2022高考數(shù)學(xué)大二輪復(fù)習(xí) 專題4 三角函數(shù)、解三角形 第2講 綜合大題部分真題押題精練 理

上傳人:xt****7 文檔編號:105750030 上傳時間:2022-06-12 格式:DOC 頁數(shù):5 大?。?3KB
收藏 版權(quán)申訴 舉報 下載
2022高考數(shù)學(xué)大二輪復(fù)習(xí) 專題4 三角函數(shù)、解三角形 第2講 綜合大題部分真題押題精練 理_第1頁
第1頁 / 共5頁
2022高考數(shù)學(xué)大二輪復(fù)習(xí) 專題4 三角函數(shù)、解三角形 第2講 綜合大題部分真題押題精練 理_第2頁
第2頁 / 共5頁
2022高考數(shù)學(xué)大二輪復(fù)習(xí) 專題4 三角函數(shù)、解三角形 第2講 綜合大題部分真題押題精練 理_第3頁
第3頁 / 共5頁

下載文檔到電腦,查找使用更方便

9.9 積分

下載資源

還剩頁未讀,繼續(xù)閱讀

資源描述:

《2022高考數(shù)學(xué)大二輪復(fù)習(xí) 專題4 三角函數(shù)、解三角形 第2講 綜合大題部分真題押題精練 理》由會員分享,可在線閱讀,更多相關(guān)《2022高考數(shù)學(xué)大二輪復(fù)習(xí) 專題4 三角函數(shù)、解三角形 第2講 綜合大題部分真題押題精練 理(5頁珍藏版)》請在裝配圖網(wǎng)上搜索。

1、2022高考數(shù)學(xué)大二輪復(fù)習(xí) 專題4 三角函數(shù)、解三角形 第2講 綜合大題部分真題押題精練 理 1. (2017·高考全國卷Ⅰ)△ABC的內(nèi)角A,B,C的對邊分別為a,b,c.已知△ABC的面積為. (1)求sin Bsin C; (2)若6cos Bcos C=1,a=3,求△ABC的周長. 解析:(1)由題設(shè)得acsin B=, 即csin B=. 由正弦定理得sin Csin B=. 故sin Bsin C=. (2)由題設(shè)及(1)得cos Bcos C-sin Bsin C=-, 即cos(B+C)=-. 所以B+C=,故A=. 由題意得bcsin A=,a

2、=3,所以bc=8. 由余弦定理得b2+c2-bc=9, 即(b+c)2-3bc=9, 由bc=8,得b+c=. 故△ABC的周長為3+. 2.(2018·高考全國卷Ⅰ)在平面四邊形ABCD中,∠ADC=90°,∠A=45°,AB=2,BD=5. (1)求cos∠ADB; (2)若DC=2,求BC. 解析:(1)在△ABD中, 由正弦定理得=, 即=,所以sin∠ADB=. 由題設(shè)知,∠ADB<90°, 所以cos∠ADB==. (2)由題設(shè)及(1)知,cos∠BDC=sin∠ADB=. 在△BCD中,由余弦定理得 BC2=BD2+DC2-2BD·DC·cos∠B

3、DC=25+8-2×5×2×=25, 所以BC=5. 3.(2017·高考全國卷Ⅲ)△ABC的內(nèi)角A,B,C的對邊分別為a,b,c,已知 sin A+cos A=0,a=2,b=2. (1)求c; (2)設(shè)D為BC邊上一點,且AD⊥AC,求△ABD的面積. 解析:(1)由已知可得tan A=-, 所以A=. 在△ABC中,由余弦定理得 28=4+c2-4ccos , 即c2+2c-24=0. 解得c=4(負(fù)值舍去). (2)由題設(shè)可得∠CAD=, 所以∠BAD=∠BAC-∠CAD=. 故△ABD的面積與△ACD的面積的比值為 =1. 又△ABC的面積為

4、×4×2×sin∠BAC=2, 所以△ABD的面積為. 1. 在△ABC中,B=,角A的平分線AD交BC于點D,設(shè)∠BAD=α,sin α=. (1)求sin C; (2)若·=28,求AC的長. 解析:(1)因為α∈(0,),sin α=, 所以cos α==, 則sin∠BAC=sin 2α=2sin αcos α=2××=, 所以cos∠BAC=cos 2α=2cos2α-1=2×-1=, sin C=sin[π-(+2α)]=sin(+2α)=cos 2α+sin 2α =×+×=. (2)由正弦定理,得=, 即=,所以AB=BC. 因為·=28,所以AB

5、×BC×=28, 由以上兩式解得BC=4. 由=,得=,所以AC=5. 2. 如圖所示,△ABC中,三個內(nèi)角B,A,C成等差數(shù)列,且AC=10,BC=15. (1)求△ABC的面積; (2)已知平面直角坐標(biāo)系xOy中點D(10,0),若函數(shù)f(x)=Msin(ωx+φ)(M>0,ω>0,|φ|<)的圖象經(jīng)過A,C,D三點,且A,D為f(x)的圖象與x軸相鄰的兩個交點,求f(x)的解析式. 解析:(1)在△ABC中,由角B,A,C成等差數(shù)列, 得B+C=2A,又A+B+C=π, 所以A=.設(shè)角A,B,C的對邊分別為a,b,c, 由余弦定理可知 a2=b2+c2-2bccos

6、, 所以c2-10c-125=0, 解得c=AB=5+5. 因為CO=10×sin =5, 所以S△ABC=×(5+5)×5=(3+). (2)因為AO=10×cos =5, 所以函數(shù)f(x)的最小正周期T=2×(10+5)=30, 故ω=. 因為f(-5)=Msin[×(-5)+φ]=0, 所以sin(-+φ)=0, 所以-+φ=kπ,k∈Z. 因為|φ|<,所以φ=. 因為f(0)=Msin =5, 所以M=10, 所以f(x)=10sin(x+). 3.已知函數(shù)f(x)=2sin xcos x-3sin2x-cos2x+2. (1)當(dāng)x∈[0,]時,求f(

7、x)的值域; (2)若△ABC的內(nèi)角A,B,C的對邊分別為a,b,c,且滿足=,=2+2cos(A+C),求f(B)的值. 解析:(1)∵f(x)=2sin xcos x-3sin2x-cos2x+2 =sin 2x-2sin2x+1 =sin 2x+cos 2x =2sin(2x+), 又∵x∈[0,], ∴2x+∈[,], sin(2x+)∈[-,1], ∴f(x)∈[-1,2]. (2)由題意可得 sin[A+(A+C)]=2sin A+2sin Acos(A+C), ∴sin Acos(A+C)+cos Asin(A+C)=2sin A+2sin Acos(A+C), 化簡可得sin C=2sin A, ∴由正弦定理可得c=2a. ∵b=a, ∴由余弦定理可得 cos B===, ∵0

展開閱讀全文
溫馨提示:
1: 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
2: 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
3.本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
5. 裝配圖網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

相關(guān)資源

更多
正為您匹配相似的精品文檔
關(guān)于我們 - 網(wǎng)站聲明 - 網(wǎng)站地圖 - 資源地圖 - 友情鏈接 - 網(wǎng)站客服 - 聯(lián)系我們

copyright@ 2023-2025  zhuangpeitu.com 裝配圖網(wǎng)版權(quán)所有   聯(lián)系電話:18123376007

備案號:ICP2024067431-1 川公網(wǎng)安備51140202000466號


本站為文檔C2C交易模式,即用戶上傳的文檔直接被用戶下載,本站只是中間服務(wù)平臺,本站所有文檔下載所得的收益歸上傳人(含作者)所有。裝配圖網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對上載內(nèi)容本身不做任何修改或編輯。若文檔所含內(nèi)容侵犯了您的版權(quán)或隱私,請立即通知裝配圖網(wǎng),我們立即給予刪除!