(新課標(biāo))2020版高考數(shù)學(xué)二輪復(fù)習(xí) 專題八 數(shù)學(xué)文化及數(shù)學(xué)思想 第2講 函數(shù)與方程思想、數(shù)形結(jié)合思想學(xué)案 文 新人教A版

上傳人:彩*** 文檔編號:105634684 上傳時(shí)間:2022-06-12 格式:DOC 頁數(shù):12 大小:2.60MB
收藏 版權(quán)申訴 舉報(bào) 下載
(新課標(biāo))2020版高考數(shù)學(xué)二輪復(fù)習(xí) 專題八 數(shù)學(xué)文化及數(shù)學(xué)思想 第2講 函數(shù)與方程思想、數(shù)形結(jié)合思想學(xué)案 文 新人教A版_第1頁
第1頁 / 共12頁
(新課標(biāo))2020版高考數(shù)學(xué)二輪復(fù)習(xí) 專題八 數(shù)學(xué)文化及數(shù)學(xué)思想 第2講 函數(shù)與方程思想、數(shù)形結(jié)合思想學(xué)案 文 新人教A版_第2頁
第2頁 / 共12頁
(新課標(biāo))2020版高考數(shù)學(xué)二輪復(fù)習(xí) 專題八 數(shù)學(xué)文化及數(shù)學(xué)思想 第2講 函數(shù)與方程思想、數(shù)形結(jié)合思想學(xué)案 文 新人教A版_第3頁
第3頁 / 共12頁

下載文檔到電腦,查找使用更方便

22 積分

下載資源

還剩頁未讀,繼續(xù)閱讀

資源描述:

《(新課標(biāo))2020版高考數(shù)學(xué)二輪復(fù)習(xí) 專題八 數(shù)學(xué)文化及數(shù)學(xué)思想 第2講 函數(shù)與方程思想、數(shù)形結(jié)合思想學(xué)案 文 新人教A版》由會員分享,可在線閱讀,更多相關(guān)《(新課標(biāo))2020版高考數(shù)學(xué)二輪復(fù)習(xí) 專題八 數(shù)學(xué)文化及數(shù)學(xué)思想 第2講 函數(shù)與方程思想、數(shù)形結(jié)合思想學(xué)案 文 新人教A版(12頁珍藏版)》請?jiān)谘b配圖網(wǎng)上搜索。

1、第2講 函數(shù)與方程思想、數(shù)形結(jié)合思想 一 函數(shù)與方程思想 函數(shù)思想 方程思想 函數(shù)思想是通過建立函數(shù)關(guān)系或構(gòu)造函數(shù),運(yùn)用函數(shù)的圖象和性質(zhì)去分析問題、轉(zhuǎn)化問題,從而使問題得到解決的思想 方程思想就是建立方程或方程組,或者構(gòu)造方程,通過解方程或方程組或者運(yùn)用方程的性質(zhì)去分析、轉(zhuǎn)化問題,使問題得到解決的思想 函數(shù)與方程思想在一定的條件下是可以相互轉(zhuǎn)化的,是相輔相成的,函數(shù)思想重在對問題進(jìn)行動態(tài)的研究,方程思想則是在動中求靜,研究運(yùn)動中的等量關(guān)系    構(gòu)建“函數(shù)關(guān)系”解決問題 [典型例題] 已知數(shù)列{an}是各項(xiàng)均為正數(shù)的等差數(shù)列.若a1=2,且a2,a3,a4+1成

2、等比數(shù)列. (1)求數(shù)列{an}的通項(xiàng)公式an; (2)設(shè)數(shù)列{an}的前n項(xiàng)和為Sn,bn=++…+,若對任意的n∈N*,不等式bn≤k恒成立,求實(shí)數(shù)k的最小值. 【解】 (1)因?yàn)閍1=2,a=a2(a4+1), 又因?yàn)閧an}是正項(xiàng)等差數(shù)列,所以公差d≥0, 所以(2+2d)2=(2+d)(3+3d),解得d=2或d=-1(舍去), 所以數(shù)列{an}的通項(xiàng)公式an=2n. (2)由(1)知Sn=n(n+1),則==-. 所以bn=++…+ =++…+=-==, 令f(x)=2x+(x≥1),則f′(x)=2->0恒成立,所以f(x)在[1,+∞)上是增函數(shù), 所以當(dāng)

3、x=1時(shí),f(x)min=f(1)=3,即當(dāng)n=1時(shí),(bn)max=, 要使對任意的正整數(shù)n,不等式bn≤k恒成立, 則須使k≥(bn)max=, 所以實(shí)數(shù)k的最小值為. 數(shù)列是定義在正整數(shù)集上的特殊函數(shù),等差、等比數(shù)列的通項(xiàng)公式,前n項(xiàng)和公式都具有隱含的函數(shù)關(guān)系,都可以看成關(guān)于n的函數(shù),在解等差數(shù)列、等比數(shù)列問題時(shí),有意識地發(fā)現(xiàn)其函數(shù)關(guān)系,從而用函數(shù)思想或函數(shù)方法研究、解決問題,不僅能獲得簡便的解法,而且能促進(jìn)科學(xué)思維的培養(yǎng),提高發(fā)散思維的水平.  [對點(diǎn)訓(xùn)練] 1.對于滿足0≤p≤4的所有實(shí)數(shù)p,使不等式x2+px>4x+p-3成立的x的取值范圍是________.

4、解析:設(shè)f(p)=(x-1)p+x2-4x+3, 則當(dāng)x=1時(shí),f(p)=0.所以x≠1. f(p)在0≤p≤4時(shí)恒為正,等價(jià)于 即解得x>3或x<-1. 故x的取值范圍為(-∞,-1)∪(3,+∞). 答案:(-∞,-1)∪(3,+∞) 2.(2018·高考北京卷)若△ABC的面積為(a2+c2-b2),且∠C為鈍角,則∠B=________;的取值范圍是________. 解析:△ABC的面積S=acsin B=(a2+c2-b2)=×2accos B,所以tan B=,因?yàn)?°<∠B<180°,所以∠B=60°.因?yàn)椤螩為鈍角,所以0°<∠A<30°,所以0

5、所以====+>2,故的取值范圍為(2,+∞). 答案:60° (2,+∞) 3.已知a,b,c為空間中的三個(gè)向量,又a,b是兩個(gè)相互垂直的單位向量,向量c滿足|c|=3,c·a=2,c·b=1,則對于任意實(shí)數(shù)x,y,|c-xa-yb|的最小值為________. 解析:由題意可知|a|=|b|=1,a·b=0, 又|c|=3,c·a=2,c·b=1, 所以|c-xa-yb|2=|c|2+x2|a|2+y2|b|2-2xc·a-2yc·b+2xya·b =9+x2+y2-4x-2y=(x-2)2+(y-1)2+4, 當(dāng)且僅當(dāng)x=2,y=1時(shí),(|c-xa-yb|2)min=4,

6、 所以|c-xa-yb|的最小值為2. 答案:2    組建“方程形式”解決問題 [典型例題] (一題多解)已知sin(α+β)=,sin (α-β)=,求的值. 【解】 法一:由已知條件及正弦的和(差)角公式,得 所以sin αcos β=,cos αsin β=. 從而==. 法二:令x=.因?yàn)椋剑? 且====. 所以得到方程=,解這個(gè)方程得=x=. 運(yùn)用方程的思想,把已知條件通過變形看作關(guān)于sin αcos β與cos αsin β的方程來求解,從而獲得欲求的三角表達(dá)式的值.  [對點(diǎn)訓(xùn)練] 1.設(shè)非零向量a,b,c滿足a+b+c=0,|a|=

7、2,〈b,c〉=120°,則|b|的最大值為________. 解析:因?yàn)閍+b+c=0,所以a=-(b+c), 所以|a|2=|b|2+2|b||c|cos 120°+|c|2, 即|c|2-|b||c|+|b|2-4=0, 所以Δ=|b|2-4(|b|2-4)≥0, 解得0<|b|≤,即|b|的最大值為. 答案: 2.(2018·高考全國卷Ⅲ)已知點(diǎn)M(-1,1)和拋物線C:y2=4x,過C的焦點(diǎn)且斜率為k的直線與C交于A,B兩點(diǎn).若∠AMB=90°,則k=________. 解析:由題意知拋物線的焦點(diǎn)為(1,0),則過C的焦點(diǎn)且斜率為k的直線方程為y=k(x-1)(k≠0

8、),由消去y得k2(x-1)2=4x,即k2x2-(2k2+4)x+k2=0,設(shè)A(x1,y1),B(x2,y2),則x1+x2=,x1x2=1.由消去x得y2=4,即y2-y-4=0,則y1+y2=,y1y2=-4,由∠AMB=90°,得·=(x1+1,y1-1)·(x2+1,y2-1)=x1x2+x1+x2+1+y1y2-(y1+y2)+1=0,將x1+x2=,x1x2=1與y1+y2=,y1y2=-4代入,得k=2. 答案:2 二 數(shù)形結(jié)合思想 以形助數(shù)(數(shù)題形解) 以數(shù)輔形(形題數(shù)解) 借助形的生動性和直觀性來闡述數(shù)之間的關(guān)系,把數(shù)轉(zhuǎn)化為形,即以形作為手段、數(shù)作為目的的解決數(shù)

9、學(xué)問題的數(shù)學(xué)思想 借助于數(shù)的精確性、規(guī)范性及嚴(yán)密性來闡明形的某些屬性,即以數(shù)作為手段、形作為目的的解決問題的數(shù)學(xué)思想 數(shù)形結(jié)合思想通過“以形助數(shù),以數(shù)輔形”,使復(fù)雜問題簡單化,抽象問題具體化,能夠變抽象思維為形象思維,有助于把握數(shù)學(xué)問題的本質(zhì),它是數(shù)學(xué)的規(guī)律性與靈活性的有機(jī)結(jié)合    巧用數(shù)形結(jié)合思想解決問題 [典型例題] 已知函數(shù)g(x)=a-x2-2x,f(x)=且函數(shù)y=f(x)-x恰有3個(gè)不同的零點(diǎn),則實(shí)數(shù)a的取值范圍是________. 【解析】 f(x)=y(tǒng)=f(x)-x恰有3個(gè)不同的零點(diǎn)等價(jià)于y=f(x)與y=x有三個(gè)不同的交點(diǎn),試想將曲線f(x)上下平移

10、使之與y=x有三個(gè)交點(diǎn)是何等的復(fù)雜,故可變形再結(jié)合圖象求解. 由f(x)-x= 可得f(x)-x=a+ 所以y=f(x)-x有三個(gè)零點(diǎn)等價(jià)于 a=有三個(gè)根.令h(x)= 畫出y=h(x)的圖象如圖所示,將水平直線y=a從上向下平移,當(dāng)a=0時(shí),有兩個(gè)交點(diǎn),再向下平移,有三個(gè)交點(diǎn),當(dāng)a=-1時(shí),有三個(gè)交點(diǎn),再向下就只有兩個(gè)交點(diǎn)了,因此a∈[-1,0). 【答案】 [-1,0) 利用數(shù)形結(jié)合探究方程解的問題應(yīng)注意兩點(diǎn) (1)討論方程的解(或函數(shù)的零點(diǎn))一般可構(gòu)造兩個(gè)函數(shù),使問題轉(zhuǎn)化為討論兩曲線的交點(diǎn)問題,但用此法討論方程的解一定要注意圖象的準(zhǔn)確性、全面性、否則會得到錯(cuò)解

11、. (2)正確作出兩個(gè)函數(shù)的圖象是解決此類問題的關(guān)鍵,數(shù)形結(jié)合應(yīng)以快和準(zhǔn)為原則,不要刻意去用數(shù)形結(jié)合.  [對點(diǎn)訓(xùn)練] 1.若存在實(shí)數(shù)a,對任意的x∈[0,m],都有(sin x-a)(cos x-a)≤0恒成立,則實(shí)數(shù)m的最大值為(  ) A.         B. C. D. 解析:選C.在同一坐標(biāo)系中,作出y=sin x和y=cos x的圖象, 當(dāng)m=時(shí),要使不等式恒成立,只有a=, 當(dāng)m>時(shí),在x∈[0,m]上,必須要求y=sin x和y=cos x的圖象不在y=a=的同一側(cè),所以m的最大值是. 2.已知a,b是平面內(nèi)兩個(gè)互相垂直的單位向量,若向量c滿足(a

12、-c)·(b-c)=0,則|c|的最大值是________. 解析:因?yàn)?a-c)·(b-c)=0,所以(a-c)⊥(b-c).如圖所示. 設(shè)=c,=a,=b,=a-c,=b-c,即⊥,又⊥所以O(shè),A,C,B四點(diǎn)共圓. 當(dāng)且僅當(dāng)OC為圓的直徑時(shí),|c|最大,且最大值為. 答案: 一、選擇題 1.已知向量a=(λ,1),b=(λ+2,1),若|a+b|=|a-b|,則實(shí)數(shù)λ的值為(  ) A.-1           B.2 C.1 D.-2 解析:選A.法一:由|a+b|=|a-b|,可得a2+b2+2a·b=a2+b2-2a·b,所以a·b=0,故a·b=(λ,

13、1)·(λ+2,1)=λ2+2λ+1=0,解得λ=-1. 法二:a+b=(2λ+2,2),a-b=(-2,0). 由|a+b|=|a-b|, 可得(2λ+2)2+4=4,解得λ=-1. 2.(2019·高考全國卷Ⅰ)記Sn為等差數(shù)列{an}的前n項(xiàng)和.已知S4=0,a5=5,則(  ) A.a(chǎn)n=2n-5 B.a(chǎn)n=3n-10 C.Sn=2n2-8n D.Sn=n2-2n 解析:選A.法一:設(shè)等差數(shù)列{an}的公差為d, 因?yàn)樗越獾盟詀n=a1+(n-1)d=-3+2(n-1)=2n-5,Sn=na1+d=n2-4n.故選A. 法二:設(shè)等差數(shù)列{an}的公差為d,

14、 因?yàn)樗越獾? 選項(xiàng)A,a1=2×1-5=-3; 選項(xiàng)B,a1=3×1-10=-7,排除B; 選項(xiàng)C,S1=2-8=-6,排除C; 選項(xiàng)D,S1=-2=-,排除D.故選A. 3.已知函數(shù)f(x)=且關(guān)于x的方程f(x)+x-a=0有且只有一個(gè)實(shí)根,則實(shí)數(shù)a的取值范圍為(  ) A.(1,+∞) B.(-1,3) C.(-∞,1) D.(2,4) 解析:選A.畫出f(x)圖象,如圖所示,則由方程有且僅有一個(gè)實(shí)根可得f(x)的圖象與直線y=-x+a的圖象只有一個(gè)交點(diǎn),首先讓直線過(0,1)(這是我們所說的初始位置,因?yàn)楫?dāng)直線向下平移時(shí)你會發(fā)現(xiàn)有兩個(gè)交點(diǎn)),由圖可知,只有向

15、上平移才能滿足f(x)圖象與直線y=-x+a只有一個(gè)交點(diǎn),所以a的取值范圍是(1,+∞). 4.(2018·高考全國卷Ⅲ)設(shè)F1,F(xiàn)2是雙曲線C:-=1(a>0,b>0)的左,右焦點(diǎn),O是坐標(biāo)原點(diǎn).過F2作C的一條漸近線的垂線,垂足為P.若|PF1|=|OP|,則C的離心率為(  ) A. B.2 C. D. 解析:選C.不妨設(shè)一條漸近線的方程為y=x,則F2到y(tǒng)=x的距離d==b,在Rt△F2PO中,|F2O|=c,所以|PO|=a,所以|PF1|=a,又|F1O|=c,所以在△F1PO與Rt△F2PO中,根據(jù)余弦定理得cos∠POF1==-cos∠POF2=-,即3a2

16、+c2-(a)2=0,得3a2=c2,所以e==. 5.已知正六棱柱的12個(gè)頂點(diǎn)都在一個(gè)半徑為3的球面上,當(dāng)正棱柱的體積取最大值時(shí),其高的值為(  ) A.3 B. C.2 D.2 解析:選D.設(shè)正六棱柱的底面邊長為a,高為h,則可得a2+=9,即a2=9-,那么正六棱柱的體積V=×h=h=, 令y=-+9h,則y′=-+9, 令y′=0,解得h=2,易知當(dāng)h=2時(shí),y取最大值,即正六棱柱的體積最大. 6.設(shè)函數(shù)f(x)在R上存在導(dǎo)函數(shù)f′(x),對于任意的實(shí)數(shù)x,都有f(x)+f(-x)=2x2,當(dāng)x<0時(shí),f′(x)+1<2x,若f(a+1)≤f(-a)+2a+1,則

17、實(shí)數(shù)a的最小值為(  ) A.- B.-1 C.- D.-2 解析:選A.設(shè)g(x)=f(x)-x2,則g(x)+g(-x)=0, 所以g(x)為R上的奇函數(shù). 當(dāng)x<0時(shí),g′(x)=f′(x)-2x<-1<0,所以g(x)在(-∞,0)上單調(diào)遞減,所以g(x)在R上單調(diào)遞減. 因?yàn)閒(a+1)≤f(-a)+2a+1, 所以f(a+1)-(a+1)2≤f(-a)-(-a)2, 即g(a+1)≤g(-a),所以a+1≥-a, 解得a≥-,所以實(shí)數(shù)a的最小值為-. 二、填空題 7.已知等差數(shù)列{an}滿足3a4=7a7,a1>0,Sn是數(shù)列{an}的前n項(xiàng)和,則Sn

18、取得最大值時(shí)n=________. 解析:設(shè)等差數(shù)列{an}的公差為d,因?yàn)?a4=7a7,所以3(a1+3d)=7(a1+6d),所以4a1=-33d.因?yàn)閍1>0,所以d<0,Sn=na1+d=n+d==,所以n=9時(shí),Sn取得最大值. 答案:9 8.如圖,設(shè)直線m,n相交于點(diǎn)O,且夾角為30°,點(diǎn)P是直線m上的動點(diǎn),點(diǎn)A,B是直線n上的定點(diǎn).若||=||=2,則·的最小值是________. 解析:以O(shè)B所在直線為x軸,過點(diǎn)O且垂直于AB的直線為y軸,建立如圖的坐標(biāo)系,則A(2,0),B(4,0), 設(shè)P,則=, =, 所以·=(2-a)(4-a)+a2=a2-6a

19、+8=+≥,所以·的最小值為. 答案: 9.若不等式≤k(x+2)-的解集為區(qū)間[a,b],且b-a=2,則k=________. 解析: 如圖,分別作出直線y=k(x+2)-與半圓y=. 由題意,知直線在半圓的上方,由b-a=2,可知b=3,a=1,所以直線y=k(x+2)-過點(diǎn)(1,2),則k=. 答案: 三、解答題 10.已知正項(xiàng)等比數(shù)列{an}中,a4=81,且a2,a3的等差中項(xiàng)為(a1+a2). (1)求數(shù)列{an}的通項(xiàng)公式; (2)若bn=log3a2n-1,數(shù)列{bn}的前n項(xiàng)和為Sn,數(shù)列{cn}滿足cn=,Tn為數(shù)列{cn}的前n項(xiàng)和,求Tn.

20、解:(1)設(shè)等比數(shù)列{an}的公比為q(q>0),由題意,得解得所以an=a1qn-1=3n, (2)由(1)得bn=log332n-1=2n-1,又bn+1-bn=2, 所以數(shù)列{bn}是首項(xiàng)b1=1、公差為2的等差數(shù)列,所以其前n項(xiàng)和Sn===n2. 所以cn===, 所以Tn= ==. 11.已知函數(shù)f(x)=ex-2x+2a,x∈R,a∈R. (1)求f(x)的單調(diào)區(qū)間與極值; (2)求證:當(dāng)a>ln 2-1且x>0時(shí),ex>x2-2ax+1. 解:(1)由f(x)=ex-2x+2a,知f′(x)=ex-2. 令f′(x)=0,得x=ln 2. 令x

21、f′(x)<0,故函數(shù)f(x)在區(qū)間(-∞,ln 2)上單調(diào)遞減; 當(dāng)x>ln 2時(shí),f′(x)>0,故函數(shù)f(x)在區(qū)間(ln 2,+∞)上單調(diào)遞增. 所以f(x)的單調(diào)遞減區(qū)間是(-∞,ln 2),單調(diào)遞增區(qū)間是(ln 2,+∞),f(x)在x=ln 2處取得極小值f(ln 2)=eln 2-2ln 2+2a=2-2ln 2+2a. (2)證明:設(shè)g(x)=ex-x2+2ax-1(x≥0), 則g′(x)=ex-2x+2a, 由(1)知g′(x)min=g′(ln 2)=2-2ln 2+2a. 又a>ln 2-1,則g′(x)min>0. 于是對?x∈R,都有g(shù)′(x)>0,

22、所以g(x)在R上單調(diào)遞增. 于是對?x>0,都有g(shù)(x)>g(0)=0. 即ex-x2+2ax-1>0,故ex>x2-2ax+1. 12.已知橢圓C的離心率為,過上頂點(diǎn)(0,1)和左焦點(diǎn)的直線的傾斜角為,直線l過點(diǎn)E(-1,0)且與橢圓C交于A,B兩點(diǎn). (1)求橢圓C的標(biāo)準(zhǔn)方程; (2)△AOB的面積是否有最大值?若有,求出此最大值;若沒有,請說明理由. 解:(1)因?yàn)閑==,=,b=1,所以a=2, 故橢圓C的標(biāo)準(zhǔn)方程為+y2=1. (2)因?yàn)橹本€l過點(diǎn)E(-1,0), 所以可設(shè)直線l的方程為x=my-1或y=0(舍去). 聯(lián)立消去x并整理, 得(m2+4)y2-2my-3=0, Δ=(-2m)2+12(m2+4)>0. 設(shè)A(x1,y1),B(x2,y2),其中y1>y2, 則y1+y2=,y1y2=, 所以|y2-y1|=, 所以S△AOB=|OE||y2-y1|= =. 設(shè)t=,則g(t)=t+,t≥, 所以g′(t)=1->0, 所以g(t)在區(qū)間[,+∞)上為增函數(shù), 所以g(t)≥,所以S△AOB≤,當(dāng)且僅當(dāng)m=0時(shí)等號成立. 所以△AOB的面積存在最大值,最大值為. - 12 -

展開閱讀全文
溫馨提示:
1: 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
2: 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
3.本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
5. 裝配圖網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

相關(guān)資源

更多
正為您匹配相似的精品文檔
關(guān)于我們 - 網(wǎng)站聲明 - 網(wǎng)站地圖 - 資源地圖 - 友情鏈接 - 網(wǎng)站客服 - 聯(lián)系我們

copyright@ 2023-2025  zhuangpeitu.com 裝配圖網(wǎng)版權(quán)所有   聯(lián)系電話:18123376007

備案號:ICP2024067431-1 川公網(wǎng)安備51140202000466號


本站為文檔C2C交易模式,即用戶上傳的文檔直接被用戶下載,本站只是中間服務(wù)平臺,本站所有文檔下載所得的收益歸上傳人(含作者)所有。裝配圖網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對上載內(nèi)容本身不做任何修改或編輯。若文檔所含內(nèi)容侵犯了您的版權(quán)或隱私,請立即通知裝配圖網(wǎng),我們立即給予刪除!