《2022高考數(shù)學大二輪復習 專題9 概率與統(tǒng)計 第2講 綜合大題部分真題押題精練 文》由會員分享,可在線閱讀,更多相關《2022高考數(shù)學大二輪復習 專題9 概率與統(tǒng)計 第2講 綜合大題部分真題押題精練 文(8頁珍藏版)》請在裝配圖網(wǎng)上搜索。
1、2022高考數(shù)學大二輪復習 專題9 概率與統(tǒng)計 第2講 綜合大題部分真題押題精練 文
1. (2018·高考全國卷Ⅰ)某家庭記錄了未使用節(jié)水龍頭50天的日用水量數(shù)據(jù)(單位:m3)和使用了節(jié)水龍頭50天的日用水量數(shù)據(jù),得到頻數(shù)分布表如下:
未使用節(jié)水龍頭50天的日用水量頻數(shù)分布表
日用水量
[0,0.1)
[0.1,0.2)
[0.2,0.3)
[0.3,0.4)
[0.4,0.5)
[0.5,0.6)
[0.6,0.7)
頻數(shù)
1
3
2
4
9
26
5
使用了節(jié)水龍頭50天的日用水量頻數(shù)分布表
日用水量
[0,0.1)
[0.1,0.2)
2、
[0.2,0.3)
[0.3,0.4)
[0.4,0.5)
[0.5,0.6)
頻數(shù)
1
5
13
10
16
5
(1)在下圖中作出使用了節(jié)水龍頭50天的日用水量數(shù)據(jù)的頻率分布直方圖;
(2)估計該家庭使用節(jié)水龍頭后,日用水量小于0.35 m3的概率;
(3)估計該家庭使用節(jié)水龍頭后,一年能節(jié)省多少水?(一年按365天計算,同一組中的數(shù)據(jù)以這組數(shù)據(jù)所在區(qū)間中點的值作代表)
解析:(1)如圖所示.
(2)根據(jù)以上數(shù)據(jù),該家庭使用節(jié)水龍頭后50天日用水量小于0.35 m3的頻率為0.2×0.1+1×0.1+2.6×0.1+2×0.05=0.48,
因此
3、該家庭使用節(jié)水龍頭后,日用水量小于0.35 m3的概率的估計值為0.48.
(3)該家庭未使用節(jié)水龍頭50天日用水量的平均數(shù)為1=×(0.05×1+0.15×3+0.25×2+0.35×4+0.45×9+0.55×26+0.65×5)=0.48.
該家庭使用了節(jié)水龍頭后50天日用水量的平均數(shù)為
2=×(0.05×1+0.15×5+0.25×13+0.35×10+0.45×16+0.55×5)=0.35.
估計使用節(jié)水龍頭后,一年可節(jié)省水(0.48-0.35)×365=47.45(m3).
2.(2018·高考全國卷Ⅱ)如圖是某地區(qū)2000年至2016年環(huán)境基礎設施投資額y(單位:億元
4、)的折線圖.
為了預測該地區(qū)2018年的環(huán)境基礎設施投資額,建立了y與時間變量t的兩個線性回歸模型.根據(jù)2000年至2016年的數(shù)據(jù)(時間變量t的值依次為1,2,…,17)建立模型①:=-30.4+13.5t;根據(jù)2010年至2016年的數(shù)據(jù)(時間變量t的值依次為1,2,…,7)建立模型②:=99+17.5t.
(1)分別利用這兩個模型,求該地區(qū)2018年的環(huán)境基礎設施投資額的預測值;
(2)你認為用哪個模型得到的預測值更可靠?并說明理由.
解析:(1)利用模型①,可得該地區(qū)2018年的環(huán)境基礎設施投資額的預測值為=-30.4+13.5×19=226.1(億元).
利用模型②,可
5、得該地區(qū)2018年的環(huán)境基礎設施投資額的預測值為=99+17.5×9=256.5(億元).
(2)利用模型②得到的預測值更可靠.
理由如下:
(ⅰ)從折線圖可以看出,2000年至2016年的數(shù)據(jù)對應的點沒有隨機散布在直線y=-30.4+13.5t上下,這說明利用2000年至2016年的數(shù)據(jù)建立的線性模型①不能很好地描述環(huán)境基礎設施投資額的變化趨勢.2010年相對2009年的環(huán)境基礎設施投資額有明顯增加,2010年至2016年的數(shù)據(jù)對應的點位于一條直線的附近,這說明從2010年開始環(huán)境基礎設施投資額的變化規(guī)律呈線性增長趨勢,利用2010年至2016年的數(shù)據(jù)建立的線性模型=99+17.5t可
6、以較好地描述2010年以后的環(huán)境基礎設施投資額的變化趨勢,因此利用模型②得到的預測值更可靠.
(ⅱ)從計算結果看,相對于2016年的環(huán)境基礎設施投資額220億元,由模型①看到的預測值226.1億元的增幅明顯偏低,而利用模型②得到的預測值的增幅比較合理,說明利用模型②得到的預測值更可靠.
(說明:以上給出了2種理由,考生答出其中任意一種或其他合理理由均可.)
3.(2018·高考全國卷Ⅲ)某工廠為提高生產(chǎn)效率,開展技術創(chuàng)新活動,提出了完成某項生產(chǎn)任務的兩種新的生產(chǎn)方式.為比較兩種生產(chǎn)方式的效率,選取40名工人,將他們隨機分成兩組,每組20人.第一組工人用第一種生產(chǎn)方式,第二組工人用第二種生
7、產(chǎn)方式.根據(jù)工人完成生產(chǎn)任務的工作時間(單位:min)繪制了如下莖葉圖:
(1)根據(jù)莖葉圖判斷哪種生產(chǎn)方式的效率更高?并說明理由.
(2)求40名工人完成生產(chǎn)任務所需時間的中位數(shù)m,并將完成生產(chǎn)任務所需時間超過m和不超過m的工人數(shù)填入下面的列聯(lián)表:
超過m
不超過m
第一種生產(chǎn)方式
第二種生產(chǎn)方式
(3)根據(jù)(2)中的列聯(lián)表,能否有99%的把握認為兩種生產(chǎn)方式的效率有差異?
附:K2=,
解析:(1)第二種生產(chǎn)方式的效率更高.
理由如下:
①由莖葉圖可知:用第一種生產(chǎn)方式的工人中,有75%的工人完成生產(chǎn)任務所需時間至少80分鐘,用第二種生產(chǎn)方式
8、的工人中,有75%的工人完成生產(chǎn)任務所需時間至多79分鐘.因此第二種生產(chǎn)方式的效率更高.
②由莖葉圖可知:用第一種生產(chǎn)方式的工人完成生產(chǎn)任務所需時間的中位數(shù)為85.5分鐘,用第二種生產(chǎn)方式的工人完成生產(chǎn)任務所需時間的中位數(shù)為73.5分鐘.因此第二種生產(chǎn)方式的效率更高.
③由莖葉圖可知:用第一種生產(chǎn)方式的工人完成生產(chǎn)任務平均所需時間高于80分鐘;用第二種生產(chǎn)方式的工人完成生產(chǎn)任務平均所需時間低于80分鐘.因此第二種生產(chǎn)方式的效率更高.
④由莖葉圖可知:用第一種生產(chǎn)方式的工人完成生產(chǎn)任務所需時間分布在莖8上的最多,關于莖8大致呈對稱分布;用第二種生產(chǎn)方式的工人完成生產(chǎn)任務所需時間分布在莖7上
9、的最多,關于莖7大致呈對稱分布.又用兩種生產(chǎn)方式的工人完成生產(chǎn)任務所需時間分布的區(qū)間相同,故可以認為用第二種生產(chǎn)方式完成生產(chǎn)任務所需的時間比用第一種生產(chǎn)方式完成生產(chǎn)任務所需的時間更少.因此第二種生產(chǎn)方式的效率更高.
(以上給出了4種理由,考生答出其中任意一種或其他合理理由均可.)
(2)由莖葉圖知m==80.
列聯(lián)表如下:
超過m
不超過m
第一種生產(chǎn)方式
15
5
第二種生產(chǎn)方式
5
15
(3)由于K2==10>6.635,所以有99%的把握認為兩種生產(chǎn)方式的效率有差異.
1. 某工廠每日生產(chǎn)一種產(chǎn)品x(x≥1)噸,每日生產(chǎn)的產(chǎn)品當日銷售完畢,日銷售額為y
10、萬元,產(chǎn)品價格隨著產(chǎn)量變化而有所變化,經(jīng)過一段時間的產(chǎn)銷,得到了x,y的一組統(tǒng)計數(shù)據(jù)如下表:
日產(chǎn)量x
1
2
3
4
5
日銷售額y
5
12
16
19
21
(1)請判斷=x+與=ln x+中,哪個模型更適合刻畫x,y之間的關系?可從函數(shù)增長趨勢方面給出簡單的理由;
(2)根據(jù)你的判斷及下面的數(shù)據(jù)和公式,求出y關于x的回歸方程,并估計當日產(chǎn)量x=6時,日銷售額是多少?
附:≈0.96,(ln 1)2+(ln 2)2+(ln 3)2+(ln 4)2+(ln 5)2≈6.2,5ln 1+12ln 2+16ln 3+19ln 4+21ln 5≈86,ln 6≈1.
11、8.
線性回歸方程=x+中,
=,=-·.
解析:(1)=ln x+更適合刻畫x,y之間的關系,
理由如下:
x值每增加1,函數(shù)值的增加量分別為7,4,3,2,增加得越來越緩慢,適合對數(shù)型函數(shù)的增長規(guī)律,與直線型函數(shù)的均勻增長存在較大差異,故=ln x+更適合刻畫x,y之間的關系.
(2)令zi=ln xi,計算知y===14.6.
所以=≈=10,
=y(tǒng)-d·≈14.6-10×0.96=5,所以所求的回歸方程為=10ln x+5.
當x=6時,銷售額為=10ln 6+5≈23(萬元).
2.根據(jù)《大氣污染防治工作方案》,要多措并舉強化冬季大氣污染防治,全面降低區(qū)城污染排放
12、負荷,方案涉及北京、天津兩座城市及周邊26座城市,共計28座城市,同時中央指出嚴抓環(huán)保,更要保障民生.就上述區(qū)城的100戶(隨機抽取)農(nóng)村居民取暖“煤改氣”后增加的費用(單元:元)對居民生活的影響程度,有關部門進行了調(diào)研,統(tǒng)計結果如下:
“煤改氣”后
增加的費用
[0,
50)
[50,
100)
[100,
150)
[150,
200)
[200,
300)
[300,
500]
對生活的
影響程度
沒有
影響
稍有
影響
較小
影響
較大
影響
很大
影響
嚴重
影響
居民戶數(shù)
7
16
16
24
19
18
(1
13、)若本次抽取的樣本中有80戶居民屬于除北京、天津兩座城市之外的周邊26座城市,這其中有10戶居民認為“煤改氣”增加的費用對其生活有嚴重影響(其他情況均為非嚴重影響程度),根據(jù)提供的統(tǒng)計數(shù)據(jù),完成下面的2×2列聯(lián)表,并判斷是否至少有99%的把握認為“煤改氣”對居民生活造成嚴重影響與所在城市有關;
非嚴重影響戶數(shù)
嚴重影響戶數(shù)
總計
“北京、天津2座城市”戶數(shù)
“周邊26座城市”戶數(shù)
總計100
(2)將頻率視為概率,政府決定對實施“煤改氣”的居民進行補貼,把受到嚴重影響的居民定義為“A類戶”,其余居民定義為“B類戶”,B類戶每戶補貼x
14、(x>1)萬元,A類戶每戶補貼x2萬元,若所有居民的戶均補貼不超過2.36萬元,那么“B類戶”每戶最多補貼多少錢?
附:K2=,其中n=a+b+c+d.
P(K2≥k0)
0.100
0.050
0.025
0.010
0.001
k0
2.706
3.841
5.024
6.635
10.828
解析:(1)根據(jù)題中的數(shù)據(jù)補全的2×2列聯(lián)表如下:
非嚴重影響戶數(shù)
嚴重影響戶數(shù)
總計
“北京、天津2座城市”戶數(shù)
12
8
20
“周邊26座城市”戶數(shù)
70
10
80
總計
82
18
100
所以K2的觀測值
k=≈8.198
15、>6.635,
所以在犯錯誤的概率不超過0.01的前提下,認為“‘煤改氣’對居民生活造成嚴重影響與所在城市有關”,即有99%的把握認為“‘煤改氣’對居民生活造成嚴重影響與所在城市有關”.
(2)將頻率視為概率,由(1)可知,“A類戶”的概率為=0.18.
“B類戶”的概率為=0.82.
記居民的戶均補貼為y萬元,則y=0.82x+0.18x2,
由題意可得
解得1
16、某所鄉(xiāng)村中學儲備招聘未來三年的教師,現(xiàn)在每招聘一名教師需要2萬元,若三年后教師嚴重短缺時再進行招聘,由于各種因素,則每招聘一名教師需要5萬元,已知現(xiàn)在該鄉(xiāng)村中學無多余教師,為決策應儲備招聘多少名鄉(xiāng)村教師,該鄉(xiāng)村中學的工作人員搜集并整理了該市100所鄉(xiāng)村中學在過去三年內(nèi)流失的教師數(shù),得到的條形圖如圖所示,x表示一所鄉(xiāng)村中學在未來三年內(nèi)流失的教師數(shù)(單位:名),y表示未來四年內(nèi)一所鄉(xiāng)村中學在儲備招聘教師上所需的費用(單位:萬元),n表示今年為該鄉(xiāng)村中學儲備招聘的教師數(shù),為保障鄉(xiāng)村孩子的教育不受影響,若未來三年內(nèi)教師有短缺,則第四年馬上招聘.
(1)若n=19,求y關于x的函數(shù)解析式;
(2
17、)若要求“三年內(nèi)流失的教師數(shù)不大于n”的頻率不小于0.5,求n的最小值;
(3)假設今年該市為這100所鄉(xiāng)村中學的每一所都招聘了19名教師或20名教師,分別計算該市未來四年內(nèi)為這100所鄉(xiāng)村中學儲備招聘教師所需費用的平均數(shù),以此作為決策依據(jù),今年該鄉(xiāng)村中學應招聘19名還是20名教師?
解析:(1)當x≤19時,y=19×2=38;
當x>19時,y=38+5(x-19)=5x-57,
所以y關于x的函數(shù)解析式為
y=(x∈N).
(2)由條形統(tǒng)計圖知,三年內(nèi)流失的教師數(shù)不大于18的頻率為0.46,不大于19的頻率為0.7,故n的最小值為19.
(3)若每所鄉(xiāng)村中學在今年都招聘19
18、名教師,則未來四年內(nèi)這100所鄉(xiāng)村中學中有70所在儲備招聘教師上所需的費用為38萬元,20所在儲備招聘教師上所需的費用為43萬元,10所在儲備招聘教師上所需的費用為48萬元,因此未來四年內(nèi)這100所鄉(xiāng)村中學在儲備招聘教師上所需費用的平均數(shù)為×(38×70+43×20+48×10)=40(萬元).
若每所鄉(xiāng)村中學在今年都招聘20名教師,則這100所鄉(xiāng)村中學中有90所在儲備招聘教師上所需的費用為40萬元,10所在儲備招聘教師上所需的費用為45萬元,因此未來四年內(nèi)這100所鄉(xiāng)村中學在儲備招聘教師上所需費用的平均數(shù)為×(40×90+45×10)=40.5(萬元).
比較兩個平均數(shù)可知,今年應為該鄉(xiāng)村中學招聘19名教師.