(課標專用)天津市2020高考數(shù)學二輪復習 專題能力訓練15 直線與圓

上傳人:Sc****h 文檔編號:120252794 上傳時間:2022-07-17 格式:DOCX 頁數(shù):10 大?。?.40MB
收藏 版權(quán)申訴 舉報 下載
(課標專用)天津市2020高考數(shù)學二輪復習 專題能力訓練15 直線與圓_第1頁
第1頁 / 共10頁
(課標專用)天津市2020高考數(shù)學二輪復習 專題能力訓練15 直線與圓_第2頁
第2頁 / 共10頁
(課標專用)天津市2020高考數(shù)學二輪復習 專題能力訓練15 直線與圓_第3頁
第3頁 / 共10頁

下載文檔到電腦,查找使用更方便

22 積分

下載資源

還剩頁未讀,繼續(xù)閱讀

資源描述:

《(課標專用)天津市2020高考數(shù)學二輪復習 專題能力訓練15 直線與圓》由會員分享,可在線閱讀,更多相關《(課標專用)天津市2020高考數(shù)學二輪復習 專題能力訓練15 直線與圓(10頁珍藏版)》請在裝配圖網(wǎng)上搜索。

1、專題能力訓練15 直線與圓  專題能力訓練第36頁 ? 一、能力突破訓練 1.已知圓E經(jīng)過三點A(0,1),B(2,0),C(0,-1),且圓心在x軸的正半軸上,則圓E的標準方程為(  ) A.x-322+y2=254 B.x+342+y2=2516 C.x-342+y2=2516 D.x-342+y2=254 答案:C 解析:因為圓心在x軸的正半軸上,排除B;代入點A(0,1),排除A,D.故選C. 2.若直線x-2y-3=0與圓C:(x-2)2+(y+3)2=9交于E,F兩點,則△ECF的面積為(  ) A.32 B.25 C.355 D.34 答案:B 解析:由題意

2、知圓心坐標為C(2,-3),半徑為r=3,則△ECF的高h為圓心到直線的距離d=|2+2×3-3|1+(-2)2=5,底邊長為l=2r2-d2=29-5=4,所以S△ECF=12×4×5=25,故選B. 3.已知直線x+y+2=0分別與x軸、y軸交于A,B兩點,點P在圓(x-2)2+y2=2上,則△ABP面積的取值范圍是(  ) A.[2,6] B.[4,8] C.[2,32] D.[22,32] 答案:A 解析:設圓心到直線AB的距離d=|2+0+2|2=22. 點P到直線AB的距離為d'. 易知d-r≤d'≤d+r,即2≤d'≤32.又|AB|=22, ∴S△ABP=

3、12·|AB|·d'=2d',∴2≤S△ABP≤6. 4.已知實數(shù)a,b滿足a2+b2-4a+3=0,函數(shù)f(x)=asin x+bcos x+1的最大值記為φ(a,b),則φ(a,b)的最小值是(  ) A.1 B.2 C.3+1 D.3 答案:B 解析:由題意知φ(a,b)=a2+b2+1,且a,b滿足a2+b2-4a+3=0,即點(a,b)在圓C:(a-2)2+b2=1上,圓C的圓心為(2,0),半徑為1,a2+b2表示圓C上的動點(a,b)到原點的距離,最小值為1,所以φ(a,b)的最小值為2.故選B. 5.已知兩條直線l1:x+ay-1=0和l2:2a2x-y+1=0.若l

4、1⊥l2,則a=     .? 答案:0或12 解析:當a=0時,l1⊥l2;當a≠0時,由-1a·2a2=-1,解得a=12,所以a=0或a=12. 6.已知圓(x-a)2+(y-b)2=r2的圓心為拋物線y2=4x的焦點,且直線3x+4y+2=0與該圓相切,則該圓的方程為            .? 答案:(x-1)2+y2=1 解析:因為拋物線y2=4x的焦點坐標為(1,0),所以a=1,b=0.又根據(jù)|3×1+4×0+2|32+42=1=r,所以圓的方程為(x-1)2+y2=1. 7.(2019天津十二重點中學聯(lián)考(二))已知圓C的圓心在x軸的正半軸上,且y軸和直線3x+4

5、y+4=0均與圓C相切,則圓C的方程為            .? 答案:(x-2)2+y2=4 解析:設圓C的方程為(x-a)2+y2=a2(a>0). ∵直線3x+4y+4=0與圓C相切, ∴|3a+4|32+42=a,解得a=2(舍去負值). 故圓C的方程為(x-2)2+y2=4. 8.已知P是拋物線y2=4x上的動點,過點P作拋物線準線的垂線,垂足為M,N是圓(x-2)2+(y-5)2=1上的動點,則|PM|+|PN|的最小值是     .? 答案:26-1 解析:拋物線y2=4x的焦點為F(1,0),圓(x-2)2+(y-5)2=1的圓心為C(2,5),根據(jù)拋物線的定

6、義可知點P到準線的距離等于點P到焦點的距離,進而推斷出當P,C,F三點共線時,點P到點C的距離與點P到拋物線的焦點距離之和的最小值為|FC|=(2-1)2+(5-0)2=26,故|PM|+|PN|的最小值是|FC|-1=26-1. 9.在平面直角坐標系xOy中,以坐標原點O為圓心的圓與直線x-3y=4相切. (1)求圓O的方程; (2)若圓O上有兩點M,N關于直線x+2y=0對稱,且|MN|=23,求直線MN的方程; (3)設圓O與x軸相交于A,B兩點,若圓內(nèi)的動點P使|PA|,|PO|,|PB|成等比數(shù)列,求PA·PB的取值范圍. 解:(1)依題意,圓O的半徑r等于原點O到直線x-

7、3y=4的距離, 即r=41+3=2.所以圓O的方程為x2+y2=4. (2)由題意,可設直線MN的方程為2x-y+m=0. 則圓心O到直線MN的距離d=|m|5. 由垂徑定理,得m25+(3)2=22,即m=±5. 所以直線MN的方程為2x-y+5=0或2x-y-5=0. (3)設P(x,y),由題意得A(-2,0),B(2,0). 由|PA|,|PO|,|PB|成等比數(shù)列, 得(x+2)2+y2·(x-2)2+y2=x2+y2, 即x2-y2=2. 因為PA·PB=(-2-x,-y)·(2-x,-y)=2(y2-1), 且點P在圓O內(nèi),所以0≤x2+y2<4,x2-y

8、2=2. 由此得0≤y2<1. 所以PA·PB的取值范圍為[-2,0). 10.已知圓O:x2+y2=4,點A(3,0),以線段AB為直徑的圓內(nèi)切于圓O,記點B的軌跡為Γ. (1)求曲線Γ的方程; (2)直線AB交圓O于C,D兩點,當B為CD的中點時,求直線AB的方程. 解:(1)設AB的中點為M,切點為N,連接OM,MN,則|OM|+|MN|=|ON|=2,|AB|=|ON|-(|OM|-|MN|)=2-|OM|+12|AB|,即|AB|+2|OM|=4. 取點A關于y軸的對稱點A',連接A'B, 則|A'B|=2|OM|,所以|AB|+2|OM|=|AB|+|A'B

9、|=4>|A'A|. 所以點B的軌跡是以A',A為焦點,長軸長為4的橢圓.其中,a=2,c=3,b=1,故曲線Γ的方程為x24+y2=1. (2)連接OB.因為B為CD的中點, 所以OB⊥CD,即OB⊥AB.設B(x0,y0), 則x0(x0-3)+y02=0. 又x024+y02=1,解得x0=23,y0=±23. 則kOB=±22,kAB=?2, 則直線AB的方程為y=±2(x-3), 即2x-y-6=0或2x+y-6=0. 11.已知過點A(0,1),且斜率為k的直線l與圓C:(x-2)2+(y-3)2=1交于M,N兩點. (1)求k的取值范圍; (2)若OM·

10、ON=12,其中O為坐標原點,求|MN|. 解:(1)由題意可知直線l的方程為y=kx+1. 因為l與C交于兩點,所以|2k-3+1|1+k2<1, 解得4-73

11、2,解得k=1, 所以l的方程為y=x+1. 故圓心C在l上,所以|MN|=2. 二、思維提升訓練 12.在矩形ABCD中,|AB|=1,|AD|=2,動點P在以點C為圓心且與BD相切的圓上.若AP=λAB+μAD,則λ+μ的最大值為(  ) A.3 B.22 C.5 D.2 答案:A 解析:建立如圖所示的平面直角坐標系, 則A(0,1),B(0,0),D(2,1). 設P(x,y),由|BC|·|CD|=|BD|·r,得r=|BC|·|CD||BD|=2×15=255, 即圓的方程是(x-2)2+y2=45. 易知AP=(x,y-1),AB=(0,-1),AD=(2

12、,0). 由AP=λAB+μAD, 得x=2μ,y-1=-λ,所以μ=x2,λ=1-y, 所以λ+μ=12x-y+1. 設z=12x-y+1,即12x-y+1-z=0. 因為點P(x,y)在圓(x-2)2+y2=45上, 所以圓心C到直線12x-y+1-z=0的距離d≤r, 即|2-z|14+1≤255,解得1≤z≤3, 所以z的最大值是3,即λ+μ的最大值是3, 故選A. 13.已知直線k(x+1)+y+2=0恒過定點C,且以C為圓心,5為半徑的圓與直線3x+4y+1=0相交于A,B兩點,則弦AB的長為     .? 答案:221 解析:由x+1=0,y+2=0,得x

13、=-1,y=-2,即直線恒過定點C(-1,-2), 所以以C為圓心、5為半徑的圓的標準方程為(x+1)2+(y+2)2=25. 圓心到直線3x+4y+1=0的距離d=|-3-2×4+1|32+42=105=2, 則AB的長度為|AB|=225-4=221. 14.在平面直角坐標系xOy中,A(-12,0),B(0,6),點P在圓O:x2+y2=50上.若PA·PB≤20,則點P的橫坐標的取值范圍是     .? 答案:[-52,1] 解析:設P(x,y),由PA·PB≤20,得x2+y2+12x-6y≤20. 把x2+y2=50代入x2+y2+12x-6y≤20,得2x-y+

14、5≤0. 由2x-y+5=0,x2+y2=50, 可得x=-5,y=-5或x=1,y=7.由2x-y+5≤0表示的平面區(qū)域及點P在圓上,可得點P在劣弧EF上,所以點P橫坐標的取值范圍為[-52,1]. 15.已知直線l:mx+y+3m-3=0與圓x2+y2=12交于A,B兩點,過A,B分別作l的垂線與x軸交于C,D兩點.若|AB|=23,則|CD|=     .? 答案:4 解析:因為|AB|=23,且圓的半徑R=23, 所以圓心(0,0)到直線mx+y+3m-3=0的距離為R2-|AB|22=3. 由|3m-3|m2+1=3,解得m=-33. 將其代入直線l的方程,得y=33

15、x+23,即直線l的傾斜角為30°. 由平面幾何知識知在梯形ABDC中, |CD|=|AB|cos30°=4. 16.如圖,在平面直角坐標系xOy中,已知以M為圓心的圓M:x2+y2-12x-14y+60=0及其上一點A(2,4). (1)設圓N與x軸相切,與圓M外切,且圓心N在直線x=6上,求圓N的標準方程; (2)設平行于OA的直線l與圓M相交于B,C兩點,且|BC|=|OA|,求直線l的方程; (3)設點T(t,0)滿足:存在圓M上的兩點P和Q,使得TA+TP=TQ,求實數(shù)t的取值范圍. 解:圓M的標準方程為(x-6)2+(y-7)2=25,所以圓心M(6,7),半徑為

16、5. (1)由圓心N在直線x=6上,可設N(6,y0). 因為圓N與x軸相切,與圓M外切, 所以0

17、+5=0或2x-y-15=0. (3)設P(x1,y1),Q(x2,y2). 因為A(2,4),T(t,0),TA+TP=TQ, 所以x2=x1+2-t,y2=y1+4.① 因為點Q在圓M上, 所以(x2-6)2+(y2-7)2=25.② 將①代入②,得(x1-t-4)2+(y1-3)2=25. 于是點P(x1,y1)既在圓M上,又在圓[x-(t+4)]2+(y-3)2=25上, 從而圓(x-6)2+(y-7)2=25與圓[x-(t+4)]2+(y-3)2=25有公共點, 所以5-5≤[(t+4)-6]2+(3-7)2≤5+5, 解得2-221≤t≤2+221. 因此,實

18、數(shù)t的取值范圍是[2-221,2+221]. 17.已知以點Ct,2t(t∈R,t≠0)為圓心的圓與x軸交于點O,A,與y軸交于點O,B,其中O為原點. (1)求證:△AOB的面積為定值; (2)設直線2x+y-4=0與圓C交于點M,N,若|OM|=|ON|,求圓C的方程; (3)在(2)的條件下,設P,Q分別是直線l:x+y+2=0和圓C上的動點,求|PB|+|PQ|的最小值及此時點P的坐標. (1)證明由題設知,圓C的方程為(x-t)2+y-2t2=t2+4t2,化簡,得x2-2tx+y2-4ty=0.當y=0時,x=0或2t,則A(2t,0);當x=0時,y=0或4t,則B0,

19、4t,故S△AOB=12|OA|·|OB|=12|2t|·4t=4為定值. (2)解∵|OM|=|ON|,∴原點O在MN的中垂線上. 設MN的中點為H,則CH⊥MN, ∴C,H,O三點共線,則直線OC的斜率k=2tt=2t2=12, ∴t=2或t=-2. ∴圓心為C(2,1)或(-2,-1), ∴圓C的方程為(x-2)2+(y-1)2=5或(x+2)2+(y+1)2=5. 由于當圓的方程為(x+2)2+(y+1)2=5時,直線2x+y-4=0到圓心的距離d>r,此時不滿足直線與圓相交,舍去,故圓C的方程為(x-2)2+(y-1)2=5. (3)解點B(0,2)關于直線x+y+2=0的對稱點為B'(-4,-2),則|PB|+|PQ|=|PB'|+|PQ|≥|B'Q|. 又點B'到圓上點Q的最短距離為|B'C|-r=(-6)2+(-3)2-5=35-5=25, 所以|PB|+|PQ|的最小值為25,直線B'C的方程為y=12x,則直線B'C與直線x+y+2=0的交點P的坐標為-43,-23. 10

展開閱讀全文
溫馨提示:
1: 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
2: 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
3.本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
5. 裝配圖網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

相關資源

更多
正為您匹配相似的精品文檔
關于我們 - 網(wǎng)站聲明 - 網(wǎng)站地圖 - 資源地圖 - 友情鏈接 - 網(wǎng)站客服 - 聯(lián)系我們

copyright@ 2023-2025  zhuangpeitu.com 裝配圖網(wǎng)版權(quán)所有   聯(lián)系電話:18123376007

備案號:ICP2024067431-1 川公網(wǎng)安備51140202000466號


本站為文檔C2C交易模式,即用戶上傳的文檔直接被用戶下載,本站只是中間服務平臺,本站所有文檔下載所得的收益歸上傳人(含作者)所有。裝配圖網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對上載內(nèi)容本身不做任何修改或編輯。若文檔所含內(nèi)容侵犯了您的版權(quán)或隱私,請立即通知裝配圖網(wǎng),我們立即給予刪除!