(京津?qū)S茫?022高考數(shù)學總復習 優(yōu)編增分練:8+6分項練10 立體幾何 理

上傳人:xt****7 文檔編號:107402367 上傳時間:2022-06-14 格式:DOC 頁數(shù):9 大?。?12KB
收藏 版權(quán)申訴 舉報 下載
(京津?qū)S茫?022高考數(shù)學總復習 優(yōu)編增分練:8+6分項練10 立體幾何 理_第1頁
第1頁 / 共9頁
(京津?qū)S茫?022高考數(shù)學總復習 優(yōu)編增分練:8+6分項練10 立體幾何 理_第2頁
第2頁 / 共9頁
(京津?qū)S茫?022高考數(shù)學總復習 優(yōu)編增分練:8+6分項練10 立體幾何 理_第3頁
第3頁 / 共9頁

下載文檔到電腦,查找使用更方便

9.9 積分

下載資源

還剩頁未讀,繼續(xù)閱讀

資源描述:

《(京津?qū)S茫?022高考數(shù)學總復習 優(yōu)編增分練:8+6分項練10 立體幾何 理》由會員分享,可在線閱讀,更多相關(guān)《(京津?qū)S茫?022高考數(shù)學總復習 優(yōu)編增分練:8+6分項練10 立體幾何 理(9頁珍藏版)》請在裝配圖網(wǎng)上搜索。

1、(京津?qū)S茫?022高考數(shù)學總復習 優(yōu)編增分練:8+6分項練10 立體幾何 理 1.已知a,b為異面直線,下列結(jié)論不正確的是(  ) A.必存在平面α,使得a∥α,b∥α B.必存在平面α,使得a,b與α所成角相等 C.必存在平面α,使得a?α,b⊥α D.必存在平面α,使得a,b與α的距離相等 答案 C 解析 由a,b為異面直線知,在A中,在空間中任取一點O(不在a,b上),過點O分別作a,b的平行線,則由過點O的a,b的平行線確定一個平面α,使得a∥α,b∥α,故A正確;在B中,平移b至b′與a相交,因而確定一個平面α,在α上作a,b′夾角的平分線,明顯可以作出兩條.過角平分

2、線且與平面α垂直的平面使得a,b′與該平面所成角相等,角平分線有兩條,所以有兩個平面都可以.故B正確;在C中,當a,b不垂直時,不存在平面α,使得a?α,b⊥α,故C錯誤;在D中,過異面直線a,b的公垂線的中點作與公垂線垂直的平面α,則平面α使得a,b與α的距離相等,故D正確.故選C. 2.(2018·河南省南陽市第一中學模擬)設(shè)m,n是兩條不同的直線,α,β是兩個不同的平面,則下列命題中正確命題的個數(shù)為(  ) ①若m⊥α,α⊥β,則m∥β; ②若m⊥α,α∥β,n?β,則m⊥n; ③若m?α,n?β,m∥n,則α∥β; ④若n⊥α,n⊥β,m⊥β,則m⊥α. A.1 B.2

3、 C.3 D.4 答案 B 解析 對于①,若m⊥α,α⊥β,則m∥β或m?β,所以不正確; 對于②,若m⊥α,α∥β,則m⊥β,又由n?β,所以m⊥n正確; 對于③,若m?α,n?β,m∥n,則α∥β或α與β相交, 所以不正確; 對于④,若n⊥α,n⊥β,則α∥β,又由m⊥β,所以m⊥α是正確的, 綜上可知,正確命題的個數(shù)為2. 3.(2018·福建省廈門外國語學校模擬)如圖,在正方體ABCD—A1B1C1D1中,E為棱BB1的中點,用過點A,E,C1的平面截去該正方體的下半部分,則剩余幾何體的正(主)視圖是(  ) 答案 A 解析 取DD1的中點F,連接AF

4、,C1F, 平面AFC1E為截面.如圖所示, 所以上半部分的正(主)視圖,如A選項所示,故選A. 4.已知一個幾何體的三視圖如圖所示,則該幾何體的體積是(  ) A. B.8 C. D.6 答案 A 解析 如圖所示,在棱長為2的正方體中, 題圖中的三視圖對應的幾何體為四棱錐P-ADC1B1, 其中P為棱A1D1的中點, 則該幾何體的體積 =2=2 =2×××DD1=. 5.(2018·瀘州模擬)某幾何體的三視圖如圖所示,則該幾何體的外接球的表面積為(  ) A.136π B.144π C.36π D.34π 答案 D 解析 由三視圖可

5、知幾何體為四棱錐E-ABCD,直觀圖如圖所示. 其中,BE⊥平面ABCD,BE=4,AB⊥AD,AB=, C到AB的距離為2,C到AD的距離為2, 以A為原點,分別以AD,AB所在直線及平面ABCD過A的垂線為x軸,y軸,z軸,建立空間直角坐標系A(chǔ)-xyz, 則A(0,0,0),B(0,,0),C(2,2,0),D(4,0,0),E(0,,4). 設(shè)外接球的球心為M(x,y,z), 則MA=MB=MC=MD=ME, ∴x2+y2+z2=x2+(y-)2+z2 =(x-2)2+(y-2)2+z2 =(x-4)2+y2+z2=x2+(y-)2+(z-4)2, 解得x=2,y

6、=,z=2. ∴外接球的半徑r=MA= =, ∴外接球的表面積S=4πr2=34π. 6.如圖,在直三棱柱ABC-A1B1C1中,已知∠BCA=90°,∠BAC=60°,AC=4,E為AA1的中點,點F為BE的中點,點H在線段CA1上,且A1H=3HC,則線段FH的長為(  ) A.2 B.4 C. D.3 答案 C 解析 由題意知,AB=8,過點F作FD∥AB交AA1于點D,連接DH,則D為AE中點,F(xiàn)D=AB=4, 又==3,所以DH∥AC,∠FDH=60°, DH=AC=3,由余弦定理得 FH==,故選C. 7.我國古代數(shù)學名著《九章算術(shù)》中“開立圓術(shù)”

7、曰:置積尺數(shù),以十六乘之,九而一,所得開立方除之,即立圓徑.“開立圓術(shù)”相當于給出了已知球的體積V,求其直徑d的一個近似公式d≈ ,人們還用過一些類似的近似公式,根據(jù)π=3.141 59…判斷,下列近似公式中最精確的一個是(  ) A.d≈ B.d≈ C.d≈ D.d≈ 答案 D 解析 根據(jù)球的體積公式V=πR3=π3, 得d=,設(shè)選項中的常數(shù)為,則π=, 選項A代入得π==3.1, 選項B代入得π==3, 選項C代入得π==3.2, 選項D代入得π==3.142 857, D選項更接近π的真實值,故選D. 8.(2018·上饒模擬)在棱長為1的正方體ABC

8、D-A1B1C1D1內(nèi)有兩個球O1,O2相外切,球O1與面ABB1A1、面ABCD、面ADD1A1相切,球O2與面BCC1B1、面CC1D1D、面B1C1D1A1相切,則兩球表面積之和的最大值與最小值的差為(  ) A.(2-)π B. C.(3-)π D. 答案 A 解析 設(shè)球O1,O2的半徑分別為r1,r2, 由題意得r1+r1+r2+r2=, 所以r1+r2=,令a=. 表面積和為S,所以S=4πr+4πr, 所以=r+r=r+(a-r1)2=22+, 又r1最大時,球O1與正方體六個面相切, 且max=,min=-=, 所以r1∈. 又<<, 所以當r

9、1=時,min=, 當r1=或時,max=a2-a+, 所以max-min=-a+ ==. 所以兩球表面積之和的最大值與最小值的差為(2-)π. 9.(2018·煙臺模擬)某幾何體的三視圖如圖所示,其中俯視圖右側(cè)曲線為半圓弧,則幾何體的表面積為________. 答案 3π+4-2 解析 由三視圖還原出原幾何體是一個半圓柱挖去一個三棱柱,尺寸見三視圖, S=π×1×2+2×+2××2 =3π-2+4. 10.(2018·漳州模擬)在直三棱柱A1B1C1-ABC中,A1B1=3,B1C1=4,A1C1=5,AA1=2,則其外接球與內(nèi)切球的表面積的比值為________.

10、答案  解析 如圖1,分別取AC,A1C1的中點G,H,連接GH, 取GH的中點O,連接OA, 由題意,得A1B+B1C=A1C, 即△A1B1C1為直角三角形, 則點O為外接球的球心,OA為半徑, 則R=OA= =; 如圖2,作三棱柱的中截面, 則中截面三角形的內(nèi)心是該三棱柱的內(nèi)切球的球心, 中截面三角形的內(nèi)切圓的半徑r==1,也是內(nèi)切球的半徑,因為R∶r=∶2, 則其外接球與內(nèi)切球的表面積的比值為=. 11.如圖所示,AB是⊙O的直徑,PA⊥⊙O所在的平面,C是圓上一點,且∠ABC=30°,PA=AB,則直線PC與平面ABC所成角的正切值為________.

11、 答案 2 解析 因為PA⊥平面ABC,所以AC為斜線PC在平面ABC上的射影,所以∠PCA即為PC與平面ABC所成的角.在Rt△PAC中,AC=AB=PA, 所以tan∠PCA==2. 12.(2018·大同、陽泉聯(lián)考)若四面體ABCD的三組對棱分別相等,即AB=CD,AC=BD,AD=BC,給出下列結(jié)論: ①四面體ABCD每組對棱相互垂直; ②四面體ABCD每個面的面積相等; ③從四面體ABCD每個頂點出發(fā)的三條棱兩兩夾角之和大于90°而小于180°; ④連接四面體ABCD每組對棱中點的線段相互垂直平分. 其中正確結(jié)論的序號是________. 答案?、冖? 解析?、賹⑺?/p>

12、面體ABCD的三組對棱分別看作平行六面體的面對角線,由于三組對棱分別相等,所以平行六面體為長方體.由于長方體的各面不一定為正方形,所以同一面上的面對角線不一定垂直,從而每組對棱不一定相互垂直,①錯誤;②四面體ABCD的每個面是全等的三角形,面積是相等的,②正確;③由②可知,四面體ABCD的每個面是全等的三角形,從四面體ABCD每個頂點出發(fā)的三條棱兩兩夾角能夠等量代換為同一個三角形內(nèi)的三個內(nèi)角,它們之和為180°,③錯誤;④四面體ABCD棱的中點即為長方體側(cè)面的中心,所以對棱中點連線都過長方體的中心且相互垂直平分,④正確. 13.(2018·南昌模擬)已知正三棱臺ABC-A1B1C1的上、

13、下底邊長分別為3,4,高為7,若該正三棱臺的六個頂點均在球O的球面上,且球心O在正三棱臺ABC-A1B1C1內(nèi),則球O的表面積為________. 答案 100π 解析 因為正三棱臺ABC-A1B1C1的上、下底邊長分別為3,4, 取正三棱臺的上、下底面的中心分別為E,E1, 則正三棱臺的高為h=EE1=7, 在上下底面的等邊三角形中, 可得AE=AD=3,A1E1=A1D1=4, 則球心O在直線EE1上,且半徑為R=OA=OA1, 所以=,且OE+OE1=7, 解得OE=4,所以R==5, 所以球O的表面積為S=4πR2=100π. 14.已知三棱錐O—ABC中,A,B,C三點均在球心為O的球面上,且AB=BC=1,∠ABC=120°,若球O的體積為,則三棱錐O—ABC的體積是________. 答案  解析 三棱錐O—ABC中,A,B,C三點均在球心為O的球面上,且AB=BC=1,∠ABC=120°,則AC=, ∴S△ABC=×1×1×sin 120°=,設(shè)球半徑為R,由球的體積V1=πR3=,解得R=4.設(shè)△ABC外接圓的圓心為G,∴外接圓的半徑為GA==1, ∴OG===, ∴三棱錐O —ABC的體積為 V2=S△ABC·OG=××=.

展開閱讀全文
溫馨提示:
1: 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
2: 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
3.本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
5. 裝配圖網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

相關(guān)資源

更多
正為您匹配相似的精品文檔
關(guān)于我們 - 網(wǎng)站聲明 - 網(wǎng)站地圖 - 資源地圖 - 友情鏈接 - 網(wǎng)站客服 - 聯(lián)系我們

copyright@ 2023-2025  zhuangpeitu.com 裝配圖網(wǎng)版權(quán)所有   聯(lián)系電話:18123376007

備案號:ICP2024067431-1 川公網(wǎng)安備51140202000466號


本站為文檔C2C交易模式,即用戶上傳的文檔直接被用戶下載,本站只是中間服務(wù)平臺,本站所有文檔下載所得的收益歸上傳人(含作者)所有。裝配圖網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對上載內(nèi)容本身不做任何修改或編輯。若文檔所含內(nèi)容侵犯了您的版權(quán)或隱私,請立即通知裝配圖網(wǎng),我們立即給予刪除!