高中數(shù)學(xué) 第3章 統(tǒng)計(jì)案例 3_2_1 獨(dú)立性檢驗(yàn) 2_2 獨(dú)立性檢驗(yàn)的基本思想 2.3 獨(dú)立性檢驗(yàn)的應(yīng)用學(xué)案 北師大版選修2-3
《高中數(shù)學(xué) 第3章 統(tǒng)計(jì)案例 3_2_1 獨(dú)立性檢驗(yàn) 2_2 獨(dú)立性檢驗(yàn)的基本思想 2.3 獨(dú)立性檢驗(yàn)的應(yīng)用學(xué)案 北師大版選修2-3》由會(huì)員分享,可在線閱讀,更多相關(guān)《高中數(shù)學(xué) 第3章 統(tǒng)計(jì)案例 3_2_1 獨(dú)立性檢驗(yàn) 2_2 獨(dú)立性檢驗(yàn)的基本思想 2.3 獨(dú)立性檢驗(yàn)的應(yīng)用學(xué)案 北師大版選修2-3(16頁(yè)珍藏版)》請(qǐng)?jiān)谘b配圖網(wǎng)上搜索。
2.1 獨(dú)立性檢驗(yàn) 2.2 獨(dú)立性檢驗(yàn)的基本思想 2.3 獨(dú)立性檢驗(yàn)的應(yīng)用 1.了解獨(dú)立性檢驗(yàn)的基本思想方法.(重點(diǎn)) 2.了解獨(dú)立性檢驗(yàn)的初步應(yīng)用.(難點(diǎn)) [基礎(chǔ)初探] 教材整理1 獨(dú)立性檢驗(yàn) 閱讀教材P87~P89,完成下列問(wèn)題. 設(shè)A,B為兩個(gè)變量,每一個(gè)變量都可以取兩個(gè)值,變量A:A1,A2=1;變量B:B1,B2=1,有下面22列聯(lián)表: A B B1 B2 總計(jì) A1 a b a+b A2 c d c+d 總計(jì) a+c b+d n=a+b+c+d 其中,a表示變量A取A1,且變量B取B1時(shí)的數(shù)據(jù);b表示變量A取A1,且變量B取B2時(shí)的數(shù)據(jù);c表示變量A取A2,且變量B取B1時(shí)的數(shù)據(jù);d表示變量A取A2,且變量B取B2時(shí)的數(shù)據(jù). 某電視臺(tái)在一次對(duì)收看文藝節(jié)目和新聞節(jié)目觀眾的抽樣調(diào)查中,隨機(jī)抽取了100名電視觀眾,相關(guān)的數(shù)據(jù)如下表所示: 文藝節(jié)目 新聞節(jié)目 總計(jì) 20至40歲 40 18 58 大于40歲 15 27 42 總計(jì) 55 45 100 由表中數(shù)據(jù)直觀分析,收看新聞節(jié)目的觀眾是否與年齡有關(guān):________(填“是”或“否”). 【解析】 因?yàn)樵?0至40歲的58名觀眾中有18名觀眾收看新聞節(jié)目,而大于40歲的42名觀眾中有27名觀眾收看新聞節(jié)目,即=,=,兩者相差較大,所以,經(jīng)直觀分析,收看新聞節(jié)目的觀眾與年齡是有關(guān)的. 【答案】 是 教材整理2 獨(dú)立性檢驗(yàn)的基本思想 閱讀教材P90~P91“練習(xí)”以上部分,完成下列問(wèn)題. 在22列聯(lián)表中,令χ2=.當(dāng)數(shù)據(jù)量較大時(shí),在統(tǒng)計(jì)中,用以下結(jié)果對(duì)變量的獨(dú)立性進(jìn)行判斷. (1)當(dāng)χ2≤2.706時(shí),沒(méi)有充分的證據(jù)判定變量A,B有關(guān)聯(lián),可以認(rèn)為變量A,B是沒(méi)有關(guān)聯(lián)的; (2)當(dāng)χ2>2.706時(shí),有90%的把握判定變量A,B有關(guān)聯(lián); (3)當(dāng)χ2>3.841時(shí),有95%的把握判定變量A,B有關(guān)聯(lián); (4)當(dāng)χ2>6.635時(shí),有99%的把握判定變量A,B有關(guān)聯(lián). 對(duì)分類變量X與Y的統(tǒng)計(jì)量χ2的值說(shuō)法正確的是 ( ) 【導(dǎo)學(xué)號(hào):62690055】 A.χ2越大,“X與Y有關(guān)系”的把握性越小 B.χ2越小,“X與Y有關(guān)系”的把握性越小 C.χ2越接近于0,“X與Y無(wú)關(guān)系”的把握性越小 D.χ2越接近于0,“X與Y無(wú)關(guān)系”的把握性越大 【解析】 χ2越大,X與Y越不獨(dú)立,所以關(guān)聯(lián)越大;相反,χ2越小,關(guān)聯(lián)越?。? 【答案】 B [質(zhì)疑手記](méi) 預(yù)習(xí)完成后,請(qǐng)將你的疑問(wèn)記錄,并與“小伙伴們”探討交流: 疑問(wèn)1: 解惑: 疑問(wèn)2: 解惑: 疑問(wèn)3: 解惑: [小組合作型] 22列聯(lián)表 在對(duì)人們飲食習(xí)慣的一次調(diào)查中,共調(diào)查了124人,其中六十歲以上的70人,六十歲以下的54人.六十歲以上的人中有43人的飲食以蔬菜為主,另外27人則以肉類為主;六十歲以下的人中有21人飲食以蔬菜為主,另外33人則以肉類為主.請(qǐng)根據(jù)以上數(shù)據(jù)作出飲食習(xí)慣與年齡的列聯(lián)表,并利用與判斷二者是否有關(guān)系. 【精彩點(diǎn)撥】 →→→ 【自主解答】 22列聯(lián)表如下: 年齡在六十歲以上 年齡在六十歲以下 總計(jì) 飲食以蔬菜為主 43 21 64 飲食以肉類為主 27 33 60 總計(jì) 70 54 124 將表中數(shù)據(jù)代入公式得==0.671 875. ==0.45. 顯然二者數(shù)據(jù)具有較為明顯的差距,據(jù)此可以在某種程度上認(rèn)為飲食習(xí)慣與年齡有關(guān)系. 1.作22列聯(lián)表時(shí),關(guān)鍵是對(duì)涉及的變量分清類別.注意應(yīng)該是4行4列,計(jì)算時(shí)要準(zhǔn)確無(wú)誤. 2.利用22列聯(lián)表分析兩變量間的關(guān)系時(shí),首先要根據(jù)題中數(shù)據(jù)獲得22列聯(lián)表,然后根據(jù)頻率特征,即將與的值相比,直觀地反映出兩個(gè)分類變量間是否相互影響,但方法較粗劣. [再練一題] 1.在一項(xiàng)有關(guān)醫(yī)療保健的社會(huì)調(diào)查中,發(fā)現(xiàn)調(diào)查的男性為530人,女性為670人,其中男性中喜歡吃甜食的為117人,女性中喜歡吃甜食的為492人,請(qǐng)作出性別與喜歡吃甜食的列聯(lián)表. 【解】 作列聯(lián)表如下: 喜歡甜食情況 性別 喜歡 甜食 不喜歡 甜食 總計(jì) 男 117 413 530 女 492 178 670 總計(jì) 609 591 1 200 獨(dú)立性檢驗(yàn) 在500人身上試驗(yàn)?zāi)撤N血清預(yù)防感冒的作用,把他們一年中的感冒記錄與另外500名未用血清的人的感冒記錄作比較,結(jié)果如表所示.問(wèn):能否在犯錯(cuò)誤的概率不超過(guò)1%的前提下認(rèn)為該種血清能起到預(yù)防感冒的作用. 未感冒 感冒 總計(jì) 使用血清 258 242 500 未使用血清 216 284 500 合計(jì) 474 526 1 000 【精彩點(diǎn)撥】 獨(dú)立性檢驗(yàn)可以通過(guò)22列聯(lián)表計(jì)算χ2的值,然后和臨界值對(duì)照作出判斷. 【自主解答】 假設(shè)感冒與是否使用該種血清沒(méi)有關(guān)系. 由列聯(lián)表中的數(shù)據(jù),求得 χ2=≈7.075. χ2=7.075≥6.635, 查表得P(χ2≥6.635)=0.01, 故我們?cè)诜稿e(cuò)誤的概率不超過(guò)1%的前提下,即有99%的把握認(rèn)為該種血清能起到預(yù)防感冒的作用. 1.熟練掌握χ2統(tǒng)計(jì)量的數(shù)值計(jì)算,根據(jù)計(jì)算得出χ2值,對(duì)比三個(gè)臨界值2.706,3.841和6.635,作出統(tǒng)計(jì)推斷. 2.獨(dú)立性檢驗(yàn)的一般步驟: (1)根據(jù)樣本數(shù)據(jù)列22列聯(lián)表; (2)計(jì)算χ2=的值; (3)將χ2的值與臨界值進(jìn)行比較,若χ2大于臨界值,則認(rèn)為X與Y有關(guān),否則沒(méi)有充分的理由說(shuō)明這個(gè)假設(shè)不成立. [再練一題] 2.“十一”黃金周前某地的一旅游景點(diǎn)票價(jià)上浮,黃金周過(guò)后,統(tǒng)計(jì)本地與外地來(lái)的游客人數(shù),與去年同期相比,結(jié)果如下: 本地 外地 總計(jì) 去年 1 407 2 842 4 249 今年 1 331 2 065 3 396 總計(jì) 2 738 4 907 7 645 能否在犯錯(cuò)誤的概率不超過(guò)0.01的前提下認(rèn)為票價(jià)上浮后游客人數(shù)與所處地區(qū)有關(guān)系? 【解】 按照獨(dú)立性檢驗(yàn)的基本步驟,假設(shè)票價(jià)上浮后游客人數(shù)與所處地區(qū)沒(méi)有關(guān)系. 因?yàn)棣?=≈30.35>6.635. 所以在犯錯(cuò)誤的概率不超過(guò)0.01的前提下認(rèn)為票價(jià)上浮后游客人數(shù)與所處地區(qū)有關(guān)系. [探究共研型] 獨(dú)立性檢驗(yàn)的綜合應(yīng)用 探究1 當(dāng)χ2>3.841時(shí),我們有多大的把握認(rèn)為事件A與B有關(guān)? 【提示】 由臨界值表可知當(dāng)χ2>3.841時(shí),我們有95%的把握認(rèn)為事件A與B有關(guān). 探究2 在研究打鼾與患心臟病之間的關(guān)系中,通過(guò)收集數(shù)據(jù)、整理分析數(shù)據(jù)得到“打鼾與患心臟病有關(guān)”的結(jié)論,并且在犯錯(cuò)誤的概率不超過(guò)0.01的前提下認(rèn)為這個(gè)結(jié)論是成立的.我們是否可以判定100個(gè)心臟病患者中一定有打鼾的人? 【提示】 這是獨(dú)立性檢驗(yàn),在犯錯(cuò)誤的概率不超過(guò)0.01的前提下認(rèn)為“打鼾與患心臟病有關(guān)”.這只是一個(gè)概率,即打鼾與患心臟病有關(guān)的可能性為99%.根據(jù)概率的意義可知100個(gè)心臟病患者中可能一個(gè)打鼾的人都沒(méi)有. 為了解某市創(chuàng)建文明城市過(guò)程中,學(xué)生對(duì)創(chuàng)建工作的滿意情況,相關(guān)部門對(duì)某中學(xué)的100名學(xué)生進(jìn)行調(diào)查,其中有50名男生對(duì)創(chuàng)建工作表示滿意,有15名女生對(duì)創(chuàng)建工作表示不滿意.已知在全部100名學(xué)生中隨機(jī)抽取1人,其對(duì)創(chuàng)建工作表示滿意的概率為.是否有充足的證據(jù)說(shuō)明,學(xué)生對(duì)創(chuàng)建工作的滿意情況與性別有關(guān)? 【精彩點(diǎn)撥】 解決本題首先根據(jù)對(duì)工作滿意的概率,確定對(duì)工作滿意的男女生人數(shù),再畫出22列聯(lián)表,最后根據(jù)22列聯(lián)表計(jì)算χ2,并進(jìn)行判斷. 【自主解答】 由題意得22列聯(lián)表如下: 滿意 不滿意 總計(jì) 男生 50 5 55 女生 30 15 45 總計(jì) 80 20 100 χ2=≈9.091>6.635, ∴我們有99%的把握認(rèn)為學(xué)生對(duì)創(chuàng)建工作的滿意情況與性別有關(guān). 1.獨(dú)立性檢驗(yàn)的基本思想是要確認(rèn)兩個(gè)變量有關(guān)系這一結(jié)論成立的可信程度,首先假設(shè)結(jié)論“兩個(gè)變量沒(méi)有關(guān)系”成立,在該假設(shè)下我們構(gòu)造的統(tǒng)計(jì)量χ2應(yīng)該很小,如果用觀測(cè)數(shù)據(jù)計(jì)算的統(tǒng)計(jì)量χ2很大,則在一定程度上說(shuō)明假設(shè)不合理.由χ2與臨界值的大小關(guān)系,作出判斷. 2.獨(dú)立性檢驗(yàn)仍然屬于用樣本估計(jì)總體,由于樣本抽取具有隨機(jī)性,因而作出的推斷可能正確,也可能錯(cuò)誤,有95%(或99%)的把握認(rèn)為事件A與B有關(guān),則推斷結(jié)論為錯(cuò)誤的可能性僅為5%(或1%). [再練一題] 3.有兩個(gè)變量x與y,其一組觀測(cè)值如下22列聯(lián)表所示: y x y1 y2 x1 a 20-a x2 15-a 30+a 其中a,15-a均為大于5的整數(shù),則a取何值時(shí),有95%的把握認(rèn)為x與y之間有關(guān)系? 【解】 由題意χ2= ==. ∵有95%的把握認(rèn)為x與y之間有關(guān)系, ∴χ2>3.841, ∴>3.841,∴a>7.7或a<1.5. 又a>5,15-a>5,∴7.76.635,所以有99%以上的把握認(rèn)為“喜歡鄉(xiāng)村音樂(lè)與性別有關(guān)系”. 【答案】 C 3.在22列聯(lián)表中,兩個(gè)比值與________相差越大,兩個(gè)分類變量有關(guān)系的可能性越大. 【解析】 根據(jù)22列聯(lián)表可知,比值與相差越大,則|ad-bc|就越大,那么兩個(gè)分類變量有關(guān)系的可能性就越大. 【答案】 4.以下關(guān)于獨(dú)立性檢驗(yàn)的說(shuō)法中,正確的是________.(填序號(hào)) ①獨(dú)立性檢驗(yàn)依據(jù)小概率原理; ②獨(dú)立性檢驗(yàn)得到的結(jié)論一定正確; ③樣本不同,獨(dú)立性檢驗(yàn)的結(jié)論可能有差異; ④獨(dú)立性檢驗(yàn)不是判斷兩分類變量是否相關(guān)的唯一方法. 【導(dǎo)學(xué)號(hào):62690056】 【解析】 獨(dú)立性檢驗(yàn)得到的結(jié)論不一定正確,故②錯(cuò),①③④正確. 【答案】 ①③④ 5.某大學(xué)餐飲中心為了解新生的飲食習(xí)慣,在全校一年級(jí)學(xué)生中進(jìn)行了抽樣調(diào)查,調(diào)查結(jié)果如下表所示: 喜歡甜品 不喜歡甜品 合計(jì) 南方學(xué)生 60 20 80 北方學(xué)生 10 10 20 合計(jì) 70 30 100 根據(jù)表中數(shù)據(jù),問(wèn)是否有95%的把握認(rèn)為“南方學(xué)生和北方學(xué)生在選用甜品的飲食習(xí)慣方面有差異”. 【解】 將22列聯(lián)表中的數(shù)據(jù)代入公式計(jì)算,得 χ2===≈4.762. 因?yàn)?.762>3.841,所以有95%的把握認(rèn)為“南方學(xué)生和北方學(xué)生在選用甜品的飲食習(xí)慣方面有差異”. 我還有這些不足: (1) (2) 我的課下提升方案: (1) (2) 學(xué)業(yè)分層測(cè)評(píng) (建議用時(shí):45分鐘) [學(xué)業(yè)達(dá)標(biāo)] 一、選擇題 1.有兩個(gè)分類變量X與Y的一組數(shù)據(jù),由其列聯(lián)表計(jì)算得χ2≈4.523,則認(rèn)為“X與Y有關(guān)系”犯錯(cuò)誤的概率為( ) A.95% B.90% C.5% D.10% 【解析】 χ2≈4.523>3.841.這表明認(rèn)為“X與Y有關(guān)系”是錯(cuò)誤的可能性約為0.05,即認(rèn)為“X與Y有關(guān)系”犯錯(cuò)誤的概率為5%. 【答案】 C 2.在調(diào)查中發(fā)現(xiàn)480名男人中有38名患有色盲,520名女人中有6名患有色盲.下列說(shuō)法正確的是( ) A.男、女患色盲的頻率分別為0.038,0.006 B.男、女患色盲的概率分別為, C.男人中患色盲的比例比女人中患色盲的比例大,患色盲與性別是有關(guān)的 D.調(diào)查人數(shù)太少,不能說(shuō)明色盲與性別有關(guān) 【解析】 男人中患色盲的比例為,要比女人中患色盲的比例大,其差值為≈0.067 6,差值較大. 【答案】 C 3.為了探究中學(xué)生的學(xué)習(xí)成績(jī)是否與學(xué)習(xí)時(shí)間長(zhǎng)短有關(guān),在調(diào)查的500名學(xué)習(xí)時(shí)間較長(zhǎng)的中學(xué)生中有39名學(xué)習(xí)成績(jī)比較好,500名學(xué)習(xí)時(shí)間較短的中學(xué)生中有6名學(xué)習(xí)成績(jī)比較好,那么你認(rèn)為中學(xué)生的學(xué)習(xí)成績(jī)與學(xué)習(xí)時(shí)間長(zhǎng)短有關(guān)的把握為( ) A.0 B.95% C.99% D.都不正確 【解析】 計(jì)算出χ2與兩個(gè)臨界值比較, χ2=≈25.340 3>6.635. 所以有99%的把握說(shuō)中學(xué)生的學(xué)習(xí)成績(jī)與學(xué)習(xí)時(shí)間長(zhǎng)短有關(guān),故選C. 【答案】 C 4.某衛(wèi)生機(jī)構(gòu)對(duì)366人進(jìn)行健康體檢,其中某項(xiàng)檢測(cè)指標(biāo)陽(yáng)性家族史者糖尿病發(fā)病的有16人,不發(fā)病的有93人;陰性家族史者糖尿病發(fā)病的有17人,不發(fā)病的有240人,有________的把握認(rèn)為糖尿病患者與遺傳有關(guān)系.( ) 【導(dǎo)學(xué)號(hào):62690057】 A.99.9% B.99.5% C.99% D.97.5% 【解析】 可以先作出如下列聯(lián)表(單位:人): 糖尿病患者與遺傳列聯(lián)表 糖尿病發(fā)病 糖尿病不發(fā)病 總計(jì) 陽(yáng)性家族史 16 93 109 陰性家族史 17 240 257 總計(jì) 33 333 366 根據(jù)列聯(lián)表中的數(shù)據(jù),得到 χ2=≈6.067>5.024. 故我們有97.5%的把握認(rèn)為糖尿病患者與遺傳有關(guān)系. 【答案】 D 5.假設(shè)有兩個(gè)分類變量X與Y,它們的可能取值分別為{x1,x2}和{y1,y2},其22列聯(lián)表為: y1 y2 總計(jì) x1 a b a+b x2 c d c+d 總計(jì) a+c b+d a+b+c+d 以下各組數(shù)據(jù)中,對(duì)于同一樣本能說(shuō)明x與y有關(guān)系的可能性最大的一組為 ( ) A.a(chǎn)=5,b=4,c=3,d=2 B.a(chǎn)=5,b=3,c=4,d=2 C.a(chǎn)=2,b=3,c=4,d=5 D.a(chǎn)=2,b=3,c=5,d=4 【解析】 比較. 選項(xiàng)A中,=; 選項(xiàng)B中,=; 選項(xiàng)C中,=; 選項(xiàng)D中,=.故選D. 【答案】 D 二、填空題 6.調(diào)查者通過(guò)隨機(jī)詢問(wèn)72名男女中學(xué)生喜歡文科還是理科,得到如下列聯(lián)表(單位:名) 性別與喜歡文科還是理科列聯(lián)表 喜歡文科 喜歡理科 總計(jì) 男生 8 28 36 女生 20 16 36 總計(jì) 28 44 72 中學(xué)生的性別和喜歡文科還是理科________關(guān)系.(填“有”或“沒(méi)有”) 【解析】 通過(guò)計(jì)算χ2=≈8.42>7.879. 故我們有99.5%的把握認(rèn)為中學(xué)生的性別和喜歡文科還是理科有關(guān)系. 【答案】 有 7.某高?!敖y(tǒng)計(jì)初步”課程的教師隨機(jī)調(diào)查了選該課的一些學(xué)生情況,具體數(shù)據(jù)如下表: 專業(yè)性別 非統(tǒng)計(jì)專業(yè) 統(tǒng)計(jì)專業(yè) 男 13 10 女 7 20 為了判斷主修統(tǒng)計(jì)專業(yè)是否與性別有關(guān)系,根據(jù)表中的數(shù)據(jù),得到 χ2=≈4.844, 因?yàn)棣?≥3.841,所以判定主修統(tǒng)計(jì)專業(yè)與性別有關(guān)系,那么這種判斷出錯(cuò)的可能性為________. 【解析】 ∵χ2>3.841,所以有95%的把握認(rèn)為主修統(tǒng)計(jì)專業(yè)與性別有關(guān),出錯(cuò)的可能性為5%. 【答案】 5% 8.在吸煙與患肺病是否相關(guān)的判斷中,有下面的說(shuō)法: ①若統(tǒng)計(jì)量χ2>6.635,則在犯錯(cuò)誤的概率不超過(guò)0.01的前提下,認(rèn)為吸煙與患肺病有關(guān)系,那么在100個(gè)吸煙的人中必有99人患有肺??; ②從獨(dú)立性檢驗(yàn)可知在犯錯(cuò)誤的概率不超過(guò)0.01的前提下,認(rèn)為吸煙與患肺病有關(guān)系時(shí),若某人吸煙,則他有99%的可能患有肺??; ③從獨(dú)立性檢驗(yàn)可知在犯錯(cuò)誤的概率不超過(guò)0.05的前提下,認(rèn)為吸煙與患肺病有關(guān)系時(shí),是指有5%的可能性使得推斷錯(cuò)誤. 其中說(shuō)法正確的是________.(填序號(hào)) 【解析】 統(tǒng)計(jì)量χ2是檢驗(yàn)吸煙與患肺病相關(guān)程度的量,是相關(guān)關(guān)系,而不是確定關(guān)系,是反映有關(guān)和無(wú)關(guān)的概率,故說(shuō)法①錯(cuò)誤;說(shuō)法②中對(duì)“確定容許推斷犯錯(cuò)誤概率的上界”理解錯(cuò)誤;說(shuō)法③正確. 【答案】?、? 三、解答題 9.在一次天氣惡劣的飛行航程中,調(diào)查了男女乘客在飛機(jī)上暈機(jī)的情況:男乘客暈機(jī)的有24人,不暈機(jī)的有31人;女乘客暈機(jī)的有8人,不暈機(jī)的有26人.請(qǐng)你根據(jù)所給數(shù)據(jù)判定:在天氣惡劣的飛行航程中,男乘客是否比女乘客更容易暈機(jī)? 【解】 根據(jù)題意,列出22列聯(lián)表如下: 暈機(jī) 不暈機(jī) 總計(jì) 男乘客 24 31 55 女乘客 8 26 34 總計(jì) 32 57 89 由公式可得χ2=≈3.689>2.706, 故我們有90%的把握認(rèn)為“在天氣惡劣的飛行航程中,男乘客比女乘客更容易暈機(jī)”. 10.(2016鄭州模擬)有甲乙兩個(gè)班級(jí)進(jìn)行數(shù)學(xué)考試,按照大于等于85分為優(yōu)秀,85分以下為非優(yōu)秀統(tǒng)計(jì)成績(jī)后,得到如下的列聯(lián)表. 優(yōu)秀 非優(yōu)秀 總計(jì) 甲班 10 乙班 30 總計(jì) 105 已知在全部105人中隨機(jī)抽取1人為優(yōu)秀的概率為. (1)請(qǐng)完成上面的列聯(lián)表; (2)根據(jù)列聯(lián)表的數(shù)據(jù),若按95%的可靠性要求,能否認(rèn)為“成績(jī)與班級(jí)有關(guān)系”? (3)若按下面的方法從甲班優(yōu)秀的學(xué)生中抽取一人:把甲班優(yōu)秀的10名學(xué)生從2到11進(jìn)行編號(hào),先后兩次拋擲一枚均勻的骰子,出現(xiàn)的點(diǎn)數(shù)之和為被抽取人的序號(hào).試求抽到6或10號(hào)的概率. 參考公式:χ2= P(χ2≥x0) 0.10 0.05 0.025 0.010 x0 2.706 3.841 5.024 6.635 【解】 (1) 優(yōu)秀 非優(yōu)秀 總計(jì) 甲班 10 45 55 乙班 20 30 50 總計(jì) 30 75 105 (2)根據(jù)列聯(lián)表中的數(shù)據(jù),得到χ2=≈6.109>3.841, 因此有95%的把握認(rèn)為“成績(jī)與班級(jí)有關(guān)系”. (3)設(shè)“抽到6或10號(hào)”為事件A,先后兩次拋擲一枚均勻的骰子,出現(xiàn)的點(diǎn)數(shù)為(x,y). 所有的基本事件有(1,1),(1,2),(1,3),…,(6,6),共36個(gè). 事件A包含的基本事件有:(1,5),(2,4),(3,3),(4,2),(5,1),(4,6),(5,5),(6,4),共8個(gè),∴P(A)==. [能力提升] 1.碩士學(xué)位與博士學(xué)位的一個(gè)隨機(jī)樣本給出了關(guān)于所獲取學(xué)位類別與學(xué)生性別的分類數(shù)據(jù)如表所示: 性別 碩士 博士 總計(jì) 男 162 27 189 女 143 8 151 總計(jì) 305 35 340 根據(jù)以上數(shù)據(jù),則( ) A.性別與獲取學(xué)位類別有關(guān) B.性別與獲取學(xué)位類別無(wú)關(guān) C.性別決定獲取學(xué)位的類別 D.以上都是錯(cuò)誤的 【解析】 由列聯(lián)表可得χ2=≈7.34>6.635,所以有99%的把握認(rèn)為性別與獲取學(xué)位的類別有關(guān). 【答案】 A 2.某班主任對(duì)全班50名學(xué)生進(jìn)行了作業(yè)量的調(diào)查,數(shù)據(jù)如下表: 認(rèn)為作業(yè)量大 認(rèn)為作業(yè)量不大 總計(jì) 男生 18 9 27 女生 8 15 23 總計(jì) 26 24 50 若推斷“學(xué)生的性別與認(rèn)為作業(yè)量大有關(guān)”,則這種推斷犯錯(cuò)誤的概率不超過(guò)( ) A.0.01 B.0.025 C.0.10 D.0.05 【解析】 χ2=≈5.059>5.024,因?yàn)镻(χ2>5.024)=0.025,所以這種推斷犯錯(cuò)誤的概率不超過(guò)0.025. 【答案】 B 3.某研究小組為了研究中學(xué)生的身體發(fā)育情況,在某中學(xué)隨機(jī)抽出20名15至16周歲的男生將他們的身高和體重制成22列聯(lián)表,根據(jù)列聯(lián)表中的數(shù)據(jù),可以在犯錯(cuò)誤的概率不超過(guò)________的前提下認(rèn)為該學(xué)校15至16周歲的男生的身高和體重之間有關(guān)系. 超重 不超重 總計(jì) 偏高 4 1 5 不偏高 3 12 15 總計(jì) 7 13 20 【解析】 根據(jù)公式χ2=得,χ2=≈5.934, 因?yàn)棣?>5.024,因此在犯錯(cuò)誤的概率不超過(guò)0.025的前提下認(rèn)為該學(xué)校15至16周歲的男生的身高和體重之間有關(guān)系. 【答案】 0.025 4.(2016延安二檢)為了研究“教學(xué)方式”對(duì)教學(xué)質(zhì)量的影響,某高中數(shù)學(xué)老師分別用兩種不同的教學(xué)方式對(duì)入學(xué)數(shù)學(xué)平均分?jǐn)?shù)和優(yōu)秀率都相同的甲、乙兩個(gè)高一新班進(jìn)行教學(xué)(勤奮程度和自覺(jué)性都一樣).以下莖葉圖321為甲、乙兩班(每班均為20人)學(xué)生的數(shù)學(xué)期末考試成績(jī). 圖321 (1)現(xiàn)從甲班數(shù)學(xué)成績(jī)不低于80分的同學(xué)中隨機(jī)抽取兩名同學(xué),求成績(jī)?yōu)?7分的同學(xué)至少有一名被抽中的概率; (2)學(xué)校規(guī)定:成績(jī)不低于75分的為優(yōu)秀.請(qǐng)?zhí)顚懴旅娴?2列聯(lián)表,并判斷有多大把握認(rèn)為“成績(jī)優(yōu)秀與教學(xué)方式有關(guān)”. 甲班 乙班 總計(jì) 優(yōu)秀 不優(yōu)秀 總計(jì) 下面臨界表有僅供參考: P(χ2 ≥x0) 0.15 0.10 0.05 0.025 0.010 0.005 0.001 x0 2.072 2.706 3.841 5.024 6.635 7.879 10.828 (參考公式:χ2=) 【解】 (1)記成績(jī)?yōu)?7分的同學(xué)為A,B,其他不低于80分的同學(xué)為C,D,E,“從甲班數(shù)學(xué)成績(jī)不低于80分的同學(xué)中隨機(jī)抽取兩名同學(xué)”的一切可能結(jié)果組成的基本事件有(A,B),(A,C),(A,D),(A,E),(B,C),(B,D),(B,E),(C,D),(C,E),(D,E),共10個(gè). “至少有一個(gè)87分的同學(xué)被抽到”所組成的基本事件有(A,B),(A,C),(A,D),(A,E),(B,C),(B,D),(B,E),共7個(gè),所以P=. (2) 甲班 乙班 總計(jì) 優(yōu)秀 6 14 20 不優(yōu)秀 14 6 20 總計(jì) 20 20 40 χ2==6.4>5.024, 因此,我們有97.5%的把握認(rèn)為成績(jī)優(yōu)秀與教學(xué)方式有關(guān).- 1.請(qǐng)仔細(xì)閱讀文檔,確保文檔完整性,對(duì)于不預(yù)覽、不比對(duì)內(nèi)容而直接下載帶來(lái)的問(wèn)題本站不予受理。
- 2.下載的文檔,不會(huì)出現(xiàn)我們的網(wǎng)址水印。
- 3、該文檔所得收入(下載+內(nèi)容+預(yù)覽)歸上傳者、原創(chuàng)作者;如果您是本文檔原作者,請(qǐng)點(diǎn)此認(rèn)領(lǐng)!既往收益都?xì)w您。
下載文檔到電腦,查找使用更方便
9.9 積分
下載 |
- 配套講稿:
如PPT文件的首頁(yè)顯示word圖標(biāo),表示該P(yáng)PT已包含配套word講稿。雙擊word圖標(biāo)可打開word文檔。
- 特殊限制:
部分文檔作品中含有的國(guó)旗、國(guó)徽等圖片,僅作為作品整體效果示例展示,禁止商用。設(shè)計(jì)者僅對(duì)作品中獨(dú)創(chuàng)性部分享有著作權(quán)。
- 關(guān) 鍵 詞:
- 高中數(shù)學(xué) 第3章 統(tǒng)計(jì)案例 3_2_1 獨(dú)立性檢驗(yàn) 2_2 獨(dú)立性檢驗(yàn)的基本思想 統(tǒng)計(jì) 案例 _2_1 獨(dú)立性 檢驗(yàn) _2 基本 思想
鏈接地址:http://m.zhongcaozhi.com.cn/p-11971948.html