn) 綜合考慮應該選擇第三方案進行加工 排樣設計及材料利用率計算 排樣方案的確定 有廢料排樣少廢料排樣無廢料排樣綜上分析 根據(jù)零件的形狀 尺寸 材料 選取有廢料排樣 采用直排的形式 排樣設計及材料利用率計算 搭邊的選取 排樣設計及材料利用率計算 利用率的計算 查板材標準應選900mm 1000mm的鋼板 每個鋼板可剪裁成18個條料 53 6mm 900mm 每張條料可加工27個零件 則材料的利用率為 沖裁工藝計算 沖裁力和壓力中心的計算 沖裁力的計算 卸料力 推料力和頂件力的計算總沖壓力 總沖壓力是各種沖壓工藝的總和 沖裁力合力的作用點稱為沖模壓力中心 為保證沖模正確平衡地工作 沖模壓力中心必須通過模柄軸線而和壓力機滑塊的中心線相重合 以免滑塊受偏心載荷 從而減少沖模和壓力機導軌的不正常磨損 提高模具壽命 避免沖壓事故 算得 沖裁工藝計算 凸凹模刃口尺寸計算 凸模尺寸按凹模尺寸配合保證雙邊間隙在0 03mm到0 07mm之間 在計算出凸模尺寸時凹模尺寸按凹模尺寸配合保證雙邊間隙在0 03mm到0 07mm之間所以滿足凸凹模的制造公差之和小于最大與最小合理間隙的的差 模具主要零部件結構和設計 卸料裝置 模具主要零部件結構和設計 出件裝置 模具主要零部件結構和設計 凸模 模具主要零部件結構和設計 凸凹模 凸型墊片沖模 總結 本文講述了沖裁復合模設計的一些基本知識 由于本人水平有限 改革探索經(jīng)驗不足 組織工作還有缺陷 何況形勢總在不斷發(fā)展 現(xiàn)在未完遠不能說本設計的相關內(nèi)容特別完善 還需要在改革的實踐中不斷檢驗 不斷修改 錘煉 不斷完善 永無休期 致謝
JIANGXI AGRICULTURAL UNIVERSITY
本 科 畢 業(yè) 論 文(設 計)
題目: 墊片落料沖孔復合模設計
學 院: 工 學 院
姓 名: 駱 龍 敏
學 號: 20100976
專 業(yè): 農(nóng)業(yè)機械化及其自動化
年 級: 1 0 級
指導教師: 樊十全 職 稱:副教授
二0一四 年 五 月
摘要
沖壓制品已在工業(yè),農(nóng)業(yè),國防和日常生活中的方面得到廣泛應用,特別是在機械業(yè)中則為突出。機械產(chǎn)品的外殼大部分是沖壓制品,產(chǎn)品性能的提高要求高素質的沖壓模具和沖壓性能,成型工藝和制品的設計。
沖壓制品的成型方法很多。其主要用于是沖孔,落料,彎曲,拉伸等。而沖壓模,約占成型總數(shù)的60%以上。當然如利用電氣控制,可實現(xiàn)半自動化或自動化作業(yè)。
冷沖沖裁模主要用于金屬制品的成型,它是沖壓制品生產(chǎn)中十分重要的工藝裝置。沖壓模的基本組成是:上下模座、下模墊板、下模固定板、凹模鑲塊、抬料釘、導料板、卸料板,導柱導套、卸料板彈釘、卸料板等。
沖裁模成型的廣泛適用,正是我這個設計的根本出發(fā)點。
關鍵詞:沖孔、落料
Abstract
Stamping products has been extensively applied in the industry, agriculture, national defense and in the daily lives of area, especially in the machinery industry. Mechanical products is the most pressing housing products, and the improvement of product performance requires of high-quality performance stamping molds ,stamping,process and product design.
There are many ways of molding products of stamping. Piercing is mainly used for blanking, bending, stretching, etc. And Stamping molds almost form more than 60 percent of the total number. For example ,Electrical Control can be realized as semi-automatic or automatic operation.
Cold-metal stamping die mainly used for the molding products, and it is very important in the production of stamping technology devices. The basic component of stamping molds is block model from top to bottom, mould plate, fixed-plate of mould plate, die inserts, raising nails, I. plate
, plate unloading I. Introduction sets column, unloading bombs nail plate, plate Discharge and so on.
The widely application of blanking moulding is exactly the basic perpose of my design.
Key words: Piercing、Blanking
目 錄
1 緒論 1
1.1 沖壓的概念、特點及應用 1
1.2 沖壓的基本工序及模具 2
1.3 沖壓技術的現(xiàn)狀及發(fā)展方向 3
1.3.1 沖壓成形理論及沖壓工藝方面 3
1.3.2 沖模是實現(xiàn)沖壓生產(chǎn)的基本條件 4
1.3.3 沖壓設備和沖壓生產(chǎn)自動化方面 5
1.3.4 沖壓標準化及專業(yè)化生產(chǎn)方面 6
1.4 設計要求 7
2 沖裁工藝設計 8
2.1 沖裁件的工藝分析 8
2.1.1 材料特性分析 8
2.1.2 沖裁件的結構工藝性分析 8
2.2 沖壓工藝方案的確定 9
3 排樣設計及材料利用率計算 11
3.1 排樣方案的確定 11
3.2 搭邊的選取 11
3.3 送料步距、條料寬度及導料銷與條料間距計算 12
3.4 材料利用率的計算 13
4 沖裁工藝計算 14
4.1 沖裁力和壓力中心的計算 14
4.1.1 沖裁力的計算 14
4.1.2 卸料力、推料力和頂件力的計算 15
4.1.3 壓力中心的計算 16
4.1.4壓力機的選擇 17
4.1.5 曲柄壓力機的主要技術參數(shù) 18
4.1.6曲柄壓力機的選用 19
4.2 凸凹模刃口尺寸的計算 19
4.2.1 落料刃口尺寸的計算 21
4.2.2 沖孔刃口尺寸計算 22
5 模具主要零部件結構和設計 24
5.1 卸料裝置 24
5.1.1 橡膠的選用 25
5.2 出件裝置 28
5.3 定位零件 28
5.4 凹模的設計 29
5.5 凸凹模的設計 31
5.6 凸模的設計 31
5.7 模架 32
5.7.1 模板 32
5.7.2 導向零件 33
5.8 聯(lián)接與固定零件 34
5.8.1 模柄 34
5.8.2 凸模固定板與墊板 34
5.8.3 螺紋緊固件 34
5.8.4 圓柱銷 35
6 確定裝配基準 37
7 總結 38
致謝 39
參考文獻 40
1 緒論
1.1 沖壓的概念、特點及應用
沖壓是利用安裝在沖壓設備(主要是壓力機)上的模具對材料施加壓力,使其產(chǎn)生分離或塑性變形,從而獲得所需零件(俗稱沖壓或沖壓件)的一種壓力加工方法。沖壓通常是在常溫下對材料進行冷變形加工,且主要采用板料來加工成所需零件,所以也叫冷沖壓或板料沖壓。沖壓是材料壓力加工或塑性加工的主要方法之一,隸屬于材料成型工程術。
沖壓所使用的模具稱為沖壓模具,簡稱沖模。沖模是將材料(金屬或非金屬)批量加工成所需沖件的專用工具。沖模在沖壓中至關重要,沒有符合要求的沖模,批量沖壓生產(chǎn)就難以進行;沒有先進的沖模,先進的沖壓工藝就無法實現(xiàn)。沖壓工藝與模具、沖壓設備和沖壓材料構成沖壓加工的三要素,只有它們相互結合才能得出沖壓件。
與機械加工及塑性加工的其它方法相比,沖壓加工無論在技術方面還是經(jīng)濟方面都具有許多獨特的優(yōu)點。主要表現(xiàn)如下:
(1) 沖壓加工的生產(chǎn)效率高,且操作方便,易于實現(xiàn)機械化與自動化。這是因為沖壓是依靠沖模和沖壓設備來完成加工,普通壓力機的行程次數(shù)為每分鐘可達幾十次,高速壓力要每分鐘可達數(shù)百次甚至千次以上,而且每次沖壓行程就可能得到一個沖件。
(2)沖壓時由于模具保證了沖壓件的尺寸與形狀精度,且一般不破壞沖壓件的表面質量,而模具的壽命一般較長,所以沖壓的質量穩(wěn)定,互換性好,具有“一模一樣”的特征。
(3)沖壓可加工出尺寸范圍較大、形狀較復雜的零件,如小到鐘表的秒表,大到汽車縱梁、覆蓋件等,加上沖壓時材料的冷變形硬化效應,沖壓的強度和剛度均較高。
(4)沖壓一般沒有切屑碎料生成,材料的消耗較少,且不需其它加熱設備,因而是一種省料,節(jié)能的加工方法,沖壓件的成本較低。
但是,沖壓加工所使用的模具一般具有專用性,有時一個復雜零件需要數(shù)套模具才能加工成形,且模具 制造的精度高,技術要求高,是技術密集形產(chǎn)品。所以,只有在沖壓件生產(chǎn)批量較大的情況下,沖壓加工的優(yōu)點才能充分體現(xiàn),從而獲得較好的經(jīng)濟效益。
沖壓地、在現(xiàn)代工業(yè)生產(chǎn)中,尤其是大批量生產(chǎn)中應用十分廣泛。相當多的工業(yè)部門越來越多地采用沖壓法加工產(chǎn)品零部件,如汽車、農(nóng)機、儀器、儀表、電子、航空、航天、家電及輕工等行業(yè)。在這些工業(yè)部門中,沖壓件所占的比重都相當?shù)拇?,少則60%以上,多則90%以上。不少過去用鍛造=鑄造和切削加工方法制造的零件,現(xiàn)在大多數(shù)也被質量輕、剛度好的沖壓件所代替。因此可以說,如果生產(chǎn)中不諒采用沖壓工藝,許多工業(yè)部門要提高生產(chǎn)效率和產(chǎn)品質量、降低生產(chǎn)成本、快速進行產(chǎn)品更新?lián)Q代等都是難以實現(xiàn)的。
1.2 沖壓的基本工序及模具
由于沖壓加工的零件種類繁多,各類零件的形狀、尺寸和精度要求又各不相同,因而生產(chǎn)中采用的沖壓工藝方法也是多種多樣的。概括起來,可分為分離工序和成形工序兩大類;分離工序是指使坯料沿一定的輪廓線分離而獲得一定形狀、尺寸和斷面質量的沖壓(俗稱沖裁件)的工序;成形工序是指使坯料在不破裂的條件下產(chǎn)生塑性變形而獲得一定形狀和尺寸的沖壓件的工序。
上述兩類工序,按基本變形方式不同又可分為沖裁、彎曲、拉深和成形四種基本工序,每種基本工序還包含有多種單一工序。
在實際生產(chǎn)中,當沖壓件的生產(chǎn)批量較大、尺寸較少而公差要求較小時,若用分散的單一工序來沖壓是不經(jīng)濟甚至難于達到要求。這時在工藝上多采用集中的方案,即把兩種或兩種以上的單一工序集中在一副模具內(nèi)完成,稱為組合的方法不同,又可將其分為復合-級進和復合-級進三種組合方式。
復合沖壓——在壓力機的一次工作行程中,在模具的同一工位上同時完成兩種或兩種以上不同單一工序的一種組合方法式。
級進沖壓——在壓力機上的一次工作行程中,按照一定的順序在同一模具的不同工位上完面兩種或兩種以上不同單一工序的一種組合方式。
復合-級進——在一副沖模上包含復合和級進兩種方式的組合工序。
沖模的結構類型也很多。通常按工序性質可分為沖裁模、彎曲模、拉深模和成形模等;按工序的組合方式可分為單工序模、復合模和級進模等。但不論何種類型的沖模,都可看成是由上模和下模兩部分組成,上模被固定在壓力機工作臺或墊板上,是沖模的固定部分。工作時,坯料在下模面上通過定位零件定位,壓力機滑塊帶動上模下壓,在模具工作零件(即凸模、凹模)的作用下坯料便產(chǎn)生分離或塑性變形,從而獲得所需形狀與尺寸的沖件。上?;厣龝r,模具的卸料與出件裝置將沖件或廢料從凸、凹模上卸下或推、頂出來,以便進行下一次沖壓循環(huán)。
1.3 沖壓技術的現(xiàn)狀及發(fā)展方向
隨著科學技術的不斷進步和工業(yè)生產(chǎn)的迅速發(fā)展,許多新技術、新工藝、新設備、新材料不斷涌現(xiàn),因而促進了沖壓技術的不斷革新和發(fā)展。其主要表現(xiàn)和發(fā)展方向如下。
1.3.1 沖壓成形理論及沖壓工藝方面
沖壓成形理論的研究是提高沖壓技術的基礎。目前,國內(nèi)外對沖壓成形理論的研究非常重視,在材料沖壓性能研究、沖壓成形過程應力應變分析、板料變形規(guī)律研究及坯料與模具之間的相互作用研究等方面均取得了較大的進展。特別是隨著計算機技術的飛躍發(fā)展和塑性變形理論的進一步完善,近年來國內(nèi)外已開始應用塑性成形過程的計算機模擬技術,即利用有限元(FEM)等有值分析方法模擬金屬的塑性成形過程,根據(jù)分析結果,設計人員可預測某一工藝方案成形的可行性及可能出現(xiàn)的質量問題,并通過在計算機上選擇修改相關參數(shù),可實現(xiàn)工藝及模具的優(yōu)化設計。這樣既節(jié)省了昂貴的試模費用,也縮短了制模具周期。
研究推廣能提高生產(chǎn)率及產(chǎn)品質量、降低成本和擴大沖壓工藝應用范圍的各種壓新工藝,也是沖壓技術的發(fā)展方向之一。目前,國內(nèi)外相繼涌現(xiàn)出精密沖壓工藝、軟模成形工藝、高能高速成形工藝及無模多點成形工藝等精密、高效、經(jīng)濟的沖壓新工藝。其中,精密沖裁是提高沖裁件質量的有效方法,它擴大了沖壓加工范圍,目前精密沖裁加工零件的厚度可達25mm,精度可達IT16~17級;用液體、橡膠、聚氨酯等作柔性凸?;虬寄5能浤3尚喂に?,能加工出用普通加工方法難以加工的材料和復雜形狀的零件,在特定生產(chǎn)條件下具有明顯的經(jīng)濟效果;采用爆炸等高能效成形方法對于加工各種尺寸在、形狀復雜、批量小、強度高和精度要求較高的板料零件,具有很重要的實用意義;利用金屬材料的超塑性進行超塑成形,可以用一次成形代替多道普通的沖壓成形工序,這對于加工形狀復雜和大型板料零件具有突出的優(yōu)越性;無模多點成形工序是用高度可調(diào)的凸模群體代替?zhèn)鹘y(tǒng)模具進行板料曲面成形的一種先進技術,我國已自主設計制造了具有國際領先水平的無模多點成形設備,解決了多點壓機成形法,從而可隨意改變變形路徑與受力狀態(tài),提高了材料的成形極限,同時利用反復成形技術可消除材料內(nèi)殘余應力,實現(xiàn)無回彈成形。無模多點成形系統(tǒng)以CAD/CAM/CAE技術為主要手段,能快速經(jīng)濟地實現(xiàn)三維曲面的自動化成形。
1.3.2 沖模是實現(xiàn)沖壓生產(chǎn)的基本條件
在沖模的設計制造上,目前正朝著以下兩方面發(fā)展:一方面,為了適應高速、自動、精密、安全等大批量現(xiàn)代生產(chǎn)的需要,沖模正向高效率、高精度、高壽命及多工位、多功能方向發(fā)展,與此相比適應的新型模具材料及其熱處理技術,各種高效、精密、數(shù)控自動化的模具加工機床和檢測設備以及模具CAD/CAM技術也在迅速發(fā)展;另一方面,為了適應產(chǎn)品更新?lián)Q代和試制或小批量生產(chǎn)的需要,鋅基合金沖模、聚氨酯橡膠沖模、薄板沖模、鋼帶沖模、組合沖模等各種簡易沖模及其制造技術也得到了迅速發(fā)展。
精密、高效的多工位及多功能級進模和大型復雜的汽車覆蓋件沖模代表了現(xiàn)代沖模的技術水平。目前,50個工位以上的級進模進距精度可達到2微米,多功能級進模不僅可以完成沖壓全過程,還可完成焊接、裝配等工序。我國已能自行設計制造出達到國際水平的精度達2~5微米,進距精度2~3微米,總壽命達1億次。我國主要汽車模具企業(yè),已能生產(chǎn)成套轎車覆蓋件模具,在設計制造方法、手段方面已基本達到了國際水平,但在制造方法手段方面已基本達到了國際水平,模具結構、功能方面也接近國際水平,但在制造質量、精度、制造周期和成本方面與國外相比還存在一定差距。
模具制造技術現(xiàn)代化是模具工業(yè)發(fā)展的基礎。計算機技術、信息技術、自動化技術等先進技術正在不斷向傳統(tǒng)制造技術滲透、交叉、融合形成了現(xiàn)代模具制造技術。其中高速銑削加工、電火花銑削加工、慢走絲切割加工、精密磨削及拋光技術、數(shù)控測量等代表了現(xiàn)代沖模制造的技術水平。高速銑削加工不但具有加工速度高以及良好的加工精度和表面質量(主軸轉速一般為15000~40000r/min),加工精度一般可達10微米,最好的表面粗糙度Ra≤1微米),而且與傳統(tǒng)切削加工相比具有溫升低(工件只升高3攝氏度)、切削力小,因而可加工熱敏材料和剛性差的零件,合理選擇刀具和切削用量還可實現(xiàn)硬材料(60HRC)加工;電火花銑削加工(又稱電火花創(chuàng)成加工)是以高速旋轉的簡單管狀電極作三維或二維輪廓加工(像數(shù)控銑一樣),因此不再需要制造昂貴的成形電極,如日本三菱公司生產(chǎn)的EDSCAN8E電火花銑削加工機床,配置有電極損耗自動補償系統(tǒng)、CAD/CAM集成系統(tǒng)、在線自動測量系統(tǒng)和動態(tài)仿真系統(tǒng),體現(xiàn)了當今電火花加工機床的技術水平;慢走絲線切割技術的發(fā)展水平已相當高,功能也相當完善,自動化程度已達到無人看管運行的程度,目前切割速度已達到300mm/min,加工精度可達±1.5微米,表面粗糙度達Ra=01~0.2微米;精度磨削及拋光已開始使用數(shù)控成形磨床、數(shù)控光學曲線磨床、數(shù)控連續(xù)軌跡坐標磨床及自動拋光等先進設備和技術;模具加工過程中的檢測技術也取得了很大的發(fā)展,現(xiàn)在三坐標測量機除了能高精度地測量復雜曲面的數(shù)據(jù)外,其良好的溫度補償裝置、可靠的抗振保護能力、嚴密的除塵措施及簡單操作步驟,使得現(xiàn)場自動化檢測成為可能。此外,激光快速成形技術(RPM)與樹脂澆注技術在快速經(jīng)濟制模技術中得到了成功的應用。利用RPM技術快速成形三維原型后,通過陶瓷精鑄、電弧涂噴、消失模、熔模等技術可快速制造各種成形模。如清華大學開發(fā)研制的“M-RPMS-Ⅱ型多功能快速原型制造系統(tǒng)”是我國自主知識產(chǎn)權的世界惟一擁有兩種快速成形工藝(分層實體制造SSM和熔融擠壓成形MEM)的系統(tǒng),它基于“模塊化技術集成”之概念而設計和制造,具有較好的價格性能比。一汽模具制造公司在以CAD/CAM加工的主模型為基礎,采用瑞士汽巴精化的高強度樹脂澆注成形的樹脂沖模應用在國產(chǎn)轎車試制和小批量生產(chǎn)開辟了新的途徑。
1.3.3 沖壓設備和沖壓生產(chǎn)自動化方面
性能良好的沖壓設備是提高沖壓生產(chǎn)技術水平的基本條件,高精度、高壽命、高效率的沖模需要高精度、高自動化的沖壓設備相匹配。為了滿足大批量高速生產(chǎn)的需要,目前沖壓設備也由單工位、單功能、低速壓力機朝著多工位、多功能、高速和數(shù)控方向發(fā)展,加之機械乃至機器人的大量使用,使沖壓生產(chǎn)效率得到大幅度提高,各式各樣的沖壓自動線和高速自動壓力機紛紛投入使用。如在數(shù)控四邊折彎機中送入板料毛坯后,在計算機程序控制下便可依次完成四邊彎曲,從而大幅度提高精度和生產(chǎn)率;在高速自動壓力機上沖壓電機定轉子沖片時,一分鐘可沖幾百片,并能自動疊成定、轉子鐵芯,生產(chǎn)效率比普通壓力機提高幾十倍,材料利用率高達97%;公稱壓力為250KN的高速壓力機的滑塊行程次數(shù)已達2000次/min以上。在多功能壓力機方面,日本田公司生產(chǎn)的2000KN“沖壓中心”采用CNC控制,只需5min時間就可完成自動換模、換料和調(diào)整工藝參數(shù)等工作;美國惠特尼公司生產(chǎn)的CNC金屬板材加工中心,在相同的時間內(nèi),加工沖壓件的數(shù)量為普通壓力機的4~10倍,并能進行沖孔、分段沖裁、彎曲和拉深等多種作業(yè)。
近年來,為了適應市場的激烈競爭,對產(chǎn)品質量的要求越來越高,且其更新?lián)Q代的周期大為縮短。沖壓生產(chǎn)為適應這一新的要求,開發(fā)了多種適合不同批量生產(chǎn)的工藝、設備和模具。其中,無需設計專用模具、性能先進的轉塔數(shù)控多工位壓力機、激光切割和成形機、CNC萬能折彎機等新設備已投入使用。特別是近幾年來在國外已經(jīng)發(fā)展起來、國內(nèi)亦開始使用的沖壓柔性制造單元(FMC)和沖壓柔性制造系統(tǒng)(FMS)代表了沖壓生產(chǎn)新的發(fā)展趨勢。FMS系統(tǒng)以數(shù)控沖壓設備為主體,包括板料、模具、沖壓件分類存放系統(tǒng)、自動上料與下料系統(tǒng),生產(chǎn)過程完全由計算機控制,車間實現(xiàn)24小時無人控制生產(chǎn)。同時,根據(jù)不同使用要求,可以完成各種沖壓工序,甚至焊接、裝配等工序,更換新產(chǎn)品方便迅速,沖壓件精度也高。
1.3.4 沖壓標準化及專業(yè)化生產(chǎn)方面
模具的標準化及專業(yè)化生產(chǎn),已得到模具行業(yè)和廣泛重視。因為沖模屬單件小批量生產(chǎn),沖模零件既具的一定的復雜性和精密性,又具有一定的結構典型性。因此,只有實現(xiàn)了沖模的標準化,才能使沖模和沖模零件的生產(chǎn)實現(xiàn)專業(yè)化、商品化,從而降低模具的成本,提高模具的質量和縮短制造周期。目前,國外先進工業(yè)國家模具標準化生產(chǎn)程度已達70%~80%,模具廠只需設計制造工作零件,大部分模具零件均從標準件廠購買,使生產(chǎn)率大幅度提高。模具制造廠專業(yè)化程度越不定期越高,分工越來越細,如目前有模架廠、頂桿廠、熱處理廠等,甚至某些模具廠僅專業(yè)化制造某類產(chǎn)品的沖裁?;驈澢?,這樣更有利于制造水平的提高和制造周期的縮短。我國沖模標準化與專業(yè)化生產(chǎn)近年來也有較大發(fā)展,除反映在標準件專業(yè)化生產(chǎn)廠家有較多增加外,標準件品種也有擴展,精度亦有提高。但總體情況還滿足不了模具工業(yè)發(fā)展的要求,主要體現(xiàn)在標準化程度還不高(一般在40%以下),標準件的品種和規(guī)格較少,大多數(shù)標準件廠家未形成規(guī)?;a(chǎn),標準件質量也還存在較多問題。另外,標準件生產(chǎn)的銷售、供貨、服務等都還有待于進一步提高。
1.4 設計要求
制件如圖1-1所示,材料為08F,材料厚度為0.8mm,制件尺寸精度按圖紙要求,大批量生產(chǎn)。
圖1-1
2 沖裁工藝設計
2.1 沖裁件的工藝分析
沖裁件的的工藝性是指沖裁件對沖壓工藝的適應性,即沖裁件在沖壓加工中的難易程度。沖裁件的工藝是否合理,對沖裁件的質量、模具壽命和生產(chǎn)率有很大的影響,一般情況下對沖壓件工藝性影響最大的是幾何尺寸和精度要求。
2.1.1 材料特性分析
沖壓所用的材料,不僅要滿足工件的技術要求,同時也必須滿足沖壓工藝要求:(1)應有良好的塑性。在成形工序中,塑性好的材料,其容許的變形程度大。在分離工序中,良好的塑性才能獲得理想的斷面質量。
(2) 應具有光潔平整且無缺陷損傷的表面狀態(tài)。表面狀態(tài)好的材料,加工時不易破裂,也不容易擦傷模具,制成的零件也有良好的表面狀態(tài)。
(3) 材料的厚度公差應符合國家標準。因為一定的模具間隙,適應于一定厚度的材料。
本零件采用08F鋼,08F鋼屬于優(yōu)質碳素結構鋼,其中含C量為0.05%~0.11%,抗拉強度,屈服強度。其韌性好,強度適中吻合加工的要求。
2.1.2 沖裁件的結構工藝性分析
(1) 沖裁件的形狀應盡量簡單,最好是規(guī)則的幾何形狀或由規(guī)則的幾何形狀所組成。同時應避免沖裁件上過長的懸臂與凹槽,它們的寬度要大于料厚的(1.5到2)倍,該零件外形上接近于矩形,沒有懸臂和凹槽,沖裁件的最小尺寸為8mm大于1.5t。
(2) 一般情況下,沖裁件的外形和內(nèi)孔應避免尖角,采用的圓角。此零件設有R3的倒角。
(3) 沖孔時,因受凸模強度限制,孔的尺寸不宜過小。用一般沖模沖圓孔時,對硬鋼,直徑;對軟鋼和黃銅,;對鋁及鋅,。沖方孔時,對硬鋼,邊長;對軟鋼及黃銅,;對鋁和鋅,。由于08F鋼屬于軟鋼。而。所以該條件也滿足。
(4) 孔與孔之間的距離或孔與零件邊緣之間的距離a,因受模具強度和沖裁件質量的限制,其值不能過小,一般應取a.>2t(3-4mm),如使用級進模,而且對零件精度要求不高時,a可適當減小,但也不宜于小于板厚??着c零件邊緣的最短距離為11.5mm。
(5) 沖裁件的精度一般可達IT10-IT12,高精度可達IT8-IT10級,沖孔比落料的精度約高一級。該零件沒有標準公差,則對于非圓形件按國家標準《非配合尺寸的公差數(shù)值》精度來處理,沖模則可按精度制造。
2.2 沖壓工藝方案的確定
該工件有兩道加工工序:沖孔、落料??梢杂幸韵氯N方案:
方案一:先落料后沖孔,采用簡單模生產(chǎn);
方案二:落料和沖孔連續(xù)加工,采用級進模生產(chǎn);
方案三:落料和沖孔復合加工,采用復合模生產(chǎn)。
三種方案比較見表1-1
表1-1 三種方案的比較
模
具
種
類
比
較
項
目
簡單模
級進模
復合模
沖裁件精度
較低
高
一般
生產(chǎn)效率
低
較高
高
生產(chǎn)批量
批量小或試制沖裁件
大批量
大批量
模具復雜程度
簡單
較復雜
復雜
模具制造成本
較低
較高
高
模具的結構特點
結構簡單安裝容易
結構較復雜制造麻煩
結構較復雜
模具的制造精度
較低
較高
高
模具制造周期
較快
較長
長
沖壓設備能力
較小
中等
較大
工作條件
一般
較好
好
方案一雖然模具結構簡單,尺寸較小,重量較輕,模具制造簡單,成本低廉。模具依靠壓力機導軌導向,模具的安裝調(diào)整麻煩,很難保證上、下部分對正,從而難以保證凸、凹模之間的間隙均勻,沖裁件精度差,模具壽命低,操作也不安全,需要兩套模具,生產(chǎn)率較低而且不適合大批量生產(chǎn)。方案二級進模是多工序沖模,在一副模具上能完成多道工序,使用級進??梢詼p少模具和設備數(shù)量,提高生產(chǎn)效率。級進模容易實現(xiàn)沖壓生產(chǎn)自動化。但是,級進模比簡單模結構復雜,制造麻煩,成本增加。級進模的條料的準確定位的問題不好解決。方案三復合模也是多工序沖模,在一副模具中一次送料定位可以同時完成幾個工序。和級進模相比,沖裁件的內(nèi)孔和外緣具有較高的位置精度,條料的定位精度要求較低,沖模輪廓尺寸較小,復合模適合于生產(chǎn)批量大、精度要求高的沖裁件,且零件的形位精度容易保證,條料的定位精度要求較低,生產(chǎn)效率較高。綜上分析應該選擇第三方案進行加工。
3 排樣設計及材料利用率計算
3.1 排樣方案的確定
沖裁件在條料或板料上的布置方法叫排樣。排樣的合理與否直接關系到材料利用率的高低,而沖壓件的成本中,材料費用一般占60%以上,因此合理排樣對提高材料利用率降低成本具有十分重要的意義。
根據(jù)材料的合理利用情況,條料的排樣方法可以分為三種:
(一)有廢料排樣:沿工件全部外形沖裁,工件四周都留有搭邊。可由搭邊補償誤差,因而能保證沖裁件的精度和質量,沖模壽命也較高,但材料利用率低。
(二)少廢料排樣:沿工件部分外形沖裁,局部有搭邊和余料。因受剪裁條料質量和定位誤差的影響,其沖件質量稍差就會影響模具的壽命,但材料利用率高,沖模結構簡單。
(三)無廢料排樣:工件由條料順次切下,直接獲得零件,無任何搭邊。沖件的質量較差,模具壽命低,但材料利用率高。
采用少、無廢料排樣,對節(jié)省材料有重要意義。同時,因沖切周邊減小,可降低沖壓力并簡化沖模結構。但采用少、無廢料排樣也存在一些缺點,如工件所能達到的質量與精度都較差,同時模具壽命也較低。此外,少無廢料排樣中,工件的毛刺也不在同一方向。
無論是有廢料、少廢料或無廢料排樣,其排樣的型式均可分為直排、斜排、直對排、斜對排、混合排和多行排等。
綜上分析,根據(jù)零件的形狀、尺寸、材料,選取有廢料排樣,采用直排的形式。
3.2 搭邊的選取
排樣時工件之間以及工件與條料側邊之間留下的余料叫搭邊。搭邊雖然形成廢料,但在工藝上卻有很大的作用。搭邊的作用是補償定位誤差,保證沖出合格的零件。搭邊還可以保證條料有一定的剛度,利于送進。
搭邊值要合理確定。搭邊值過大,材料利用率低;搭邊值過小,在沖裁中有可能被拉斷,使零件產(chǎn)生毛刺,嚴重時會拉入凸模與凹模間隙之中,損壞模具刃口。搭邊值的大小通常與材料的機械性能、工件的形狀和尺寸、材料厚度以及送料和擋料方式等因素有關。硬材料的搭邊值比軟材料的搭邊值可小一些;工件尺寸大或是有尖突的復雜形狀時,搭邊值取大些,厚材料的搭邊值應取大些;用手工送料,有側壓裝置,搭邊值可取小些。
目前搭邊值的大小是由經(jīng)驗確定的。表3-1是常用以確定搭邊值的參考數(shù)表。 表3-1 搭邊a和a1的數(shù)值
材料厚度t\mm
圓件及圓角r>2t
矩形件邊長L≤50mm
矩形邊長L≥50mm或圓角r≤2t
工件間a1
沿邊a
工件間a1
沿邊a
工件間a1
沿邊a
0.25以下
1.8
2.0
2.2
2.5
2.8
3.0
0.25~0.50
1.2
1.5
1.8
2.0
2.2
2.5
0.5~0.8
1.0
1.2
1.5
1.8
1.8
2.0
0.8~1.2
0.8
1.0
1.2
1.5
1.5
1.8
根據(jù)零件矩形形狀最長邊長為50mm,厚度為0.8mm,所以a1=1.5mm,沿邊a=1.8mm。
3.3 送料步距、條料寬度及導料銷與條料間距計算
1. 送料步距:兩次沖裁間板料在送料方向移動的距離L,其值等于沖裁件相應部分的寬度加上工件間搭邊值a,即
(3-1)
2. 條料寬度及導料銷與條料間距的計算條料寬度的計算
(3-2)
查得.所以排樣圖如圖3-1:
圖 3-1
3.4 材料利用率的計算
查板材標準應選900mm×1000mm的鋼板,每個鋼板可剪裁成18個條料(53.6mm×900mm),每張條料可加工27個零件,則材料的利用率為
(3-3)
n--------一張板料上沖件的數(shù)量
A-------零件的實際面積
B-------板料的寬度
L-------板料的長度
即每張板材的材料利用率為63%
4 沖裁工藝計算
4.1 沖裁力和壓力中心的計算
4.1.1 沖裁力的計算
沖裁力是指沖裁時,材料對凸模的最大抵抗力,它是選擇沖壓設備和校核模具強度的重要依據(jù)。
用平刃沖裁模沖裁時,其沖裁力的計算公式為
(4-1) ------沖裁力(N)
--------沖裁件的周長(mm)
--------板料的厚度(mm)
---------材料的抗剪強度(2)
--------系數(shù)。
這一公式是對沖裁區(qū)的變形進行簡化,認為是純剪變形得到的。變形區(qū)的實際變形情況比較復雜,因此,采用系數(shù)加以修正,一般可取=1.3。
抗剪強度的數(shù)值,取決于材料的種類和狀態(tài),可取。
為了計算方便,也可以用下式估算沖裁力:
(4-2)
式中:----------材料的抗拉強度
經(jīng)查機械設計手冊得08F鋼的抗拉強度σb=295MPa.由此可以得出:
4.1.2 卸料力、推料力和頂件力的計算
沖模過程中,材料由于彈性變形和摩擦使帶孔部分的板料緊箍在凸模上,而沖落部分的板料緊卡在凹模洞口內(nèi)。為了繼續(xù)下一步的沖裁工作,必須將箍在凸模上的板料卸下,將卡在凹模洞口的板料推出,從凸模上卸下緊箍著的板料叫卸料,所需的力叫卸料力;順著沖裁方向將卡在凹模洞口內(nèi)的板料推出叫推件,所需的力叫推件力;;有時需要將卡在凹模洞口內(nèi)的板料逆著沖裁方向頂出,這就叫頂件,頂件所需的力叫頂件力。
影響卸料力、推件力和頂件力的因素有很多,主要有材料的機械性能、材料厚度、模具間隙、零件的形狀和尺寸以及潤滑條件等。要準確計算這些力是很難的,生產(chǎn)中常用以下經(jīng)驗公式進行計算:
推件力 (4-3)
頂件力 (4-4)
卸料力 (4-5)
式中:n---------同時卡在凹模洞口內(nèi)的零件數(shù)
--------沖裁力(N)
、、----------推件力、頂件力和卸料力系數(shù),其值見下表、
表4-1 推件力系數(shù)、頂件力系數(shù)和卸料力系數(shù)
料 厚
K1
K2
K3
鋼
≤0.1
>0.1~0.5
>0.5~2.5
>2.5~6.5
>6.5
0.1
0.063
0.055
0.045
0.025
0.14
0.08
0.06
0.05
0.03
0.065~0.075
0.045~0.055
0.04~0.05
0.03~0.04
0.02~0.03
鋁、鋁合金
紫銅、黃銅
0.03~0.07
0.03~0.09
0.025~0.08
0.02~0.06
注:卸料力系數(shù)在沖多孔和輪廓復雜沖裁件時取上限。
查表可有:, =0.14,=0.075
總沖壓力總沖壓力是各種沖壓工藝的總和,由于本模具采用彈性卸料裝置,則:
在沖裁高強度材料或厚度大、周邊長的工件時,所需沖裁力如果超過現(xiàn)有壓力機噸位,就必須采取降低沖裁力。
一般采用如下幾種方法:
(1)材料加熱紅腫。材料加熱后抗剪強度可以大大降低,從而降低沖裁力。但材料加熱后產(chǎn)生氧化皮,故此法一般只適用于厚板或工件表面質量及精度要求不高的零件。
(2)在多凸模沖模中,將凸模作階梯形布置,即將凸模刃口制成不同高度,使各凸模沖裁力的最大值不同時出現(xiàn),這樣就能降低總的沖裁力。
(3)用斜刃口模具沖裁。用普通的平刃口模具沖裁時,其整個刃口平面都同時壓入材料中,故在沖裁大型或厚板工件時,沖裁力往往很大,若將凸模刃口平面做成與其軸線傾斜一個角度,沖裁時刃口就不是全部同時切入,而是逐步?jīng)_切材料,這就等于減少了剪切斷面積,因而能降低沖裁力。
斜刃沖模雖然降低了沖裁力,但增加了模具制造和修磨的困難,刃口也容易磨損,故一般情況下盡量不用,只用于大型工件沖裁及厚板沖裁。
4.1.3 壓力中心的計算
沖裁力合力的作用點稱為沖模壓力中心。為保證沖模正確平衡地工作,沖模壓力中心必須通過模柄軸線而和壓力機滑塊的中心線相重合,以免滑塊受偏心載荷,從而減少沖模和壓力機導軌的不正常磨損,提高模具壽命,避免沖壓事故。
沖模壓力中心的計算,是采用空間平行力系合力作用線的求解方法,即根據(jù)“合力對某軸之力矩等于各分力對同軸力矩之和”的力學原理求得。
對于任何形狀,不論單個圖形(敞開或封閉的輪廓)或多個圖形(如多凸模、復合模和級進模)沖裁,其計算方法相同。
首先將組成圖形的輪廓線劃分為若干基本線段,分別計算其沖裁力(對于多凸模,分別計算各凸模圖形的沖裁力),這些即為分力,由各分力之和算出合力。然后,任意選定直角坐標系,確定各線段或各圖形的重心坐標,按上述定理列式,即可求出壓力中心的坐標。
由于線段的長度或圖形的輪廓周長與沖裁力成正比,所以可以用線段的長度或圖形輪廓的周長代替,這時壓力中心坐標公式如下:
(4-6)
(4-7) 由此可算得
所以壓力中心為(0,10.22)
4.1.4壓力機的選擇
沖壓工作是在沖壓設備上進行的,目前應用較多的有曲柄壓力機、摩擦壓力機和液壓機。曲柄壓力機可用于各類沖模,其中偏心機床尤其適用于導柱、導套不脫開的模具(如導板模),摩擦壓力機和液壓機主要用于校正模、壓鑄模等,同時也適用于擠壓模。這里簡單介紹一下生產(chǎn)中最普遍適用的壓力機。
曲柄壓力機包括各種結構的偏心沖床和曲柄沖床,其基本工作機構都是曲柄連桿機構。
偏心沖床也稱開式曲柄壓力機,啟動后,電動機通過小齒輪和大齒輪及離合器將動力傳給偏心軸,偏心軸在軸承中作回轉運動。連桿把偏心軸的回轉運動轉變?yōu)榛瑝K的直線運動,滑塊在床身的導軌作上下往復運動。模具的上模固定于滑塊上,模具的下模固定在工作臺上。
為了控制滑塊的運動和位置設有離合器和制動器。
離合器的作用是:電動機在飛輪不停的運轉下,使曲柄機構開動或停止。工作時,主要踩下腳踏開關,離合器嚙合,偏心軸轉動,即可帶動滑塊作上下往復運動,進行沖壓。
制動器的動作與離合器的動作密切配合,在離合器脫開后,制動器同時將曲柄連桿機構停止在一定的位置上。
床身是所有運動部分的支承體,并將壓力機的全部機構聯(lián)接成一個整體。
4.1.5 曲柄壓力機的主要技術參數(shù)
曲柄壓力機的主要技術參數(shù)是反映一臺壓力機工作能力、所能加工零件的尺寸范圍以及有關生產(chǎn)率的指標,分述如下。
(1)公稱壓力
曲柄壓力機的公稱壓力,是指曲柄旋轉到下死點前某一特定角度(此角度稱為公稱壓力角,約為30度)時,滑塊所能容許的承受的最大作用力。它是反映壓力機工作能力的重要指標,生產(chǎn)中不容許沖壓力大于公稱壓力。
(2)滑塊行程
滑塊行程是指滑塊從上死點到下死點所走的距離,它為曲柄半徑的兩倍。
(3)閉合高度
閉合高度又稱裝模高度,是指滑塊在下死點位置時,滑塊下表面到工作臺墊板上表面的距離。當閉合高度調(diào)節(jié)裝置將滑塊調(diào)整到最上位置時,閉合高度達到最大值,稱為最大閉合高度;
當閉合高度調(diào)節(jié)裝置將滑塊調(diào)整到最下位置時,閉合高度達到最小值,稱為最小閉合高度。
(4)滑塊行程次數(shù)
滑塊行程次數(shù)是指滑塊每分鐘從上死點到下死點,然后再回到上死點所往復的次數(shù)。
4.1.6曲柄壓力機的選用
確定壓力機的規(guī)格時,一般應遵循以下原則。
(1) 壓力機的公稱壓力不小于沖壓工序所需的壓力。
(2) 壓力機滑塊行程應滿足工件在高度上能獲得所需的尺寸,并在沖壓后能順利地從模具上取出工件。
(3) 壓力機的閉合高度、工作臺尺寸和滑塊尺寸等應能滿足模具的正確安裝。
表4-2 開式壓力機的主要結構參數(shù)
公稱壓力(KN)
63
160
400
630
滑塊離下死點的距離
3.5
5
7
8
滑塊的行程
50
70
100
120
行程次數(shù)
160
115
80
70
最大封閉高度(mm)
固定式和可傾式
170
220
300
360
活動臺位置
最低
300
400
460
最高
160
200
220
封閉高度調(diào)節(jié)量(mm)
40
60
80
90
滑塊中心到床身的距離(mm)
110
160
220
300
左右(工作臺尺寸)(mm)
315
450
630
710
前后(工作臺尺寸)(mm)
200
300
420
480
前后(工作臺孔尺寸)(mm)
70
110
150
180
直徑(工作臺孔尺寸)(mm)
110
160
200
230
立柱間的距離(mm)
150
220
300
340
模柄孔尺寸(mm)
30
50
50
工作臺板厚度(mm)
40
60
80
90
傾角(。)
30
30
30
30
該模具的行程為7mm所以選用JB 23-6.3型壓力機。
4.2 凸凹模刃口尺寸的計算
模具刃口尺寸及其公差是影響沖裁件精度的首要因素,模具的合理間隙也要靠模具刃口尺寸及其公差來保證。因此,正確確定沖裁模凸模和凹模刃口的尺寸及其公差,是沖裁模具設計的重要內(nèi)容。凸模和凹模刃口尺寸及其公差的確定,必須考慮到?jīng)_裁變形的規(guī)律、沖裁件的精度要求、沖模的磨損和制造特點等多方面的情況。
實踐證明,落料件的尺寸和沖孔時孔的尺寸都是以光亮帶尺寸為準的,而落料件上光亮帶的尺寸等于凹模刃口尺寸,沖孔時孔的光亮帶尺寸等于凸模刃口尺寸。因此,計算刃口尺寸時,應按落料和沖孔兩種情況分別處理,其原則如下:
(1)設計落料模時,因落料尺寸等于凹模刃口尺寸,故應先確定凹模刃口尺寸,間隙取在凸模上;考慮到?jīng)_裁中模具的磨損,凹模刃口尺寸越磨越大,因此,凹模刃口的基本尺寸應取工件尺寸公差范圍內(nèi)較小的尺寸,以保證凹模磨損到一定程度時,仍能沖出合格零件;凸、凹模之間的間隙則取最小合理間隙值,以保證模具磨損到一定程度時,間隙仍在合理間隙范圍內(nèi)。
(2)設計沖孔模時,因孔的尺寸等于凸模刃口尺寸,故應先確定凸模刃口尺寸,間隙取在凹模上,考慮到考慮到?jīng)_裁中模具的磨損,凸模刃口尺寸越磨越小,因此,凸模刃口的基本尺寸應取工件尺寸公差范圍內(nèi)較大的尺寸,以保證凸模磨損到一定程度時,仍可使用;凸、凹模之間的間隙取最小合理間隙值。
(3)凸模和凹模的制造公差,應考慮工件的公差要求。如果對刃口精度要求過高,勢必使模具制造困難,成本增加,生產(chǎn)周期延長;如果對刃口精度要求過低,則生產(chǎn)出來的零件可能不合格,或使模具壽命降低。零件精度與模具制造精度的關系見表4-2。若零件沒有標注公差,則對于非圓形件按國家標準《非配合尺寸的公差數(shù)值》IT14精度來處理,沖模則可按IT11精度制造;對于圓形件,一般可按IT6到IT7精度制造模具。
凸、凹模刃口尺寸按加工方法的不同,可分兩種情況分別計算:一種是凸模和凹模分開加工采用這種方法時,要分別標注凸模和凹模刃口尺寸及其制造公差。這種方法適用于圓形沖裁件;一種是凸模和凹模配合加工,這種方法適用用形狀復雜或薄板料的沖裁件,其基本的做法是:先按制件的尺寸和公差加工凸、凹模中的一件再以此為基準件加工另一個件。使它們之間保證一定的間隙。因此,只在基準件上標注尺寸和制造公差,配作的另一個件只需標注基本尺寸,同時標明所留的間隙即可。這樣,凸、凹模的制造公差和不再受間隙的限制,根據(jù)經(jīng)驗一般取。
其中落料部分以凹模為基準,落料凸模按間隙值配合。沖孔部分以凸模為基準,沖孔凹模按間隙值配合。
所給零件的尺寸公差根據(jù)下表可得
表4-3 標準公差數(shù)值
基本尺寸(mm)
公差等級
IT5
IT6
IT7
IT8
IT9
IT10
IT11
μm
>0~3
4
6
10
14
25
40
60
>3~5
5
8
12
18
30
48
75
>6~10
6
9
15
22
36
58
90
>10~18
8
11
18
27
43
70
110
>18~30
9
13
21
33
52
84
130
>30~50
11
16
25
39
62
100
160
由于沖模的制造等級為IT11所以選擇零件的主要尺寸及公差分別為
4.2.1 落料刃口尺寸的計算
沖裁間隙的選擇見表4-4
表4-4 沖裁模刃口雙面間隙Z
材料厚度t
T8、45
Q215A、Q235A
08F、10、15
Z min
Z max
Z min
Z max
Z min
Z max
0.35
0.03
0.05
0.02
0.05
0.01
0.03
0.5
0.04
0.08
0.03
0.07
0.02
0.04
0.8
0.09
0.12
0.06
0.10
0.03
0.07
所以沖裁間隙:
磨損系數(shù),與制造精度有關,可按下列關系取值:
工件精度以下 =1.0
工件精度IT11-IT13 =0.75
工件精度 =0.5
若零件沒有標注公差,則對于非圓形件按國家標準《非配合尺寸的公差數(shù)值》IT14精度來處理,沖模則可以按IT11精度制造,所以磨損系數(shù)為0.5.
表4-5 凹模刃口尺寸計算過程
基本尺寸
磨損系數(shù)
計算公式
制造公 差
計算結果
0.5
0.04
凸模尺寸按凹模尺寸配合保證雙邊間隙在0.03mm到0.07mm之間
0.5
0.0325
凸模尺寸按凹模尺寸配合保證雙邊間隙在0.03mm到0.07mm之間
0.5
0.0325
凸模尺寸按凹模尺寸配合保證雙邊間隙在0.03mm到0.07mm之間
0,5
0.0275
凸模尺寸按凹模尺寸配合保證雙邊間隙在0.03mm到0.07mm之間
0.5
0.0275
凸模尺寸按凹模尺寸配合保證雙邊間隙在0.03mm到0.07mm之間
0.5
0.015
凸模尺寸按凹模尺寸配合保證雙邊間隙在0.03mm到0.07mm之間
4.2.2 沖孔刃口尺寸計算
表4-6 凸模刃口尺寸計算過程
基本尺寸
磨損系數(shù)
計算公式
制造公差
計算結果
0.5
0.03
凹模尺寸按凸模尺寸配合保證雙邊間隙在0.03mm到0.07mm之間
由于在計算出凹模尺寸時,凸模尺寸按凹模尺寸配合保證雙邊間隙在0.03mm到0.07mm之間,在計算出凸模尺寸時凹模尺寸按凹模尺寸配合保證雙邊間隙在0.03mm到0.07mm之間所以滿足凸凹模的制造公差之和小于最大與最小合理間隙的的差。
5 模具主要零部件結構和設計
模具的零部件,有很大一部分已實現(xiàn)了標準化,這對于簡化設計工作、穩(wěn)定模具質量、簡化模具的制造維修等,都具有重大的意義。在設計模具時,對于標準化的零、部件,例如模架,只需在標準化的資料中正確的選擇,大量的設計工作是對非標準件的設計。
沖模零、部件的分類可綜合如下:
工作零件:有凸模和凹模,在復合模中有凸凹模。
定位零件:有擋料銷、導正銷、定位銷、導尺、導料銷、側壓板、側刃等。
卸料與推件零、部件:有卸料板、壓料板、推件器等。
導向零件:有導板、導柱、導套、導筒。
聯(lián)接固定零件:有上模板、下模板、模柄、凸模固定板、凹模固定板、墊板、限制器、螺釘、銷釘、鍵等。
此外,對于自動化生產(chǎn)的模具,還有自動送料裝置、自動出件裝置和快速換模裝置等。
5.1 卸料裝置
卸料裝置分為剛性卸料裝置和彈性卸料裝置兩種形式,視模具的結構要求的選擇。
剛性卸料裝置分為兩種:封閉式卸料裝置和懸臂式卸料裝置。剛性卸料裝置結構簡單,工作可靠,卸料力大,適用于平整度要求不高或厚板零件的卸料。
彈性卸料裝置分為兩種:一種是用橡膠作彈性元件,一種是用彈簧作彈性元件。彈性卸料裝置在各類沖床中廣泛應用,特別是材料較薄、制件要求平整的復合模最適宜。彈性卸料板根據(jù)需要可裝在上模,也可裝在下模。彈性卸料裝置有敞開的工作空間,操作方便,工件質量也較好,但是沖壓力會增加。其中橡膠的選用為設計的一個重點。
5.1.1 橡膠的選用
橡膠允許承受的載荷較彈簧大,并且安裝調(diào)整方便,所以在沖裁模中應用最多。沖裁模中用于卸料的橡膠有合成橡膠和聚氨酯橡膠(PUR),其中聚氨酯橡膠的性能比合成橡膠優(yōu)異,是常用的卸料彈性元件。沖模標準中專門規(guī)定了聚氨酯橡膠的規(guī)格與尺寸,選用很方便。橡膠常見的形狀為矩形、圓筒形、圓柱形。
(1)橡膠選擇的原則
為保證卸料正常工作,應使橡膠的預壓力大于或等于,即
(5-1)
橡膠的壓力與壓縮量之間不是線性關系,橡膠壓縮時產(chǎn)生的壓力按下式計算
(5-2)
式中---------橡膠的橫截面積(與卸料板貼合的面積),;
---------橡膠的單位壓力,??蓮谋?—1中選取。
表5-1 橡膠壓縮量與單位壓力
壓縮量\(%)
10
15
20
25
30
35
單位壓力
聚氨酯橡膠
1.1
2.5
4.2
5.6
合成橡膠
0.26
0.50
0.70
1.06
1.52
2.10
橡膠極限壓縮量應大于或等于橡膠工作時的總壓縮量,即
(5-3)
式中:----------橡膠極限壓縮量,保證橡膠經(jīng)久耐用,聚氨酯橡膠取,為橡膠的自由高度,mm;
---------橡膠工作時的總壓縮量,mm;
---------橡膠預壓縮量,一般合成橡膠選取hy=(0.1-0.5)ho,聚氨酯橡膠選取
,mm;
--------卸料板的工作行程,一般取,t為板料厚度,mm;