2022高考數(shù)學大二輪復習 專題9 概率與統(tǒng)計 第2講 綜合大題部分真題押題精練 文

上傳人:xt****7 文檔編號:105706658 上傳時間:2022-06-12 格式:DOC 頁數(shù):8 大?。?47KB
收藏 版權申訴 舉報 下載
2022高考數(shù)學大二輪復習 專題9 概率與統(tǒng)計 第2講 綜合大題部分真題押題精練 文_第1頁
第1頁 / 共8頁
2022高考數(shù)學大二輪復習 專題9 概率與統(tǒng)計 第2講 綜合大題部分真題押題精練 文_第2頁
第2頁 / 共8頁
2022高考數(shù)學大二輪復習 專題9 概率與統(tǒng)計 第2講 綜合大題部分真題押題精練 文_第3頁
第3頁 / 共8頁

下載文檔到電腦,查找使用更方便

9.9 積分

下載資源

還剩頁未讀,繼續(xù)閱讀

資源描述:

《2022高考數(shù)學大二輪復習 專題9 概率與統(tǒng)計 第2講 綜合大題部分真題押題精練 文》由會員分享,可在線閱讀,更多相關《2022高考數(shù)學大二輪復習 專題9 概率與統(tǒng)計 第2講 綜合大題部分真題押題精練 文(8頁珍藏版)》請在裝配圖網(wǎng)上搜索。

1、2022高考數(shù)學大二輪復習 專題9 概率與統(tǒng)計 第2講 綜合大題部分真題押題精練 文 1. (2018·高考全國卷Ⅰ)某家庭記錄了未使用節(jié)水龍頭50天的日用水量數(shù)據(jù)(單位:m3)和使用了節(jié)水龍頭50天的日用水量數(shù)據(jù),得到頻數(shù)分布表如下: 未使用節(jié)水龍頭50天的日用水量頻數(shù)分布表 日用水量 [0,0.1) [0.1,0.2) [0.2,0.3) [0.3,0.4) [0.4,0.5) [0.5,0.6) [0.6,0.7) 頻數(shù) 1 3 2 4 9 26 5 使用了節(jié)水龍頭50天的日用水量頻數(shù)分布表 日用水量 [0,0.1) [0.1,0.2)

2、 [0.2,0.3) [0.3,0.4) [0.4,0.5) [0.5,0.6) 頻數(shù) 1 5 13 10 16 5 (1)在下圖中作出使用了節(jié)水龍頭50天的日用水量數(shù)據(jù)的頻率分布直方圖; (2)估計該家庭使用節(jié)水龍頭后,日用水量小于0.35 m3的概率; (3)估計該家庭使用節(jié)水龍頭后,一年能節(jié)省多少水?(一年按365天計算,同一組中的數(shù)據(jù)以這組數(shù)據(jù)所在區(qū)間中點的值作代表) 解析:(1)如圖所示. (2)根據(jù)以上數(shù)據(jù),該家庭使用節(jié)水龍頭后50天日用水量小于0.35 m3的頻率為0.2×0.1+1×0.1+2.6×0.1+2×0.05=0.48, 因此

3、該家庭使用節(jié)水龍頭后,日用水量小于0.35 m3的概率的估計值為0.48. (3)該家庭未使用節(jié)水龍頭50天日用水量的平均數(shù)為1=×(0.05×1+0.15×3+0.25×2+0.35×4+0.45×9+0.55×26+0.65×5)=0.48. 該家庭使用了節(jié)水龍頭后50天日用水量的平均數(shù)為 2=×(0.05×1+0.15×5+0.25×13+0.35×10+0.45×16+0.55×5)=0.35. 估計使用節(jié)水龍頭后,一年可節(jié)省水(0.48-0.35)×365=47.45(m3). 2.(2018·高考全國卷Ⅱ)如圖是某地區(qū)2000年至2016年環(huán)境基礎設施投資額y(單位:億元

4、)的折線圖. 為了預測該地區(qū)2018年的環(huán)境基礎設施投資額,建立了y與時間變量t的兩個線性回歸模型.根據(jù)2000年至2016年的數(shù)據(jù)(時間變量t的值依次為1,2,…,17)建立模型①:=-30.4+13.5t;根據(jù)2010年至2016年的數(shù)據(jù)(時間變量t的值依次為1,2,…,7)建立模型②:=99+17.5t. (1)分別利用這兩個模型,求該地區(qū)2018年的環(huán)境基礎設施投資額的預測值; (2)你認為用哪個模型得到的預測值更可靠?并說明理由. 解析:(1)利用模型①,可得該地區(qū)2018年的環(huán)境基礎設施投資額的預測值為=-30.4+13.5×19=226.1(億元). 利用模型②,可

5、得該地區(qū)2018年的環(huán)境基礎設施投資額的預測值為=99+17.5×9=256.5(億元). (2)利用模型②得到的預測值更可靠. 理由如下: (ⅰ)從折線圖可以看出,2000年至2016年的數(shù)據(jù)對應的點沒有隨機散布在直線y=-30.4+13.5t上下,這說明利用2000年至2016年的數(shù)據(jù)建立的線性模型①不能很好地描述環(huán)境基礎設施投資額的變化趨勢.2010年相對2009年的環(huán)境基礎設施投資額有明顯增加,2010年至2016年的數(shù)據(jù)對應的點位于一條直線的附近,這說明從2010年開始環(huán)境基礎設施投資額的變化規(guī)律呈線性增長趨勢,利用2010年至2016年的數(shù)據(jù)建立的線性模型=99+17.5t可

6、以較好地描述2010年以后的環(huán)境基礎設施投資額的變化趨勢,因此利用模型②得到的預測值更可靠. (ⅱ)從計算結果看,相對于2016年的環(huán)境基礎設施投資額220億元,由模型①看到的預測值226.1億元的增幅明顯偏低,而利用模型②得到的預測值的增幅比較合理,說明利用模型②得到的預測值更可靠. (說明:以上給出了2種理由,考生答出其中任意一種或其他合理理由均可.) 3.(2018·高考全國卷Ⅲ)某工廠為提高生產(chǎn)效率,開展技術創(chuàng)新活動,提出了完成某項生產(chǎn)任務的兩種新的生產(chǎn)方式.為比較兩種生產(chǎn)方式的效率,選取40名工人,將他們隨機分成兩組,每組20人.第一組工人用第一種生產(chǎn)方式,第二組工人用第二種生

7、產(chǎn)方式.根據(jù)工人完成生產(chǎn)任務的工作時間(單位:min)繪制了如下莖葉圖: (1)根據(jù)莖葉圖判斷哪種生產(chǎn)方式的效率更高?并說明理由. (2)求40名工人完成生產(chǎn)任務所需時間的中位數(shù)m,并將完成生產(chǎn)任務所需時間超過m和不超過m的工人數(shù)填入下面的列聯(lián)表: 超過m 不超過m 第一種生產(chǎn)方式 第二種生產(chǎn)方式 (3)根據(jù)(2)中的列聯(lián)表,能否有99%的把握認為兩種生產(chǎn)方式的效率有差異? 附:K2=, 解析:(1)第二種生產(chǎn)方式的效率更高. 理由如下: ①由莖葉圖可知:用第一種生產(chǎn)方式的工人中,有75%的工人完成生產(chǎn)任務所需時間至少80分鐘,用第二種生產(chǎn)方式

8、的工人中,有75%的工人完成生產(chǎn)任務所需時間至多79分鐘.因此第二種生產(chǎn)方式的效率更高. ②由莖葉圖可知:用第一種生產(chǎn)方式的工人完成生產(chǎn)任務所需時間的中位數(shù)為85.5分鐘,用第二種生產(chǎn)方式的工人完成生產(chǎn)任務所需時間的中位數(shù)為73.5分鐘.因此第二種生產(chǎn)方式的效率更高. ③由莖葉圖可知:用第一種生產(chǎn)方式的工人完成生產(chǎn)任務平均所需時間高于80分鐘;用第二種生產(chǎn)方式的工人完成生產(chǎn)任務平均所需時間低于80分鐘.因此第二種生產(chǎn)方式的效率更高. ④由莖葉圖可知:用第一種生產(chǎn)方式的工人完成生產(chǎn)任務所需時間分布在莖8上的最多,關于莖8大致呈對稱分布;用第二種生產(chǎn)方式的工人完成生產(chǎn)任務所需時間分布在莖7上

9、的最多,關于莖7大致呈對稱分布.又用兩種生產(chǎn)方式的工人完成生產(chǎn)任務所需時間分布的區(qū)間相同,故可以認為用第二種生產(chǎn)方式完成生產(chǎn)任務所需的時間比用第一種生產(chǎn)方式完成生產(chǎn)任務所需的時間更少.因此第二種生產(chǎn)方式的效率更高. (以上給出了4種理由,考生答出其中任意一種或其他合理理由均可.) (2)由莖葉圖知m==80. 列聯(lián)表如下: 超過m 不超過m 第一種生產(chǎn)方式 15 5 第二種生產(chǎn)方式 5 15 (3)由于K2==10>6.635,所以有99%的把握認為兩種生產(chǎn)方式的效率有差異. 1. 某工廠每日生產(chǎn)一種產(chǎn)品x(x≥1)噸,每日生產(chǎn)的產(chǎn)品當日銷售完畢,日銷售額為y

10、萬元,產(chǎn)品價格隨著產(chǎn)量變化而有所變化,經(jīng)過一段時間的產(chǎn)銷,得到了x,y的一組統(tǒng)計數(shù)據(jù)如下表: 日產(chǎn)量x 1 2 3 4 5 日銷售額y 5 12 16 19 21 (1)請判斷=x+與=ln x+中,哪個模型更適合刻畫x,y之間的關系?可從函數(shù)增長趨勢方面給出簡單的理由; (2)根據(jù)你的判斷及下面的數(shù)據(jù)和公式,求出y關于x的回歸方程,并估計當日產(chǎn)量x=6時,日銷售額是多少? 附:≈0.96,(ln 1)2+(ln 2)2+(ln 3)2+(ln 4)2+(ln 5)2≈6.2,5ln 1+12ln 2+16ln 3+19ln 4+21ln 5≈86,ln 6≈1.

11、8. 線性回歸方程=x+中, =,=-·. 解析:(1)=ln x+更適合刻畫x,y之間的關系, 理由如下: x值每增加1,函數(shù)值的增加量分別為7,4,3,2,增加得越來越緩慢,適合對數(shù)型函數(shù)的增長規(guī)律,與直線型函數(shù)的均勻增長存在較大差異,故=ln x+更適合刻畫x,y之間的關系. (2)令zi=ln xi,計算知y===14.6. 所以=≈=10, =y(tǒng)-d·≈14.6-10×0.96=5,所以所求的回歸方程為=10ln x+5. 當x=6時,銷售額為=10ln 6+5≈23(萬元). 2.根據(jù)《大氣污染防治工作方案》,要多措并舉強化冬季大氣污染防治,全面降低區(qū)城污染排放

12、負荷,方案涉及北京、天津兩座城市及周邊26座城市,共計28座城市,同時中央指出嚴抓環(huán)保,更要保障民生.就上述區(qū)城的100戶(隨機抽取)農(nóng)村居民取暖“煤改氣”后增加的費用(單元:元)對居民生活的影響程度,有關部門進行了調(diào)研,統(tǒng)計結果如下: “煤改氣”后 增加的費用 [0, 50) [50, 100) [100, 150) [150, 200) [200, 300) [300, 500] 對生活的 影響程度 沒有 影響 稍有 影響 較小 影響 較大 影響 很大 影響 嚴重 影響 居民戶數(shù) 7 16 16 24 19 18 (1

13、)若本次抽取的樣本中有80戶居民屬于除北京、天津兩座城市之外的周邊26座城市,這其中有10戶居民認為“煤改氣”增加的費用對其生活有嚴重影響(其他情況均為非嚴重影響程度),根據(jù)提供的統(tǒng)計數(shù)據(jù),完成下面的2×2列聯(lián)表,并判斷是否至少有99%的把握認為“煤改氣”對居民生活造成嚴重影響與所在城市有關; 非嚴重影響戶數(shù) 嚴重影響戶數(shù) 總計 “北京、天津2座城市”戶數(shù) “周邊26座城市”戶數(shù) 總計100 (2)將頻率視為概率,政府決定對實施“煤改氣”的居民進行補貼,把受到嚴重影響的居民定義為“A類戶”,其余居民定義為“B類戶”,B類戶每戶補貼x

14、(x>1)萬元,A類戶每戶補貼x2萬元,若所有居民的戶均補貼不超過2.36萬元,那么“B類戶”每戶最多補貼多少錢? 附:K2=,其中n=a+b+c+d. P(K2≥k0) 0.100 0.050 0.025 0.010 0.001 k0 2.706 3.841 5.024 6.635 10.828 解析:(1)根據(jù)題中的數(shù)據(jù)補全的2×2列聯(lián)表如下: 非嚴重影響戶數(shù) 嚴重影響戶數(shù) 總計 “北京、天津2座城市”戶數(shù) 12 8 20 “周邊26座城市”戶數(shù) 70 10 80 總計 82 18 100 所以K2的觀測值 k=≈8.198

15、>6.635, 所以在犯錯誤的概率不超過0.01的前提下,認為“‘煤改氣’對居民生活造成嚴重影響與所在城市有關”,即有99%的把握認為“‘煤改氣’對居民生活造成嚴重影響與所在城市有關”. (2)將頻率視為概率,由(1)可知,“A類戶”的概率為=0.18. “B類戶”的概率為=0.82. 記居民的戶均補貼為y萬元,則y=0.82x+0.18x2, 由題意可得 解得1

16、某所鄉(xiāng)村中學儲備招聘未來三年的教師,現(xiàn)在每招聘一名教師需要2萬元,若三年后教師嚴重短缺時再進行招聘,由于各種因素,則每招聘一名教師需要5萬元,已知現(xiàn)在該鄉(xiāng)村中學無多余教師,為決策應儲備招聘多少名鄉(xiāng)村教師,該鄉(xiāng)村中學的工作人員搜集并整理了該市100所鄉(xiāng)村中學在過去三年內(nèi)流失的教師數(shù),得到的條形圖如圖所示,x表示一所鄉(xiāng)村中學在未來三年內(nèi)流失的教師數(shù)(單位:名),y表示未來四年內(nèi)一所鄉(xiāng)村中學在儲備招聘教師上所需的費用(單位:萬元),n表示今年為該鄉(xiāng)村中學儲備招聘的教師數(shù),為保障鄉(xiāng)村孩子的教育不受影響,若未來三年內(nèi)教師有短缺,則第四年馬上招聘. (1)若n=19,求y關于x的函數(shù)解析式; (2

17、)若要求“三年內(nèi)流失的教師數(shù)不大于n”的頻率不小于0.5,求n的最小值; (3)假設今年該市為這100所鄉(xiāng)村中學的每一所都招聘了19名教師或20名教師,分別計算該市未來四年內(nèi)為這100所鄉(xiāng)村中學儲備招聘教師所需費用的平均數(shù),以此作為決策依據(jù),今年該鄉(xiāng)村中學應招聘19名還是20名教師? 解析:(1)當x≤19時,y=19×2=38; 當x>19時,y=38+5(x-19)=5x-57, 所以y關于x的函數(shù)解析式為 y=(x∈N). (2)由條形統(tǒng)計圖知,三年內(nèi)流失的教師數(shù)不大于18的頻率為0.46,不大于19的頻率為0.7,故n的最小值為19. (3)若每所鄉(xiāng)村中學在今年都招聘19

18、名教師,則未來四年內(nèi)這100所鄉(xiāng)村中學中有70所在儲備招聘教師上所需的費用為38萬元,20所在儲備招聘教師上所需的費用為43萬元,10所在儲備招聘教師上所需的費用為48萬元,因此未來四年內(nèi)這100所鄉(xiāng)村中學在儲備招聘教師上所需費用的平均數(shù)為×(38×70+43×20+48×10)=40(萬元). 若每所鄉(xiāng)村中學在今年都招聘20名教師,則這100所鄉(xiāng)村中學中有90所在儲備招聘教師上所需的費用為40萬元,10所在儲備招聘教師上所需的費用為45萬元,因此未來四年內(nèi)這100所鄉(xiāng)村中學在儲備招聘教師上所需費用的平均數(shù)為×(40×90+45×10)=40.5(萬元). 比較兩個平均數(shù)可知,今年應為該鄉(xiāng)村中學招聘19名教師.

展開閱讀全文
溫馨提示:
1: 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
2: 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
3.本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
5. 裝配圖網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

相關資源

更多
正為您匹配相似的精品文檔
關于我們 - 網(wǎng)站聲明 - 網(wǎng)站地圖 - 資源地圖 - 友情鏈接 - 網(wǎng)站客服 - 聯(lián)系我們

copyright@ 2023-2025  zhuangpeitu.com 裝配圖網(wǎng)版權所有   聯(lián)系電話:18123376007

備案號:ICP2024067431-1 川公網(wǎng)安備51140202000466號


本站為文檔C2C交易模式,即用戶上傳的文檔直接被用戶下載,本站只是中間服務平臺,本站所有文檔下載所得的收益歸上傳人(含作者)所有。裝配圖網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對上載內(nèi)容本身不做任何修改或編輯。若文檔所含內(nèi)容侵犯了您的版權或隱私,請立即通知裝配圖網(wǎng),我們立即給予刪除!