《高二數(shù)學(xué)選修1 回歸分析的基本思想及其初步應(yīng)用(一)》由會(huì)員分享,可在線閱讀,更多相關(guān)《高二數(shù)學(xué)選修1 回歸分析的基本思想及其初步應(yīng)用(一)(2頁(yè)珍藏版)》請(qǐng)?jiān)谘b配圖網(wǎng)上搜索。
1、高二數(shù)學(xué)選修1 回歸分析的基本思想及其初步應(yīng)用(一)
教學(xué)要求:通過(guò)典型案例的探究,進(jìn)一步了解回歸分析的基本思想、方法及初步應(yīng)用.
教學(xué)重點(diǎn):了解線性回歸模型與函數(shù)模型的差異,了解判斷刻畫模型擬合效果的方法-相關(guān)指數(shù)和殘差分析.
教學(xué)難點(diǎn):解釋殘差變量的含義,了解偏差平方和分解的思想.
教學(xué)過(guò)程:
一、復(fù)習(xí)準(zhǔn)備:
1. 提問(wèn):“名師出高徒”這句彥語(yǔ)的意思是什么?有名氣的老師就一定能教出厲害的學(xué)生嗎?這兩者之間是否有關(guān)?
2. 復(fù)習(xí):函數(shù)關(guān)系是一種確定性關(guān)系,而相關(guān)關(guān)系是一種非確定性關(guān)系. 回歸分析是對(duì)具有相關(guān)關(guān)系的兩個(gè)變量進(jìn)行統(tǒng)計(jì)分析的一種常用方法,其步驟:收集數(shù)據(jù)作散點(diǎn)圖求回歸
2、直線方程利用方程進(jìn)行預(yù)報(bào).
二、講授新課:
1. 教學(xué)例題:
① 例1 從某大學(xué)中隨機(jī)選取8名女大學(xué)生,其身高和體重?cái)?shù)據(jù)如下表所示:
編 號(hào)
1
2
3
4
5
6
7
8
身高/cm
165
165
157
170
175
165
155
170
體重/kg
48
57
50
54
64
61
43
59
求根據(jù)一名女大學(xué)生的身高預(yù)報(bào)她的體重的回歸方程,并預(yù)報(bào)一名身高為172cm的女大學(xué)生的體重. (分析思路教師演示學(xué)生整理)
第
3、一步:作散點(diǎn)圖 第二步:求回歸方程 第三步:代值計(jì)算
② 提問(wèn):身高為172cm的女大學(xué)生的體重一定是60.316kg嗎?
不一定,但一般可以認(rèn)為她的體重在60.316kg左右.
③ 解釋線性回歸模型與一次函數(shù)的不同
事實(shí)上,觀察上述散點(diǎn)圖,我們可以發(fā)現(xiàn)女大學(xué)生的體重和身高之間的關(guān)系并不能用一次函數(shù)來(lái)嚴(yán)格刻畫(因?yàn)樗械臉颖军c(diǎn)不共線,所以線性模型只能近似地刻畫身高和體重的關(guān)系). 在數(shù)據(jù)表中身高為165cm的3名女大學(xué)生的體重分別為48kg、57kg和61kg,如果能用一次函數(shù)來(lái)描述體重與身高的關(guān)系,那么身高為165cm的3名女在學(xué)生的體重應(yīng)相同. 這就說(shuō)明體重不僅受身高的影響還受其他因素的影響,把這種影響的結(jié)果(即殘差變量或隨機(jī)變量)引入到線性函數(shù)模型中,得到線性回歸模型,其中殘差變量中包含體重不能由身高的線性函數(shù)解釋的所有部分. 當(dāng)殘差變量恒等于0時(shí),線性回歸模型就變成一次函數(shù)模型. 因此,一次函數(shù)模型是線性回歸模型的特殊形式,線性回歸模型是一次函數(shù)模型的一般形式.
2. 相關(guān)系數(shù):相關(guān)系數(shù)的絕對(duì)值越接近于1,兩個(gè)變量的線性相關(guān)關(guān)系越強(qiáng),它們的散點(diǎn)圖越接近一條直線,這時(shí)用線性回歸模型擬合這組數(shù)據(jù)就越好,此時(shí)建立的線性回歸模型是有意義.
3. 小結(jié):求線性回歸方程的步驟、線性回歸模型與一次函數(shù)的不同.