《高中數(shù)學(xué)《空間中的垂直關(guān)系》學(xué)案1 新人教B版必修2》由會(huì)員分享,可在線(xiàn)閱讀,更多相關(guān)《高中數(shù)學(xué)《空間中的垂直關(guān)系》學(xué)案1 新人教B版必修2(6頁(yè)珍藏版)》請(qǐng)?jiān)谘b配圖網(wǎng)上搜索。
1、空間中的垂直關(guān)系
一. 學(xué)習(xí)內(nèi)容:
空間中的垂直關(guān)系
二、學(xué)習(xí)目標(biāo)
1、掌握直線(xiàn)與平面垂直的定義、判定定理和性質(zhì)定理,并能運(yùn)用它們進(jìn)行論證和解決有關(guān)的問(wèn)題;
2、掌握平面與平面垂直的概念和判定定理、性質(zhì)定理,并能運(yùn)用它們進(jìn)行推理論證和解決有關(guān)問(wèn)題;
3、在研究垂直問(wèn)題時(shí),要善于應(yīng)用“轉(zhuǎn)化”和“降維”的思想,通過(guò)線(xiàn)線(xiàn)、線(xiàn)面、面面平行與垂直關(guān)系的轉(zhuǎn)化,從而使問(wèn)題獲得解決。
三、知識(shí)要點(diǎn)
1、直線(xiàn)與平面垂直的定義:如果一條直線(xiàn)和一個(gè)平面內(nèi)的任何一條直線(xiàn)都垂直,那么就稱(chēng)這條直線(xiàn)和這個(gè)平面垂直。
2、直線(xiàn)與平面垂直的判定:常用方法有:
①判定定理: .
② b⊥α, a∥
2、ba⊥α;(線(xiàn)面垂直性質(zhì)定理)
③α∥β,a⊥βa⊥α(面面平行性質(zhì)定理)
④α⊥β,α∩β=l,a⊥l,aβa⊥α(面面垂直性質(zhì)定理)
3、直線(xiàn)與平面垂直的性質(zhì)定理:
①如果兩條直線(xiàn)同垂直于一個(gè)平面,那么這兩條直線(xiàn)平行。( a⊥α,b⊥α?a∥b)
②直線(xiàn)和平面垂直時(shí),那么該直線(xiàn)就垂直于這個(gè)平面內(nèi)的任何直線(xiàn)()
4、點(diǎn)到平面的距離的定義: 從平面外一點(diǎn)引這個(gè)平面的垂線(xiàn),這個(gè)點(diǎn)和垂足間的線(xiàn)段的長(zhǎng)度叫做這個(gè)點(diǎn)到平面的距離。
特別注意:點(diǎn)到面的距離可直接向面作垂線(xiàn),但要考慮垂足的位置,如果垂足的位置不能確定,往往采取由點(diǎn)向面上某一條線(xiàn)作垂線(xiàn),再證明此垂足即為面的垂足。
5、平面與平
3、面垂直的定義及判定定理:
(1)定義:如果兩個(gè)相交平面的交線(xiàn)與第三個(gè)平面垂直,又這兩個(gè)平面與第三個(gè)平面相交所得的兩條交線(xiàn)互相垂直,就說(shuō)這兩個(gè)平面互相垂直。
記作:平面α⊥平面β
(2)判定定理:如果一個(gè)平面經(jīng)過(guò)另一個(gè)平面的一條垂線(xiàn),那么這兩個(gè)平面互相垂直。
(簡(jiǎn)稱(chēng):線(xiàn)面垂直,面面垂直)
6、兩個(gè)平面垂直的性質(zhì)定理:如果兩個(gè)平面垂直,那么在一個(gè)平面內(nèi)垂直于它們交線(xiàn)的直線(xiàn)垂直于另一個(gè)平面。(簡(jiǎn)稱(chēng):面面垂直,線(xiàn)面垂直。)
思維方式:判定兩相交平面垂直的常用方法是:線(xiàn)面垂直,面面垂直;有時(shí)用定義也是一種辦法。
【典型例題】
例1、(1)對(duì)于直線(xiàn)m、n和平面α、β,α⊥β的一個(gè)充
4、分條件是( )
A、m⊥n,m∥α,n∥β B、m⊥n,α∩β=m,nα
C、m∥n,n⊥β,mα D、m∥n,n⊥β,m⊥α
(2)設(shè)a、b是異面直線(xiàn),給出下列命題:
①經(jīng)過(guò)直線(xiàn)a有且僅有一個(gè)平面平行于直線(xiàn)b;
②經(jīng)過(guò)直線(xiàn)a有且僅有一個(gè)平面垂直于直線(xiàn)b;
③存在分別經(jīng)過(guò)直線(xiàn)a和b的兩個(gè)平行平面;
④存在分別經(jīng)過(guò)直線(xiàn)a和b的兩個(gè)平面互相垂直。
其中錯(cuò)誤的命題為( )
A、①與② B、②與③ C、③與④ D、僅②
(3)已知平面α⊥平面β,m是α內(nèi)一條直線(xiàn),n是β內(nèi)一條直線(xiàn),且m⊥n,那
5、么,
甲:m⊥β;乙:n⊥α丙:m⊥β或n⊥α;?。簃⊥β且n⊥α。這四個(gè)結(jié)論中,不正確的三個(gè)是( )
解:(1)對(duì)于A,平面α與β可以平行,也可以相交,但不垂直。
對(duì)B,平面α內(nèi)直線(xiàn)n垂直于兩個(gè)平面的交線(xiàn)m,直線(xiàn)n與平面β不一定垂直,平面α、β也不一定垂直。
對(duì)D,m⊥α,m∥n則n⊥α,又n⊥β,所以α∥β。
只有C正確,m∥n,n⊥β則m⊥β又mα,由平面與平面垂直的判定定理得α⊥β。
故選C。
(2)①正確,過(guò)a上任一點(diǎn)作b的平行線(xiàn)b′,則ab′確定唯一平面。
②錯(cuò)誤,假設(shè)成立則b⊥該平面,而a該平面,∴a⊥b,但a、b異面卻不一定垂直。
③正確,分別過(guò)a、b上的任
6、一點(diǎn)作b、a的平行線(xiàn),由各自相交直線(xiàn)所確定的平面即為所求。
④正確,換角度思考兩個(gè)垂直的平面內(nèi)各取一直線(xiàn)會(huì)出現(xiàn)各種異面形式,綜上所述:僅②錯(cuò)誤
選D
(3)丙正確。舉反例:在任一平面中作平行于交線(xiàn)的直線(xiàn)m(或n),在另一平面作交線(xiàn)的垂線(xiàn)n(或m)即可推翻甲、乙、丁三項(xiàng)。
思維點(diǎn)撥:解決這類(lèi)問(wèn)題關(guān)鍵是注意這是在空間而非平面內(nèi)。
例2、如圖,ABCD 為直角梯形,∠DAB=∠ABC=90°,AB=BC=a,AD=2a,PA⊥平面ABCD。PA=a。
(1)求證:PC⊥CD。
(2)求點(diǎn)B到直線(xiàn)PC的距離。
(1)證明:取AD的中點(diǎn)E,連AC、CE,
則ABCE為正方形,
7、ΔCED為等腰直角三角形,
∴AC⊥ CD,
∵PA⊥平面ABCD,
∴AC為PC在平面ABCD上的射影,
∴PC⊥CD
(2)解:連BE,交AC于O,則BE⊥AC,
又BE⊥PA,AC∩PA= A,
∴ BE⊥平面PAC
過(guò)O作OH⊥PC于H,則BH⊥PC,
∵PA=a,AC=a,PC=a,
∴ OH=,
∵BO=a,
∴BH=即為所求。
例3、在斜三棱柱A1B1C1—ABC中,底面是等腰三角形,AB=AC,側(cè)面BB1C1C⊥底面ABC
(1)若D是BC的中點(diǎn),求證 AD⊥CC1;
(2)過(guò)側(cè)面BB1C1C的對(duì)角線(xiàn)BC1的平面交側(cè)棱于M,若
8、AM=MA1,求證 截面MBC1⊥側(cè)面BB1C1C;
(3)AM=MA1是截面MBC1⊥平面BB1C1C的充要條件嗎?
請(qǐng)你敘述判斷理由。
命題意圖:本題主要考查線(xiàn)面垂直、面面垂直的判定與性質(zhì)。
知識(shí)依托:線(xiàn)面垂直、面面垂直的判定與性質(zhì)。
錯(cuò)解分析:(3)的結(jié)論在證必要性時(shí),輔助線(xiàn)要重新作出。
技巧與方法:本題屬于知識(shí)組合題類(lèi),關(guān)鍵在于對(duì)題目中條件的
思考與分析,掌握做此類(lèi)題目的一般技巧與方法,以及如何巧妙地作輔助線(xiàn)。
(1)證明:∵AB=AC,D是BC的中點(diǎn),
∴AD⊥BC
∵底面ABC⊥側(cè)面BB1C1C,
∴AD⊥側(cè)面BB1C1C
∴AD⊥CC1
(2)
9、證明:延長(zhǎng)B1A1與BM交于N,連結(jié)C1N
∵AM=MA1,
∴NA1=A1B1
∵A1B1=A1C1,
∴A1C1=A1N=A1B1
∴C1N⊥C1B1
∵底面NB1C1⊥側(cè)面BB1C1C,
∴C1N⊥側(cè)面BB1C1C
∴截面C1NB⊥側(cè)面BB1C1C
∴截面MBC1⊥側(cè)面BB1C1C
(3)解:結(jié)論是肯定的,充分性已由(2)證明,
下面證必要性。
過(guò)M作ME⊥BC1于E,
∵截面MBC1⊥側(cè)面BB1C1C
∴ME⊥側(cè)面BB1C1C,
又∵AD⊥側(cè)面BB1C1C
∴ME∥AD,
∴M、E、D、A共面
∵AM∥側(cè)面BB1C1C,
∴AM∥DE
10、
∵CC1⊥AD,
∴DE∥CC1
∵D是BC的中點(diǎn),
∴E是BC1的中點(diǎn)
∴AM=DE=AA1,
∴AM=MA1
即是截面的充要條件
例4、如圖,在正三棱錐A—BCD中,∠BAC=30°,AB=a,平行于AD、BC的截面EFGH分別交AB、BD、DC、CA于點(diǎn)E、F、G、H
(1)判定四邊形EFGH的形狀,并說(shuō)明理由
(2)設(shè)P是棱AD上的點(diǎn),當(dāng)AP為何值時(shí),
平面PBC⊥平面EFGH,請(qǐng)給出證明
(1)證明:∵AD//面EFGH,
面ACD∩面EFGH=HG,AD面ACD
∴ AD//HG.
同理EF∥HG,
∴EFGH是平
11、行四邊形
∵A—BCD是正三棱錐,
∴A在底面上的射影O是△BCD的中心,
∴DO⊥BC,
∴AD⊥BC,
∴HG⊥EH,四邊形EFGH是矩形
(2)作CP⊥AD于P點(diǎn),連結(jié)BP,
∵AD⊥BC,
∴AD⊥面BCP
∵HG∥AD,
∴HG⊥面BCP,HG面EFGH 面BCP⊥面EFGH,
在Rt△APC中,∠CAP=30°,AC=AB=a,
∴AP=a
例5、如圖,在直三棱柱ABC-A1B1C1中,底面ΔABC是直角三角形,∠ABC=90°,2AB=BC=BB1=a,且A1C∩AC1=D,BC1∩B1C=E,截面ABC1與截面A1B1C交于DE。求證:
12、
(1)A1B1⊥平面BB1C1C;
(2)A1C⊥BC1;
(3)DE⊥平面BB1C1C。
證明:(1)∵三棱柱ABC-A1B1C1是直三棱柱,
∴側(cè)面與底面垂直,
即平面A1B1C1⊥平面BB1C1C,
又∵AB⊥BC,
∴A1B1⊥B1C1
從而A1B1⊥平面BB1C1C。
(2)由題設(shè)可知四邊形BB1C1C為正方形,
∴BC1⊥B1C,
而A1B1⊥平面BB1C1C,
∴ A1C在平面BB1C1C上的射影是B1C,
由三垂線(xiàn)定理得A1C⊥BC1
(3)∵直三棱柱的側(cè)面均為矩形,
而D、E分別為所在側(cè)面對(duì)角線(xiàn)的交點(diǎn),
∴D為A1C的中點(diǎn),E為B1C的
13、中點(diǎn),
∴DE∥A1B1,
而由(1)知A1B1⊥平面BB1C1C,
∴DE⊥平面BB1C1C。
思維點(diǎn)撥:選擇恰當(dāng)?shù)姆椒ㄗC明線(xiàn)面垂直。
本講涉及的主要數(shù)學(xué)思想方法
1、直線(xiàn)與平面垂直是直線(xiàn)與平面相交的一種特殊情況,應(yīng)熟練掌握直線(xiàn)與平面垂直的
定義、判定定理、性質(zhì)定理,并能依據(jù)條件靈活運(yùn)用。
2、注意線(xiàn)面垂直與線(xiàn)線(xiàn)垂直的關(guān)系和轉(zhuǎn)化。
3、距離離不開(kāi)垂直,因此求距離問(wèn)題的過(guò)程實(shí)質(zhì)上是論證線(xiàn)面關(guān)系(平行與垂直)與解三角形的過(guò)程,值得注意的是“作、證、算、答”是立體幾何計(jì)算題不可缺少的步驟。
4、在證明兩平面垂直時(shí),一般方法是先從現(xiàn)有的直線(xiàn)中尋找平面的垂線(xiàn);若沒(méi)有這樣的直線(xiàn),則可通過(guò)作輔助線(xiàn)來(lái)解決,而作輔助線(xiàn)則應(yīng)有理論根據(jù)并要有利于證明,不能隨意添加。在有平面垂直時(shí),一般要用性質(zhì)定理,在一個(gè)平面內(nèi)作交線(xiàn)的垂線(xiàn),使之轉(zhuǎn)化為線(xiàn)面垂直。解決這類(lèi)問(wèn)題的關(guān)鍵是熟練掌握“線(xiàn)線(xiàn)垂直”“線(xiàn)面垂直”,“面面垂直”間的轉(zhuǎn)化條件和轉(zhuǎn)化應(yīng)用。