2022年高考數(shù)學(xué)二輪復(fù)習(xí) 專題四 數(shù)列 專題能力訓(xùn)練11 等差數(shù)列與等比數(shù)列 文

上傳人:xt****7 文檔編號(hào):105707359 上傳時(shí)間:2022-06-12 格式:DOC 頁(yè)數(shù):6 大?。?80KB
收藏 版權(quán)申訴 舉報(bào) 下載
2022年高考數(shù)學(xué)二輪復(fù)習(xí) 專題四 數(shù)列 專題能力訓(xùn)練11 等差數(shù)列與等比數(shù)列 文_第1頁(yè)
第1頁(yè) / 共6頁(yè)
2022年高考數(shù)學(xué)二輪復(fù)習(xí) 專題四 數(shù)列 專題能力訓(xùn)練11 等差數(shù)列與等比數(shù)列 文_第2頁(yè)
第2頁(yè) / 共6頁(yè)
2022年高考數(shù)學(xué)二輪復(fù)習(xí) 專題四 數(shù)列 專題能力訓(xùn)練11 等差數(shù)列與等比數(shù)列 文_第3頁(yè)
第3頁(yè) / 共6頁(yè)

下載文檔到電腦,查找使用更方便

9.9 積分

下載資源

還剩頁(yè)未讀,繼續(xù)閱讀

資源描述:

《2022年高考數(shù)學(xué)二輪復(fù)習(xí) 專題四 數(shù)列 專題能力訓(xùn)練11 等差數(shù)列與等比數(shù)列 文》由會(huì)員分享,可在線閱讀,更多相關(guān)《2022年高考數(shù)學(xué)二輪復(fù)習(xí) 專題四 數(shù)列 專題能力訓(xùn)練11 等差數(shù)列與等比數(shù)列 文(6頁(yè)珍藏版)》請(qǐng)?jiān)谘b配圖網(wǎng)上搜索。

1、2022年高考數(shù)學(xué)二輪復(fù)習(xí) 專題四 數(shù)列 專題能力訓(xùn)練11 等差數(shù)列與等比數(shù)列 文 1.已知等比數(shù)列{an}滿足a1=,a3a5=4(a4-1),則a2= (  ) A.2 B.1 C. D. 2.在等差數(shù)列{an}中,a1+a2+a3=3,a18+a19+a20=87,則此數(shù)列前20項(xiàng)的和等于(  ) A.290 B.300 C.580 D.600 3.設(shè){an}是等比數(shù)列,Sn是{an}的前n項(xiàng)和.對(duì)任意正整數(shù)n,有an+2an+1+an+2=0,又a1=2,則S101的值為(  ) A.2 B.200 C.-2 D.0 4.已知{an}是等差數(shù)列,公差d不為零,前n項(xiàng)和是S

2、n,若a3,a4,a8成等比數(shù)列,則(  ) A.a1d>0,dS4>0 B.a1d<0,dS4<0 C.a1d>0,dS4<0 D.a1d<0,dS4>0 5.在等比數(shù)列{an}中,滿足a1+a2+a3+a4+a5=3,=15,則a1-a2+a3-a4+a5的值是(  ) A.3 B. C.- D.5 6.在數(shù)列{an}中,a1=2,an+1=2an,Sn為{an}的前n項(xiàng)和.若Sn=126,則n=     .? 7.已知等比數(shù)列{an}為遞增數(shù)列,且=a10,2(an+an+2)=5an+1,則數(shù)列的通項(xiàng)公式an=     .? 8.設(shè)x,y,z是實(shí)數(shù),若9x,12y,15z

3、成等比數(shù)列,且成等差數(shù)列,則=     .? 9.(2018全國(guó)Ⅲ,文17)在等比數(shù)列{an}中,a1=1,a5=4a3. (1)求{an}的通項(xiàng)公式; (2)記Sn為{an}的前n項(xiàng)和,若Sm=63,求m. 10.已知等差數(shù)列{an}和等比數(shù)列{bn}滿足a1=b1=1,a2+a4=10,b2b4=a5. (1)求{an}的通項(xiàng)公式; (2)求和:b1+b3+b5+…+b2n-1. 11.設(shè)數(shù)列{an}滿足a1+3a2+…+(2n-1)an=2n. (1)求{an}的通項(xiàng)公式; (2)求數(shù)列的前n項(xiàng)和.

4、 二、思維提升訓(xùn)練 12.已知數(shù)列{an},{bn}滿足a1=b1=1,an+1-an==2,n∈N*,則數(shù)列{}的前10項(xiàng)的和為(  ) A. (49-1) B. (410-1) C. (49-1) D. (410-1) 13.若數(shù)列{an}為等比數(shù)列,且a1=1,q=2,則Tn=+…+等于(  ) A.1- B. C.1- D. 14.如圖,點(diǎn)列{An},{Bn}分別在某銳角的兩邊上,且|AnAn+1|=|An+1An+2|,An≠An+2,n∈N*,|BnBn+1|=|Bn+1Bn+2|,Bn≠Bn+2,n∈N*.(P≠Q(mào)表示點(diǎn)P與Q不重合)若

5、dn=|AnBn|,Sn為△AnBnBn+1的面積,則(  ) A.{Sn}是等差數(shù)列 B.{}是等差數(shù)列 C.{dn}是等差數(shù)列 D.{}是等差數(shù)列 15.已知等比數(shù)列{an}的首項(xiàng)為,公比為-,其前n項(xiàng)和為Sn,若A≤Sn-≤B對(duì)n∈N*恒成立,則B-A的最小值為     .? 16.已知數(shù)列{an}的首項(xiàng)為1,Sn為數(shù)列{an}的前n項(xiàng)和,Sn+1=qSn+1,其中q>0,n∈N*. (1)若a2,a3,a2+a3成等差數(shù)列,求數(shù)列{an}的通項(xiàng)公式; (2)設(shè)雙曲線x2-=1的離心率為en,且e2=2,求+…+. 17.若數(shù)列{an}是公差為正數(shù)的

6、等差數(shù)列,且對(duì)任意n∈N*有an·Sn=2n3-n2. (1)求數(shù)列{an}的通項(xiàng)公式. (2)是否存在數(shù)列{bn},使得數(shù)列{anbn}的前n項(xiàng)和為An=5+(2n-3)2n-1(n∈N*)?若存在,求出數(shù)列{bn}的通項(xiàng)公式及其前n項(xiàng)和Tn;若不存在,請(qǐng)說(shuō)明理由. 專題能力訓(xùn)練11 等差數(shù)列與等比數(shù)列 一、能力突破訓(xùn)練 1.C 解析 ∵a3a5=4(a4-1),∴=4(a4-1),解得a4=2. 又a4=a1q3,且a1=,∴q=2,∴a2=a1q=. 2.B 解析 由a1+a2+a3=3,a18+a19+a20=87,得a1+a20=30,故S20==300. 3.A

7、 解析 設(shè)公比為q,∵an+2an+1+an+2=0,∴a1+2a2+a3=0,∴a1+2a1q+a1q2=0,∴q2+2q+1=0,∴q=-1.又a1=2,∴S101==2. 4.B 解析 設(shè){an}的首項(xiàng)為a1,公差為d,則a3=a1+2d,a4=a1+3d,a8=a1+7d. ∵a3,a4,a8成等比數(shù)列,∴(a1+3d)2=(a1+2d)(a1+7d),即3a1d+5d2=0. ∵d≠0,∴a1d=-d2<0,且a1=-d. ∵dS4==2d(2a1+3d)=-d2<0,故選B. 5.D 解析 由條件知=5, 故a1-a2+a3-a4+a5==5. 6.6 解析 ∵an+

8、1=2an,即=2, ∴{an}是以2為公比的等比數(shù)列. 又a1=2, ∴Sn==126.∴2n=64,∴n=6. 7.2n 解析 ∵=a10,∴(a1q4)2=a1q9,∴a1=q, ∴an=qn. ∵2(an+an+2)=5an+1,∴2an(1+q2)=5anq, ∴2(1+q2)=5q,解得q=2或q=(舍去), ∴an=2n. 8. 解析 由題意知 解得xz=y2=y2,x+z=y, 從而-2=-2=. 9.解 (1)設(shè){an}的公比為q,由題設(shè)得an=qn-1. 由已知得q4=4q2,解得q=0(舍去),q=-2或q=2. 故an=(-2)n-1或an=

9、2n-1. (2)若an=(-2)n-1,則Sn=.由Sm=63得(-2)m=-188,此方程沒(méi)有正整數(shù)解. 若an=2n-1,則Sn=2n-1.由Sm=63得2m=64,解得m=6. 綜上,m=6. 10.解 (1)設(shè)等差數(shù)列{an}的公差為d. 因?yàn)閍2+a4=10,所以2a1+4d=10. 解得d=2.所以an=2n-1. (2)設(shè)等比數(shù)列{bn}的公比為q. 因?yàn)閎2b4=a5,所以b1qb1q3=9. 解得q2=3.所以b2n-1=b1q2n-2=3n-1. 從而b1+b3+b5+…+b2n-1=1+3+32+…+3n-1=. 11.解 (1)因?yàn)閍1+3a2+

10、…+(2n-1)an=2n,故當(dāng)n≥2時(shí),a1+3a2+…+(2n-3)an-1=2(n-1). 兩式相減得(2n-1)an=2. 所以an=(n≥2). 又由題設(shè)可得a1=2, 從而{an}的通項(xiàng)公式為an=. (2)記的前n項(xiàng)和為Sn. 由(1)知,則Sn=+…+. 二、思維提升訓(xùn)練 12.D 解析 由a1=1,an+1-an=2,得an=2n-1. 由=2,b1=1得bn=2n-1. 則=22(n-1)=4n-1, 故數(shù)列{}前10項(xiàng)和為(410-1). 13.B 解析 因?yàn)閍n=1×2n-1=2n-1,所以anan+1=2n-1·2n=22n-1=2×4n-1,

11、所以. 所以是等比數(shù)列. 故Tn=+…+. 14.A 解析 如圖,延長(zhǎng)AnA1,BnB1交于P,過(guò)An作對(duì)邊BnBn+1的垂線,其長(zhǎng)度記為h1,過(guò)An+1作對(duì)邊Bn+1Bn+2的垂線,其長(zhǎng)度記為h2, 則Sn=|BnBn+1|×h1,Sn+1=|Bn+1Bn+2|×h2. ∴Sn+1-Sn=|Bn+1Bn+2|h2-|BnBn+1|h1. ∵|BnBn+1|=|Bn+1Bn+2|, ∴Sn+1-Sn=|BnBn+1|(h2-h1). 設(shè)此銳角為θ, 則h2=|PAn+1|sin θ,h1=|PAn|sin θ, ∴h2-h1=sin θ(|PAn+1|-|PAn|)=|An

12、An+1|sin θ. ∴Sn+1-Sn=|BnBn+1||AnAn+1|sin θ. ∵|BnBn+1|,|AnAn+1|,sin θ均為定值,∴Sn+1-Sn為定值. ∴{Sn}是等差數(shù)列.故選A. 15. 解析 易得Sn=1-, 因?yàn)閥=Sn-在區(qū)間上單調(diào)遞增(y≠0),所以y∈?[A,B],因此B-A的最小值為. 16.解 (1)由已知,Sn+1=qSn+1,Sn+2=qSn+1+1, 兩式相減得到an+2=qan+1,n≥1. 又由S2=qS1+1得到a2=qa1, 故an+1=qan對(duì)所有n≥1都成立. 所以,數(shù)列{an}是首項(xiàng)為1,公比為q的等比數(shù)列.

13、從而an=qn-1. 由a2,a3,a2+a3成等差數(shù)列,可得2a3=a2+a2+a3. 所以a3=2a2,故q=2. 所以an=2n-1(n∈N*). (2)由(1)可知,an=qn-1. 所以雙曲線x2-=1的離心率en=. 由e2==2,解得q=. 所以+…+ =(1+1)+(1+q2)+…+[1+q2(n-1)] =n+[1+q2+…+q2(n-1)] =n+=n+(3n-1). 17.解 (1)設(shè)等差數(shù)列{an}的公差為d,則d>0, an=dn+(a1-d),Sn=dn2+n. 對(duì)任意n∈N*,恒有 an·Sn=2n3-n2,則[dn+(a1-d)]·=2n3-n2, 即[dn+(a1-d)]·=2n2-n. ∴ ∵d>0,∴∴an=2n-1. (2)∵數(shù)列{anbn}的前n項(xiàng)和為An=5+(2n-3)·2n-1(n∈N*), ∴當(dāng)n=1時(shí),a1b1=A1=4,∴b1=4, 當(dāng)n≥2時(shí),anbn=An-An-1=5+(2n-3)2n-1-[5+(2n-5)2n-2]=(2n-1)2n-2. ∴bn=2n-2.假設(shè)存在數(shù)列{bn}滿足題設(shè),且數(shù)列{bn}的通項(xiàng)公式bn= ∴T1=4,當(dāng)n≥2時(shí),Tn=4+=2n-1+3,當(dāng)n=1時(shí)也適合, ∴數(shù)列{bn}的前n項(xiàng)和為T(mén)n=2n-1+3.

展開(kāi)閱讀全文
溫馨提示:
1: 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
2: 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
3.本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
5. 裝配圖網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

相關(guān)資源

更多
正為您匹配相似的精品文檔
關(guān)于我們 - 網(wǎng)站聲明 - 網(wǎng)站地圖 - 資源地圖 - 友情鏈接 - 網(wǎng)站客服 - 聯(lián)系我們

copyright@ 2023-2025  zhuangpeitu.com 裝配圖網(wǎng)版權(quán)所有   聯(lián)系電話:18123376007

備案號(hào):ICP2024067431號(hào)-1 川公網(wǎng)安備51140202000466號(hào)


本站為文檔C2C交易模式,即用戶上傳的文檔直接被用戶下載,本站只是中間服務(wù)平臺(tái),本站所有文檔下載所得的收益歸上傳人(含作者)所有。裝配圖網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)上載內(nèi)容本身不做任何修改或編輯。若文檔所含內(nèi)容侵犯了您的版權(quán)或隱私,請(qǐng)立即通知裝配圖網(wǎng),我們立即給予刪除!