購買設(shè)計(jì)請充值后下載,,資源目錄下的文件所見即所得,都可以點(diǎn)開預(yù)覽,,資料完整,充值下載可得到資源目錄里的所有文件。。。【注】:dwg后綴為CAD圖紙,doc,docx為WORD文檔,原稿無水印,可編輯。。。具體請見文件預(yù)覽,有不明白之處,可咨詢QQ:12401814
Machine Design
With the scientific and technological progress and social changes in demand, machine design theory and technology are also constantly development. Computer technology and the rapid progress of technology, machine design methods for the development of a strong technical support. Computer-aided design (CAD) and computer-aided engineering (Computer Aided Engineering, Machine Tools initials CAE0 in the various stages of design has been applied, the experience has changed the traditional design methods, machine design from the traditional design of the computer-aided design, Qualitative to quantitative design design, static and linear and nonlinear analysis to dynamic analysis, from feasibility to design the best design of the transition.
NC technology development and applications, the transmission makes machine tools and structure has undergone major changes. Servo drive system can easily achieve a single machine and multi-axis movement linked to possible to omit the heavy machinery complex transmission system, structure and layout to produce great changes.
With the development of the production, the needs of the community is changing. In the mechanical manufacturing industry, a variety of species, small batch production of the increasing demand, resulting in a corresponding to the FMS (FMS) and other advanced manufacturing systems. FMS NC machine tools is the core equipment. Pre-FMS, can be said to be "machine-based system" that, according to the characteristics of the existing machine to a FMS. However, traditional machine tools (including numerical control machine tools) does not take into account when designing it in the application of FMS, in the functional constraints on the development of the FMS. FMS the development of machine has set new requirements for machine tools designed to "system-based machine design development" direction, that is, in machine design to consider how to better adapt to FMS, and other advanced manufacturing systems requirements, for example, Time and space with flexible, and the proximity to the logistics and so on, which means the design of machine tools has made new demands. Machine design is based on the design of the type set. Universal machine used serialized design. Series of products are innovative design type, the other is a variant design type. Some machines, such as the composition of a combination of machine design type.
In the type of innovative design, machine tools overall programme (including motor function and structure of the programme layout of the programme) may be the selection of the design (also known as the trial design) or a 10% design (also known as the analytical design). The former is used analog analysis, a method of reasoning programme, is the innovative design of the method used in general while the latter used as a method of generating the analytical programme, innovation ability, it is still studying development.
Machine Design steps
Machine tools and demands of different types, design steps are also different. In accordance with the new principles for processing the innovative design of the machine should be the steps; into a series of machine tool products should be designed serialization of the steps; higher degree of universal machine products, such as machine tools should be modular design combination of the steps .
I.determine the structure principle
According to the preliminary design, the machine is designed to determine the structure of the main principles of the programme include:
(1) that uses the technology of the machine, including the processing of the material type, shape, quality and size range.
(2) productivity, including the processing of the types, quantities and the required productivity.
(3) performance requirements of the accuracy of processing (user orders design) or the accuracy of machine tools, stiffness, heat distortion, noise and other performance indicators.
(4) the main parameters that determine the processing machine room and the main parameters.
(5) drive machine-driven approach and a motor-driven hydraulic-driven approach. Motor-driven approach in general have driven motor, stepper motor drive and servo motor drive. Drive and the determination of not only the cost of the machine, will also directly affect the mode of transmission established.
(6) of the main principles of parts and components should meet the requirements and principles of the structure, and sometimes needed to draft the design, identification of key components of home-made or HS.
(7) costs and production cycle or whether orders for factory planning products, should determine the cost and production cycle indicators.
II. Design
Design of the contents
(1) motor function design including the identification of the number of machines required for movement, form (linear motion, the Rotary Movement), features (the main movement, feeding movement, other sports) and the order, the final draw of the machine function map.
(2) the basic parameters of the design parameters, including size, movement and dynamic parameters of the design parameters.
(3) transmission system design, including transmission, transmission and drive system schematic design plans.
(4) the overall layout of the structure including the distribution of motor function, the overall layout of the form and structure of the whole programme
Design plans.
(5) control, including control system design and control theory, control system design plans.
III.structural design
Design of the machine drive system to determine the structure of the major principles of the programme, design parts assembly, the main parts for analysis calculated or refine the design of hydraulic principles and the corresponding assembly of hydraulic components, electrical control system design schematics and the corresponding Installation of electrical wiring diagram, machine design and improve the hand and the contact size map.
IV. Process Design
Who all the self-made machine parts map, the preparation of standard parts, GM parts and pieces of home-made schedules, writing Design Manual, Manual, the designated machine test methods and standards, and other technical documentation.
V. Machine Tool Evaluation
On a machine designed by performance analysis and comprehensive evaluation. May be designed by computer modeling of the machine, get a prototype of the so-called math, also known as the virtual prototype. A virtual prototype of a machine designed by kinematic simulation, in the actual prototype test before they are made out a comprehensive assessment, can greatly reduce the risk of new product development, shorten the development cycle and improve the quality of development.
These steps can be repeated, that the design with satisfactory results achieved so far. In the design process, design and evaluation of repeated a design can improve the success rate.
VI.design type
Upon completion of the above steps, the physical prototype manufacture, test and comment. According to physical prototype comment on the results of the modified design, the final product design type.
On the deep processing of the technological requirements
Deep processing, is the top priority of this design. The so-called deep hole, the hole is that when processing the ratio of length and diameter of about 10 times, often on the accuracy and surface finish requirements and higher, the use of processing methods in general are more difficult to meet.
I. Deep processing issues that must be addressed:
1) poor tool rigidity slender and easy to cause the tool deflection and friction with the hole wall, and therefore the head knives are correctly oriented to ensure the introduction of sets; At the same time, bearing in accordance with the need for holders to reduce the deformation and vibration Arbor.
2) is not easy from cuttings, the use of feed grade or high-pressure cutting fluid through the
inner row and outer row chip from the tool structure.
3) tool cooling difficulties, access to high-pressure cutting fluid cooling of the tool fully.
II. Deep processing of type:
Combine the characteristics of deep-hole machining, deep hole processing technology on the difficulties, the method has been overcome.
1) Deep processing grade feed:
Ordinary twist drill head in cast iron or steel pieces on the 6 ~ 10mm diameter drill hole below, the general should not be a deep-drilling of 6 ~ 10 times greater than the aperture. When the direction of horizontal drilling, the steel pieces in the deep drilling should not last more than 6 times the diameter, in the cast iron up to about 10 times the aperture. If the processing of the hole depth of more than this range, can be classified into methods for processing, that is, in the drilling process, so that bit processing automatically after a certain depth from the workpiece in order to discharge swarf and cooling, and then re-forward processing, constant back and forth until the process has finished (each drill deep, cast iron pieces from 3 to 6 times the diameter; steel pieces from 0.5 ~ 2 times the aperture, the deeper hole when taking a small value). This process is suitable for drilling deep holes of small diameter, but the productivity and precision mechanics are relatively low.
2) Feeding a deep-hole processing
It is mainly used various types of special segment, and with the next shot, transmission-oriented systems, such as cutting fluid input in the deep-hole drilling machine, hinges, boring and the presentation materials. Discharged from the way the chip can be especially Chip (on the hinge, there is also boring things forward or backward Chip) and with Chip; from a number of cutting edge, can be divided into single-blade, double-edged and multi-blade, cutting edge can be high-speed steel or carbide. Cutter head have a different number of block-oriented support in the process-oriented role play to ensure flatness of the hole, but also from the role of squeezed light to improve the processing of the surface finish hole.
Chip has a deep-hole drilling in a single tube and dual tube Chip Chip (ie, jet drilling). Chip fear of double tube drill pipe than Chip Chip fear deep-hole drilling and drilling outside the processing efficiency and higher accuracy. The deep hole on the barrier is expected to set at the completion of unloading Nesting Nesting knife, cut off the mandrel fitted with a knife and the knife folder to make it against the mandrel, the feed through a dedicated device to cut off, cut to the core diameter rod 4 / 5 ~ 5 / 6 will be back to cut off the knife, a little outside the mandrel to break out.
In general, the use of inside than outside the Chip Chip processing large diameter, obtained by processing high precision and surface finish.
III. The main points of deep-hole processing
Machine tools and processing of the previous process, and attention should check the following:
1) axis-oriented tool sets, Bar sets of bearings, such as the centerline of the workpiece support different sets of axis degrees should meet the requirement.
2) check whether the system is cutting fluid flow and normal work is a multi-edge special deep-hole drilling with Chip (jet drilling suction) of the spray suction effect, in particular, should seriously check.
3) the workpiece should be the upper end of the processing center hole, and to avoid drilling I n the slope.
4) Does the shape of a normal chip. With the workpiece material, tool geometry, cutting parameters and so on. The two separated by a certain direction of each curl inward cutting the best shape to avoid the formation of the ribbon cuttings straight.
5) The higher the speed of processing through-hole, when the drill bit is about to pass, it is best to stop or deceleration to prevent damage to the bit and the exit.
6) should be avoided in the processing of parking, such as the need to stop, they should first stop into the tool and return to some distance, and then stop the pump and the rotation of the main campaign to prevent the tool in the hole a "killed" phenomenon.
畢業(yè)設(shè)計(jì)(論文)任務(wù)書
機(jī)械設(shè)計(jì)制造及其自動(dòng)化專業(yè)
1102班
學(xué)生:齊旭
畢業(yè)設(shè)計(jì)(論文)題目:
機(jī)床主軸箱結(jié)構(gòu)設(shè)計(jì)1
畢業(yè)設(shè)計(jì)(論文)內(nèi)容:
1.設(shè)計(jì)說明書一份
2.CAD圖紙一套(包括總裝圖、零件圖 )
3.文獻(xiàn)綜述(不少于3000字)
畢業(yè)設(shè)計(jì)(論文)專題部分:
機(jī)床主軸箱結(jié)構(gòu)
起止時(shí)間: 2015年3月6日至 2015年6月5日
指導(dǎo)教師: 簽字 2015年 3 月 6 日
沈陽化工大學(xué)科亞學(xué)院
本科畢業(yè)論文
題 目: 機(jī)床主軸箱結(jié)構(gòu)設(shè)計(jì)1
專 業(yè): 機(jī)械設(shè)計(jì)制造及其自動(dòng)化
班 級:
學(xué)生姓名:
指導(dǎo)教師:
論文提交日期: 2015 年 6 月 1 日
論文答辯日期: 2015 年 6 月 5 日
摘要
車床是車床中應(yīng)用最廣泛的一種,約占車床類總數(shù)的65%,因其主軸以水平方式放置故稱為臥式車床。主傳動(dòng)系統(tǒng)的運(yùn)動(dòng)設(shè)計(jì)有確定極限轉(zhuǎn)速、確定公比、確定轉(zhuǎn)速級數(shù)、確定結(jié)構(gòu)網(wǎng)和結(jié)構(gòu)式、繪制轉(zhuǎn)速圖、確定齒輪齒數(shù)和擬定傳動(dòng)系統(tǒng)圖。主運(yùn)動(dòng)部件的結(jié)構(gòu)設(shè)計(jì)有:帶傳動(dòng)的設(shè)計(jì)、確定各種計(jì)算轉(zhuǎn)數(shù)、確定齒輪模數(shù)、確定各軸最小直徑和設(shè)計(jì)部分主軸主件。設(shè)計(jì)完成后軸與軸承的校核:軸的校核主要通過軸頸、結(jié)構(gòu)、運(yùn)動(dòng)等計(jì)算出軸最大承受能力,能夠正常工作的時(shí)間。軸承則通過與每個(gè)不同的軸的連接,確定要用的軸承,選出最好的軸承,最終確定軸承軸和軸承是否達(dá)到要求。
本文對機(jī)床床頭箱進(jìn)行了設(shè)計(jì),的主軸箱是機(jī)床的動(dòng)力源將動(dòng)力和運(yùn)動(dòng)傳遞給機(jī)床主軸的基本環(huán)節(jié),其機(jī)構(gòu)復(fù)雜而巧妙,要實(shí)現(xiàn)其全部功能在軟件中的模擬仿真工作量非常大。這次設(shè)計(jì)的效果沒有預(yù)計(jì)的完美,有一些硬件方面的原因,在模擬仿真的時(shí)候,由于計(jì)算機(jī)的配置不能達(dá)到所需要求,致使運(yùn)行速度非常慢,不但時(shí)間上拖了下來,而且所模擬的效果很不理想。我接受的設(shè)計(jì)任務(wù)是對車床的主軸箱進(jìn)行設(shè)計(jì)。主軸箱的結(jié)構(gòu)繁多,考慮到實(shí)際硬件設(shè)備的承受能力,在進(jìn)行三維造型的時(shí)候在不影響模擬仿真的情況下,我省去了很多細(xì)部結(jié)構(gòu)。
關(guān)鍵詞: 軸; 齒輪; 主軸箱;
Abstract
Common lathe is one of the the most widely used, accounting for 65% of the total number of lathes , because of the spindle horizontally placed so called horizontal lathe.Mainspindle: also known as the headstock, its main task is coming from the main motor rotation speed through a series of institutions required for the spindle to be turned to different positive and negative speed, while spindle box allocate part of the power the campaign to pass into the box. Lathe headstock spindle is the key to the middle part. Spindle bearing on the smooth operation of the workpiece directly affect the processing quality, once the accuracy of the rotation decreased , the machine's using values .
feed box: also known as the cutting box, feed tank equipped with a variable speed feed motion in the body, it can adjust the speed to change mechanism, obtain the required feed rate or screw pitch, the light bar or screw through the spread of sports knife frame for cutting.Screw and light bars: to connect the feed box and the crates and deliver the motion and driving force to slide crate ,to make crate to get the vertical linear slide motion. Start lathe check each variable speed are in the lathe neutral. Clutch (clutch) whether is in the correct position, joystick is no in stop state, when confirmed, close the lathe total switch power supply. saddle bed according to the green button, motor (elettdc molor) started brought up to slip board box on the right side of the lever handle, spindle is turned; Lever handle back into the middle position, spindle stop turn move; Lever handle press, spindle reversal. the saddle bed of red stop button, motor stopped working.
Keywords: haft; gear; Spindle box;
目 錄
第一章引言 …………………………………………………………… 1
第二章計(jì)算 …………………………………………………………… 3
2.1傳動(dòng)方案和傳動(dòng)系統(tǒng)圖的擬定…………………………………3
2.2主要設(shè)計(jì)零件的計(jì)算和驗(yàn)算……………………………………5
2.2.1主軸箱的箱體………………………………………………… 5
2.2.2傳動(dòng)系統(tǒng)的I軸及軸上零件設(shè)……………………………… 7
2.2.3傳動(dòng)系統(tǒng)的II軸及軸上零件設(shè)計(jì)………………………… 15
2.2.4傳動(dòng)系統(tǒng)的III軸及軸上零件設(shè)計(jì) ……………………… 21
2.2.5傳動(dòng)系統(tǒng)的IV軸及軸上零件設(shè)計(jì) ……………………… 27
2.2.6傳動(dòng)系統(tǒng)的V軸及軸上零件設(shè)計(jì)………………………… 32
第三章 結(jié) 論 ………………………………………………………… 39
第四章 致謝 …………………………………………………………… 40
第五章 參考文 ……………………………………………………… 41
沈陽化工大學(xué)科亞學(xué)院設(shè)計(jì)說明書 第一章引言
40
第一章 引言
車床作為機(jī)械制造的“母機(jī)”,但凡是有精度和表面粗糙度要求的零件,通常都需要在機(jī)床上進(jìn)行最終加工。由此可以看出,機(jī)床在我國國民經(jīng)濟(jì)現(xiàn)代化的建設(shè)中起著重大作用。數(shù)控機(jī)床的出現(xiàn),縮短了零件的加工的輔助時(shí)間,提高了零件加工表面質(zhì)量,降低了操作工人的勞動(dòng)強(qiáng)度,極大程度的提高了生產(chǎn)效率。主軸箱主軸的選擇必須滿足以下要求:軸承尺寸公茶及旋轉(zhuǎn)精度允差要小,以適應(yīng)高精度要求;用角接觸球軸承取代圓錐滾子軸承和推理球軸承承受徑向和軸向載荷并適應(yīng)高度切削;減小徑向截面尺寸,以減小主軸系統(tǒng)的體積并有利于主軸系統(tǒng)的熱傳導(dǎo),盡量采用小而多的滾動(dòng)體’以減小主軸系統(tǒng)的運(yùn)動(dòng)剛度;采用高強(qiáng)度輕質(zhì)保持架,選擇合理的運(yùn)動(dòng)方式以適應(yīng)高速旋轉(zhuǎn)。
1.在過去的時(shí)間里,工程師們不斷探索各種方法,以求提高加工制造的效率。比如提高主軸轉(zhuǎn)速、進(jìn)給速度,增大主軸電機(jī)功率,盡量加大切削用量、增強(qiáng)刀具質(zhì)量。在含有多次換刀動(dòng)作的加工過程中,如果提高換刀裝置的穩(wěn)定性與可靠性,縮短換刀時(shí)間,可以大大提高工件的加工效率與加工質(zhì)量。國內(nèi)外加工中心的研發(fā)機(jī)構(gòu)都大量投入資金和精力,研制新型的自動(dòng)換刀裝置,以增強(qiáng)換刀的穩(wěn)定性與可靠性,縮減換刀時(shí)間,提升加工質(zhì)量和加工效率,增強(qiáng)企業(yè)競爭力。自動(dòng)換刀裝置是數(shù)控加工中心的一個(gè)重要輔助裝置,用自動(dòng)進(jìn)給手柄作床鞍的縱向和中滑板的橫向進(jìn)給的機(jī)動(dòng)進(jìn)給練習(xí)。 用手動(dòng)進(jìn)給手柄和手柄頂部的快進(jìn)按鈕作縱向、橫向的快速移動(dòng)操作。
2.操作車床進(jìn)給量手柄得到各擋進(jìn)給量。 按車床進(jìn)給量銘牌確定選擇縱向進(jìn)給量為 0 46 mm/r、橫向進(jìn)給量為 0 20 mm/r 時(shí)手輪 和手柄的位置,并進(jìn)行調(diào)整。沿床身導(dǎo)軌手動(dòng)縱向移動(dòng)尾座至合適位置, 逆時(shí)針方向扳動(dòng)尾座緊固手柄. 將尾座固定。 注意移動(dòng)尾座時(shí)用力不要過大。 逆時(shí)針方向轉(zhuǎn)動(dòng)套筒鎖緊手柄(松開),搖動(dòng)手輪,使套筒作進(jìn)、退移動(dòng)。
3.手動(dòng)操作車床床鞍、中滑板、小滑板手柄 .搖動(dòng)床鞍手柄,使床鞍向左或向右作縱向移動(dòng)。手輪軸 t 的刻度盤圓周等分.300 格, 手輪每轉(zhuǎn)動(dòng)一格,床鞍縱向移動(dòng) 1 mm。順時(shí)針方向轉(zhuǎn)動(dòng)手柄時(shí),床鞍向右運(yùn)動(dòng);逆時(shí)針方向 轉(zhuǎn)動(dòng)手柄時(shí),床鞍向左運(yùn)動(dòng)。 (2)用左手、 右手分別按順時(shí)針和逆時(shí)針方向搖動(dòng)中滑板手柄, 使中滑板作橫向進(jìn)給和退出 移動(dòng)。中滑板絲杠上的刻度盤圓周等分 100 格,手柄每轉(zhuǎn)過 1 格,中滑板橫向移動(dòng) o.05 mm。 順時(shí)針方向轉(zhuǎn)動(dòng)手柄時(shí),中滑板向遠(yuǎn)離操作者方向運(yùn)動(dòng)(即橫向進(jìn)刀);逆時(shí)針方向轉(zhuǎn)動(dòng)手柄 時(shí),中滑板向靠近操作者方向運(yùn)動(dòng)(即橫向退刀)。脂潤滑在在使用上最為方便,他不存在漏油問題。潤滑脂的使用期現(xiàn)場,如果轉(zhuǎn)速不超過樣本所列的極限轉(zhuǎn)速,則一次從天可使用2000小時(shí)以上,只要密封的好,能保證灰塵、雪沫、冷卻液、潤滑油等不進(jìn)入軸承,一次可用到修理時(shí)才更換。中間不需要補(bǔ)充它。由于脂不會(huì)外漏,主要是防止外漏和異物進(jìn)入,多用不接觸的曲路,防止雜物進(jìn)入。
4.啟動(dòng)車床 (1)檢查車床各變速手柄是否處于空擋位置. 離合器(clutch)是否處于正確位置, 操縱桿是 否處于停止?fàn)顟B(tài),確認(rèn)無誤后,合上車床電源總開關(guān)。 (2)按下床鞍上的綠色啟動(dòng)按鈕,電動(dòng)機(jī)(elettdc molor)啟動(dòng)。 (3)采用防噪音、防漏油,且機(jī)床的制動(dòng)采用在電機(jī)皮帶論處利用剎車盤、單項(xiàng)油缸制動(dòng)原理,使床頭相不但結(jié)構(gòu)簡單可靠,而且便于制造和維修,不易損壞。由于是專用機(jī)床,主傳動(dòng)鏈有四根軸,兩個(gè)三聯(lián)齒輪變速,主軸共9種轉(zhuǎn)速,主傳動(dòng)鏈短,有利于提高機(jī)床的制造精度,降低噪音和發(fā)熱量。
沈陽化工大學(xué)科亞學(xué)院設(shè)計(jì)說明書 第二章計(jì)算
第二章 計(jì)算
2.1傳動(dòng)方案和傳動(dòng)系統(tǒng)圖的擬定
(1)確定極限轉(zhuǎn)速
已知主軸最低轉(zhuǎn)速nmin為10r/min,最高轉(zhuǎn)速nmax為1400r/min,轉(zhuǎn)速調(diào)整范圍為 Rn=nmax/nmin=140
(2)確定公比
選定主軸轉(zhuǎn)速數(shù)列的公比為φ=1.26
(3)求出主軸轉(zhuǎn)速級數(shù)Z
Z=lgRn/lgφ+1= lg140/lg1.12+1=24
(4)確定結(jié)構(gòu)式(選用分支傳動(dòng))
4=21×32×[1+(2×2-1)]
(5)確定轉(zhuǎn)速數(shù)列,查《機(jī)械裝備設(shè)計(jì)》表3-6標(biāo)準(zhǔn)數(shù)列得:
10,12.5,16,25,31.5,40,50,63,80,100,125,160,200,250,315,400,500。高速級6級:450,560,710,900,1120,1400
(6)繪制轉(zhuǎn)速圖
1選定電動(dòng)機(jī)
一般金屬切削機(jī)床的驅(qū)動(dòng),如無特殊性能要求,多采用Y系列封閉自扇冷式鼠籠型三相異步電動(dòng)機(jī)。從帶電動(dòng)機(jī)到主軸主要為降速傳動(dòng),若傳動(dòng)副較多的傳動(dòng)組放在較接近電動(dòng)機(jī)處可使小尺寸零件多些,大尺寸零件少些,節(jié)省材料,也就是滿足傳動(dòng)副前多后少的原因,因此取12=2*2*3方案。在降速傳動(dòng)中,防止齒輪直徑過大而使徑向尺寸常限制最小傳動(dòng)比i≧1/4;在升速時(shí)為防止產(chǎn)生過大的噪音和震動(dòng)常限制最大轉(zhuǎn)速比。
2分配總降速傳動(dòng)比
總降速傳動(dòng)比為uII=nmin/nd=10/1500≈6.67×10-3,nmin為主軸最低轉(zhuǎn)速,傳動(dòng)組C中18/72只需計(jì)算z=18的齒輪,計(jì)算轉(zhuǎn)速為355r/min;60/30只需計(jì)算z=30的齒輪,計(jì)算轉(zhuǎn)速為250r/min;傳動(dòng)組b計(jì)算z=22的齒輪,計(jì)算轉(zhuǎn)速為355r/min;傳動(dòng)組a應(yīng)計(jì)算z=24的齒輪,計(jì)算轉(zhuǎn)速為710r/min.
3確定傳動(dòng)軸的軸數(shù)
傳動(dòng)軸數(shù)=變速組數(shù)+定比傳動(dòng)副數(shù)+1=6
4繪制轉(zhuǎn)速圖
先按傳動(dòng)軸數(shù)及主軸轉(zhuǎn)速級數(shù)格距l(xiāng)gφ畫出網(wǎng)格,用以繪制轉(zhuǎn)速圖。在轉(zhuǎn)速圖上,先分配從電動(dòng)機(jī)轉(zhuǎn)速到主軸最低轉(zhuǎn)速的總降速比,在串聯(lián)的雙軸傳動(dòng)間畫上u(k→k+1)min.再按結(jié)構(gòu)式的級比分配規(guī)律畫上各變速組的傳動(dòng)比射線,從而確定了各傳動(dòng)副的傳動(dòng)比。
圖2-1 轉(zhuǎn)速圖
沈陽化工大學(xué)科亞學(xué)院設(shè)計(jì)說明書 第二章計(jì)算
2.2主要設(shè)計(jì)零件的計(jì)算和驗(yàn)算
2.2.1 主軸箱的箱體
主軸箱盡量采用配對軸承,以保證軸承的旋轉(zhuǎn)精度和剛度。滿足要求后,軸承可實(shí)現(xiàn)高速旋轉(zhuǎn)而溫度底剛性高。主軸高速旋轉(zhuǎn)所產(chǎn)生的離心力遠(yuǎn)遠(yuǎn)大于切削力對滾動(dòng)體的作用所以高速主軸的的主要設(shè)計(jì)參數(shù)為轉(zhuǎn)速為了適用于高速切削。主軸熱膨脹時(shí)主軸待著后軸承在箱體孔內(nèi)移動(dòng)。后支撐背靠背組配為的是實(shí)現(xiàn)預(yù)緊,后支撐并不承受軸向載荷,故采用角度為15度的軸承,前后軸承精度為iso4,相當(dāng)于p4級,使主軸具有較好的高速性和更高的精度。因此箱體材料以中等強(qiáng)度的灰鑄鐵HT150及HT200為最廣泛,本設(shè)計(jì)選用材料為HT20-40.箱體鑄造時(shí)的最小壁厚根據(jù)其外形輪廓尺寸(長×寬×高),按下表選取.
表1 外輪廓尺,寸
長×寬×高()
壁厚(mm)
< 500 × 500 × 300
8-12
> 500 × 500 × 300-800 × 500 × 500
10-15
> 800 × 800 × 500
12-20
由于箱體軸承孔的影響將使扭轉(zhuǎn)剛度下降10%-20%,彎曲剛度下降更多,為彌補(bǔ)開口削弱的剛度,常用凸臺(tái)和加強(qiáng)筋;并根據(jù)結(jié)構(gòu)需要適當(dāng)增加壁厚。主軸箱采用防噪音防漏油的有力措施,且機(jī)床的制動(dòng)采用在電機(jī)皮帶輪處利用剎車盤、單項(xiàng)油缸制動(dòng)原理,使從床頭箱不但結(jié)構(gòu)簡單可靠,而且便于制造、維修、壽命高,不易損壞。由于是專用機(jī)床,主傳動(dòng)鏈有四跟軸,兩個(gè)三聯(lián)齒輪變速,主軸共九種轉(zhuǎn)速,主傳動(dòng)鏈短,有利提高機(jī)床的制造精度,降低噪音和發(fā)熱量。
箱體在主軸箱中起支承和定位的作用。主軸箱中共有15根軸,軸的定位要靠箱體上安裝空的位置來保證,因此,箱體上安裝空的位置的確定很重要。根據(jù)各對配合齒輪的中心距及變位系數(shù),并參考有關(guān)資料,箱體上軸安裝空的位置確定如下:
中心距(a)=1/2(d1+d2)+ym(式中y是中心距變動(dòng)系數(shù))
中心距Ⅰ-Ⅱ=(56+38)/2×2.25=105.75mm
中心距Ⅰ-Ⅶ=(50+34)/2×2.25=94.5mm
中心距Ⅱ-Ⅶ=(30+34)/2×2.25=72mm
中心距Ⅱ-Ⅲ=(39+41)/2×2.25=90mm
中心距Ⅲ-Ⅳ=(50+50)/2×2.5=125mm
中心距Ⅴ-Ⅷ=(44+44)/2×2=88mm
中心距Ⅴ-Ⅵ=(26+58)/2×4=168mm
中心距Ⅷ-Ⅸ=(58+26)/2×2=84mm
中心距Ⅸ-Ⅵ=(58+58)/2×2=116mm
中心距Ⅸ-Ⅹ=(33+33)/2×2=66mm
中心距Ⅸ-Ⅺ=(25+33)/2×2=58mm
箱體在床身上的安裝方式,機(jī)床類型不同,其主軸變速箱的定位安裝方式亦不同。有固定式、移動(dòng)式兩種。車床主軸箱為固定式變速箱,用箱體底部平面與底部突起的兩個(gè)小垂直面定位,用螺釘和壓板固定。
床頭箱是車床的主要基礎(chǔ)件和支撐拌之一,也是較為典型、比較復(fù)雜、技術(shù)條件要求較為嚴(yán)格、廢品率較高的箱體類鑄件,其底部乘油不得滲漏,上不開口為箱口,床頭箱生產(chǎn)一直沿用傳統(tǒng)工藝鑄造,鑄件澆注位置選擇箱口朝下,箱底朝上,分型面在在鑄件的中間位置的最大截面處兩箱用手工制作模板造型。鑄件內(nèi)腔由兩個(gè)壁隔開成三個(gè)內(nèi)腔,并有三個(gè)主型芯形成,落在下箱,術(shù)質(zhì)芯盒,手工制作型芯。該方案的長處在于主型芯較小,形狀簡單芯盒制造、制芯都交方便,型芯烘干和夏鑫位置也一樣,下芯、合箱都很方便。
體中潤滑油路的安裝空間和安裝螺紋孔及油溝,具體表達(dá)見箱體零件圖。
2.2.2傳動(dòng)系統(tǒng)的I軸及軸上零件設(shè)計(jì)
2.2.2.1普通V帶傳動(dòng)的計(jì)算
普通V帶的選擇應(yīng)保證在傳動(dòng)帶不打滑的前提下能傳遞的最大功率,同時(shí)要有充足的疲勞強(qiáng)度,來滿足其一定的使用壽命。
設(shè)計(jì)功率 (kW)
——工況系數(shù),取1.1;
故
小帶輪基準(zhǔn)直徑為130mm;
帶速 : ;
大帶輪基準(zhǔn)直徑為230 mm;
初選中心距=1000mm, 由機(jī)床總體布局確定。過小,增加帶彎曲次數(shù)以保證穩(wěn)定;過大,易引起劇烈振動(dòng),損壞零件,造成機(jī)器精度的差異,對零部件造成損壞,使其不能正常工作和運(yùn)轉(zhuǎn)。
帶基準(zhǔn)長度
查表2-7,?。?800mm;
帶撓曲次數(shù)=1000mv/=7.0440;
實(shí)際中心距
故
小帶輪包角
單根V帶的基本額定功率,查表2-8,取2.28kW;
單根V帶的基本額定功率增量
——彎曲影響系數(shù),查表2-9,取
——傳動(dòng)比系數(shù),查表2-10,取1.12
故;
帶的根數(shù)
——包角修正系數(shù),查表2-11,取0.93;
——帶長修正系數(shù),查表2-12,取1.01;
故
圓整z取4;
單根帶初拉力
q——帶每米長質(zhì)量,查表2-13,取0.10;
故=58.23N
帶對軸壓力
2.2.2.2多片式摩擦離合器的計(jì)算
摩擦片對數(shù)可按下式計(jì)算
Z≥2MnK/fb[p]
式中 Mn——摩擦離合器所傳遞的扭矩(N·mm);
Mn=955×η/=955××11×0.98/800=1.28×(N·mm);
Nd——電動(dòng)機(jī)的額定功率(kW);
——安裝離合器的傳動(dòng)軸的計(jì)算轉(zhuǎn)速(r/min);
η——從電動(dòng)機(jī)到離合器軸的傳動(dòng)效率;
K——安全系數(shù),一般取1.3~1.5;
f——摩擦片間的摩擦系數(shù),由于磨擦片為淬火鋼,查《機(jī)床設(shè)計(jì)指導(dǎo)》表2-15,取f=0.08;
——摩擦片的平均直徑(mm);
=(D+d)/2=67mm;
b——內(nèi)外摩擦片的接觸寬度(mm);
b=(D-d)/2=23mm;
——摩擦片的許用壓強(qiáng)(N/);︱
==1.1×1.00×1.00×0.76=0.836
——基本許用壓強(qiáng)(MPa),查表2-15,取1.1;
——速度修正系數(shù)
=n/6×=2.5(m/s)
根據(jù)平均圓周速度查表2-16,取1.00;
——接合次數(shù)修正系數(shù),查表2-17,取1.00;
——摩擦結(jié)合面數(shù)修正系數(shù),查表2-18,取0.76。
所以 Z≥2MnK/fb[p]=2×1.28××1.4/(3.14×0.08××23×0.836
=11
臥式車床反向離合器所傳遞的扭矩可按空載功率損耗確定,一般取
=0.4=0.4×11=4.4
最后確定摩擦離合器的軸向壓緊力Q,可按下式計(jì)算:
Q=b(N)=1.1×3.14××23×1.00=3.57×
(式中各符號意義同前述)
摩擦片的厚度一般取1、1.5、1.75、2(mm),內(nèi)外層分離時(shí)的最大間隙為0.2~0.4(mm),摩擦片的材料應(yīng)具有較高的耐磨性、摩擦系數(shù)大、耐高溫、抗膠合性好等特點(diǎn),常用10或15鋼,表面滲碳0.3~0.5(mm),淬火硬度達(dá)HRC52~62。
2.2.2.3齒輪的驗(yàn)算
接觸應(yīng)力的驗(yàn)算公式為
(MPa)≤[] (2-1)
彎曲應(yīng)力的驗(yàn)算公式為
(2-2)
式中 N-齒輪傳遞功率(KW),N=;
T-齒輪在機(jī)床工作期限()內(nèi)的總工作時(shí)間(h),對于中型機(jī)床的齒輪取=15000~20000h,同一變速組內(nèi)的齒輪總工作時(shí)間可近似地認(rèn)為T=/P,P為變速組的傳動(dòng)副數(shù);
-齒輪的最低轉(zhuǎn)速(r/min);
-基準(zhǔn)循環(huán)次數(shù);查表3-1(以下均參見《機(jī)床設(shè)計(jì)指導(dǎo)》)
m—疲勞曲線指數(shù),查表3-1;
—速度轉(zhuǎn)化系數(shù),查表3-2;
—功率利用系數(shù),查表3-3;
—材料強(qiáng)化系數(shù),查表3-4;
—的極限值,見表3-5,當(dāng)≥時(shí),則取=;當(dāng)<時(shí),取=;
—工作情況系數(shù),中等沖擊的主運(yùn)動(dòng),取=1.2~1.6;
—?jiǎng)虞d荷系數(shù),查表3-6;
—齒向載荷分布系數(shù),查表3-9;
Y—標(biāo)準(zhǔn)齒輪齒形系數(shù),查表3-8;
[]—許用接觸應(yīng)力(MPa),查表3-9;
[]—許用彎曲應(yīng)力(MPa),查表3-9。
I軸上的齒輪采用整淬的方式進(jìn)行熱處理
傳至I軸時(shí)的最大轉(zhuǎn)速為:
N==5.625kw
在離合器兩齒輪中齒數(shù)最少的齒輪為50×2.25,且齒寬為B=12mm
u=1.05
=≤[]=1250MP
符合強(qiáng)度要求。
驗(yàn)算56×2.25的齒輪:
=≤[]=1250MP
符合強(qiáng)度要求
2.2.2.4傳動(dòng)軸的驗(yàn)算
對于傳動(dòng)軸的選擇計(jì)算,除去重載軸外,一般不需要進(jìn)行強(qiáng)度校核,只需要進(jìn)行剛度驗(yàn)算即可,剛度達(dá)到所需要求即可判斷傳動(dòng)軸的型號及材質(zhì)。
軸的抗彎斷面慣性矩()
1.花鍵軸
式中 d—花鍵軸的小徑(mm);
i—花軸的大徑(mm);
b、N—花鍵軸鍵寬,鍵數(shù);
傳動(dòng)軸上彎曲載荷的計(jì)算,一般由危險(xiǎn)斷面上的最大扭矩求得:
=
式中 N—該軸傳遞的最大功率(kw);
—該軸的計(jì)算轉(zhuǎn)速(r/min)。
傳動(dòng)軸上的彎矩載荷有輸入扭矩齒輪和輸出扭矩齒輪的圓周力、徑向力,齒輪的圓周力
式中D-齒輪節(jié)圓直徑(mm),D=mZ。
齒輪的徑向力:
式中 α—為齒輪的嚙合角,α=20o;
ρ—齒面摩擦角,;
β—齒輪的螺旋角;β=0
故N
花鍵軸鍵側(cè)擠壓應(yīng)力的驗(yàn)算
花鍵鍵側(cè)工作表面的擠壓應(yīng)力為:
式中 —花鍵傳遞的最大轉(zhuǎn)矩();
D、d—花鍵軸的大徑和小徑(mm);
L—花鍵工作長度;
N—花鍵鍵數(shù);
K—載荷分布不均勻系數(shù),K=0.7~0.8;
故此花鍵軸校核合格
2.2.2.5軸承疲勞強(qiáng)度校核
機(jī)床傳動(dòng)軸用滾動(dòng)軸承,主要是因疲勞破壞而失效,故應(yīng)進(jìn)行疲勞驗(yàn)算。其額定壽命的計(jì)算公式為:
C—滾動(dòng)軸承的額定負(fù)載(N),根據(jù)《軸承手冊》或《機(jī)床設(shè)計(jì)手冊》查取,單位用(kgf)應(yīng)換算成(N);
—速度系數(shù), 為滾動(dòng)軸承的計(jì)算轉(zhuǎn)速(r/mm) —壽命系數(shù),
—壽命系數(shù),對球軸承=3,對滾子軸承=;
工作情況系數(shù),對輕度沖擊和振動(dòng)的機(jī)床(車床、銑床、鉆床、磨床等多數(shù)機(jī)床),;
—功率利用系數(shù),查表3—3;
—速度轉(zhuǎn)化系數(shù),查表3—2;
—齒輪輪換工作系數(shù),查《機(jī)床設(shè)計(jì)手冊》;
P—當(dāng)量動(dòng)載荷,按《機(jī)床設(shè)計(jì)手冊》。
故軸承校核合格
2.2.3.傳動(dòng)系統(tǒng)的Ⅱ軸及軸上零件設(shè)計(jì)
2.2.3.1齒輪的驗(yàn)算
驗(yàn)算齒輪強(qiáng)度,應(yīng)選擇相同模數(shù)承受載荷最大的齒數(shù)最小的齒輪,進(jìn)行接觸應(yīng)力和彎曲應(yīng)力驗(yàn)算。一般對高速傳動(dòng)的齒輪驗(yàn)算齒面接觸應(yīng)力,對低速傳動(dòng)的齒輪驗(yàn)算齒根彎曲應(yīng)力。
對硬齒面、軟齒芯滲碳淬火的齒輪,一定要驗(yàn)算齒根彎曲應(yīng)力。
接觸應(yīng)力的驗(yàn)算公式為
(MPa)≤[] (2-3)
彎曲應(yīng)力的驗(yàn)算公式為
式中 N-齒輪傳遞功率(KW),N=;
-電動(dòng)機(jī)額定功率(KW);
-從電動(dòng)機(jī)到所計(jì)算的齒輪的機(jī)械效率;
-齒輪計(jì)算轉(zhuǎn)速(r/min);
m-初算的齒輪模數(shù)(mm);
B-齒寬(mm)
Z-小齒輪齒數(shù);
u-大齒輪與小齒輪齒數(shù)之比,u≥1,“+”號用于外嚙合,“-”號用于內(nèi)嚙合;
-壽命系數(shù):
-工作期限系數(shù):
T-齒輪在機(jī)床工作期限()內(nèi)的總工作時(shí)間(h),對于中型機(jī)床的齒輪取=15000~20000h,同一變速組內(nèi)的齒輪總工作時(shí)間可近似地認(rèn)為T=/P,P為變速組的傳動(dòng)副數(shù);
-齒輪的最低轉(zhuǎn)速(r/min);
-基準(zhǔn)循環(huán)次數(shù);查表3-1(以下均參見《機(jī)床設(shè)計(jì)指導(dǎo)》)
m—疲勞曲線指數(shù),查表3-1;
—速度轉(zhuǎn)化系數(shù),查表3-2;
—功率利用系數(shù),查表3-3;
—材料強(qiáng)化系數(shù),查表3-4;
—的極限值,見表3-5,當(dāng)≥時(shí),則取=;當(dāng)<時(shí),取=;
—工作情況系數(shù),中等沖擊的主運(yùn)動(dòng),取=1.2~1.6;
—?jiǎng)虞d荷系數(shù),查表3-6;
—齒向載荷分布系數(shù),查表3-9;
Y—標(biāo)準(zhǔn)齒輪齒形系數(shù),查表3-8;
[]—許用接觸應(yīng)力(MPa),查表3-9;
[]—許用彎曲應(yīng)力(MPa),查表3-9
Ⅱ軸上的雙聯(lián)滑移齒輪采用整淬的方式進(jìn)行熱處理
傳至Ⅱ軸時(shí)的最大轉(zhuǎn)速為:
m=2.25
N==5.77kw
1.在雙聯(lián)滑移齒輪中齒數(shù)最少的齒輪為38×2.25,且齒寬為B=14mm
u=1.05
=≤[]=1250MP
故雙聯(lián)滑移齒輪符合標(biāo)準(zhǔn)
2.驗(yàn)算39×2.25的齒輪:
39×2.25齒輪采用整淬
N==5.71kw B=14mm u=1
=≤[]=1250MP
故此齒輪合格
3.驗(yàn)算22×2.25的齒輪:
22×2.25齒輪采用整淬
N==5.1kw B=14mm u=4
=≤[]=1250MP
故此齒輪合格
4.驗(yàn)算30×2.25齒輪:
30×2.25齒輪采用整淬
N==5.1kw B=14mm u=1
=≤[]=1250MP
故此齒輪合格
2.2.3.2傳動(dòng)軸的驗(yàn)算
對于傳動(dòng)軸,除重載軸外,一般無須進(jìn)行強(qiáng)度校核,只進(jìn)行剛度驗(yàn)算。
軸的抗彎斷面慣性矩()
花鍵軸 =
式中 d—花鍵軸的小徑(mm);
i—花軸的大徑(mm);
b、N—花鍵軸鍵寬,鍵數(shù);
傳動(dòng)軸上彎曲載荷的計(jì)算,一般由危險(xiǎn)斷面上的最大扭矩求得:
=
式中 N—該軸傳遞的最大功率(kw);
—該軸的計(jì)算轉(zhuǎn)速(r/min)。
傳動(dòng)軸上的彎矩載荷有輸入扭矩齒輪和輸出扭矩齒輪的圓周力、徑向力,齒輪的圓周力:
式中 D—齒輪節(jié)圓直徑(mm),D=mZ。
齒輪的徑向力:
式中 α—為齒輪的嚙合角;
ρ—齒面摩擦角;
β—齒輪的螺旋角;
=27.86mm
符合校驗(yàn)條件
花鍵軸鍵側(cè)擠壓應(yīng)力的驗(yàn)算
花鍵鍵側(cè)工作表面的擠壓應(yīng)力為:
式中 —花鍵傳遞的最大轉(zhuǎn)矩();
D、d—花鍵軸的大徑和小徑(mm);
L—花鍵工作長度;
N—花鍵鍵數(shù);
K—載荷分布不均勻系數(shù),K=0.7~0.8;
故此花鍵軸校核合格
2.2.3.3軸組件的剛度驗(yàn)算
《機(jī)床設(shè)計(jì)》的教科書中的主軸組件柔度方程系在主軸端部C點(diǎn)夾在時(shí)主軸和軸承兩相柔度的迭加,其極值方程為:
式中 L。—合理跨距;
C —主軸懸伸梁;
﹑—后﹑前支撐軸承剛度
該一元三次方程求解可得為一實(shí)根:
機(jī)床傳動(dòng)軸用滾動(dòng)軸承,主要是因疲勞破壞而失效,故應(yīng)進(jìn)行疲勞驗(yàn)算。其額定壽命的計(jì)算公式為:
C—滾動(dòng)軸承的額定負(fù)載(N),根據(jù)《軸承手冊》或《機(jī)床設(shè)計(jì)手冊》查取,單位用(kgf)應(yīng)換算成(N);
—速度系數(shù), 為滾動(dòng)軸承的計(jì)算轉(zhuǎn)速(r/mm) —壽命系數(shù),
—壽命系數(shù),對球軸承=3,對滾子軸承=;
工作情況系數(shù),對輕度沖擊和振動(dòng)的機(jī)床(車床、銑床、鉆床、磨床等多數(shù)機(jī)床),;
—功率利用系數(shù),查表3—3;
—速度轉(zhuǎn)化系數(shù),查表3—2;
—齒輪輪換工作系數(shù),查《機(jī)床設(shè)計(jì)手冊》;
P—當(dāng)量動(dòng)載荷,按《機(jī)床設(shè)計(jì)手冊》。
故軸承校核合格
2.2.4 傳動(dòng)系統(tǒng)的Ⅲ軸及軸上零件設(shè)計(jì)
2.2.4.1齒輪的驗(yàn)算
驗(yàn)算齒輪強(qiáng)度,應(yīng)選擇相同模數(shù)承受載荷最大的齒數(shù)最小的齒輪,進(jìn)行接觸應(yīng)力和彎曲應(yīng)力驗(yàn)算。一般對高速傳動(dòng)的齒輪驗(yàn)算齒面接觸應(yīng)力,對低速傳動(dòng)的齒輪驗(yàn)算齒根彎曲應(yīng)力。
接觸應(yīng)力的驗(yàn)算公式為
(MPa)≤[] (2-5)
彎曲應(yīng)力的驗(yàn)算公式為
(2-6)
式中 N-齒輪傳遞功率(KW),N=;
-電動(dòng)機(jī)額定功率(KW);
-從電動(dòng)機(jī)到所計(jì)算的齒輪的機(jī)械效率;
-齒輪計(jì)算轉(zhuǎn)速(r/min);
m-初算的齒輪模數(shù)(mm);
B-齒寬(mm)
Z-小齒輪齒數(shù);
u-大齒輪與小齒輪齒數(shù)之比,u≥1,“+”號用于外嚙合,“-”號用于內(nèi)嚙合;
-壽命系數(shù):
-工作期限系數(shù):
T-齒輪在機(jī)床工作期限()內(nèi)的總工作時(shí)間(h),對于中型機(jī)床的齒輪取=15000~20000h,同一變速組內(nèi)的齒輪總工作時(shí)間可近似地認(rèn)為T=/P,P為變速組的傳動(dòng)副數(shù);
-齒輪的最低轉(zhuǎn)速(r/min);
-基準(zhǔn)循環(huán)次數(shù);查表3-1(以下均參見《機(jī)床設(shè)計(jì)指導(dǎo)》)
m—疲勞曲線指數(shù),查表3-1;
—速度轉(zhuǎn)化系數(shù),查表3-2;
—功率利用系數(shù),查表3-3;
—材料強(qiáng)化系數(shù),查表3-4;
—的極限值,見表3-5,當(dāng)≥時(shí),則取=;當(dāng)<時(shí),取=;
—工作情況系數(shù),中等沖擊的主運(yùn)動(dòng),取=1.2~1.6;
—?jiǎng)虞d荷系數(shù),查表3-6;
—齒向載荷分布系數(shù),查表3-9;
Y—標(biāo)準(zhǔn)齒輪齒形系數(shù),查表3-8;
[]—許用接觸應(yīng)力(MPa),查表3-9;
[]—許用彎曲應(yīng)力(MPa),查表3-9。
三軸上的三聯(lián)滑移齒輪采用整淬的方式進(jìn)行熱處理
傳至三軸時(shí)的最大轉(zhuǎn)速為:
N==5.42kw
在三聯(lián)滑移齒輪中齒數(shù)最少的齒輪為41×2.25,且齒寬為B=12mm
u=1.05
=≤[]=1250MP
故三聯(lián)滑移齒輪符合標(biāo)準(zhǔn)
1.驗(yàn)算50×2.5的齒輪:
50×2.5齒輪采用整淬
N==5.1kw B=15mm u=1
=≤[]=1250MP
故此齒輪合格
2.驗(yàn)算63×3的齒輪:
63×3齒輪采用整淬
N==5.1kw B=10mm u=4
=≤[]=1250MP
故此齒輪合格
3.驗(yàn)算44×2齒輪:
44×2齒輪采用整淬
N==5.1kw B=10mm u=1
=≤[]=1250MP
故此齒輪合格
2.2.4.2 傳動(dòng)軸的驗(yàn)算
對于傳動(dòng)軸,除重載軸外,一般無須進(jìn)行強(qiáng)度校核,只進(jìn)行剛度驗(yàn)算。
傳動(dòng)軸的抗彎斷面慣性矩()
花鍵軸 =
式中 d—花鍵軸的小徑(mm);
i—花軸的大徑(mm);
b、N—花鍵軸鍵寬,鍵數(shù);
傳動(dòng)軸上彎曲載荷的計(jì)算,一般由危險(xiǎn)斷面上的最大扭矩求得:
=
式中 N—該軸傳遞的最大功率(kw);
—該軸的計(jì)算轉(zhuǎn)速(r/min)。
傳動(dòng)軸上的彎矩載荷有輸入扭矩齒輪和輸出扭矩齒輪的圓周力、徑向力,齒輪的圓周力:
式中 D—齒輪節(jié)圓直徑(mm),D=mZ。
齒輪的徑向力:
式中 α—為齒輪的嚙合角;
ρ—齒面摩擦角;
β—齒輪的螺旋角;
=27.86mm
符合校驗(yàn)條件
花鍵軸鍵側(cè)擠壓應(yīng)力的驗(yàn)算
花鍵鍵側(cè)工作表面的擠壓應(yīng)力為:
式中 —花鍵傳遞的最大轉(zhuǎn)矩();
D、d—花鍵軸的大徑和小徑(mm);
L—花鍵工作長度;
N—花鍵鍵數(shù);
K—載荷分布不均勻系數(shù),K=0.7~0.8;
故此三軸花鍵軸校核合格
2.2.4.3 軸組件的剛度驗(yàn)算
兩支撐主軸組件的合理跨距
《機(jī)床設(shè)計(jì)》的教科書中的主軸組件柔度方程系在主軸端部C點(diǎn)家在時(shí)主軸和軸承兩相柔度的迭加,其極值方程為:
式中 L?!侠砜缇啵?
C —主軸懸伸梁;
﹑—后﹑前支撐軸承剛度
該一元三次方程求解可得為一實(shí)根:
其額定壽命的計(jì)算公式為:
C—滾動(dòng)軸承的額定負(fù)載(N),根據(jù)《軸承手冊》或《機(jī)床設(shè)計(jì)手冊》查取,單位用(kgf)應(yīng)換算成(N);
—速度系數(shù), 為滾動(dòng)軸承的計(jì)算轉(zhuǎn)速(r/mm) —壽命系數(shù),
—壽命系數(shù),對球軸承=3,對滾子軸承=;
工作情況系數(shù),對輕度沖擊和振動(dòng)的機(jī)床(車床、銑床、鉆床、磨床等多數(shù)機(jī)床),;
—功率利用系數(shù),查表3—3;
—速度轉(zhuǎn)化系數(shù),查表3—2;
—齒輪輪換工作系數(shù),查《機(jī)床設(shè)計(jì)手冊》;
P—當(dāng)量動(dòng)載荷,按《機(jī)床設(shè)計(jì)手冊》。
故軸承校核合格
2.2.5傳動(dòng)系統(tǒng)的Ⅳ軸及軸上零件設(shè)計(jì)
2.2.5.1齒輪的驗(yàn)算
接觸應(yīng)力的驗(yàn)算公式為
(MPa)≤[] (2-7)
彎曲應(yīng)力的驗(yàn)算公式為
(2-8)
式中 N-齒輪傳遞功率(KW),N=;
-電動(dòng)機(jī)額定功率(KW);
-從電動(dòng)機(jī)到所計(jì)算的齒輪的機(jī)械效率;
-齒輪計(jì)算轉(zhuǎn)速(r/min);
m-初算的齒輪模數(shù)(mm);
B-齒寬(mm)
Z-小齒輪齒數(shù);
u-大齒輪與小齒輪齒數(shù)之比,u≥1,“+”號用于外嚙合,“-”號用于內(nèi)嚙合;
-壽命系數(shù):
-工作期限系數(shù):
T-齒輪在機(jī)床工作期限()內(nèi)的總工作時(shí)間(h),對于中型機(jī)床的齒輪取=15000~20000h,同一變速組內(nèi)的齒輪總工作時(shí)間可近似地認(rèn)為T=/P,P為變速組的傳動(dòng)副數(shù);
-齒輪的最低轉(zhuǎn)速(r/min);
-基準(zhǔn)循環(huán)次數(shù);查表3-1(以下均參見《機(jī)床設(shè)計(jì)指導(dǎo)》)
m—疲勞曲線指數(shù),查表3-1;
—速度轉(zhuǎn)化系數(shù),查表3-2;
—功率利用系數(shù),查表3-3;
—材料強(qiáng)化系數(shù),查表3-4;
—的極限值,見表3-5,當(dāng)≥時(shí),則取=;當(dāng)<時(shí),取=;
—工作情況系數(shù),中等沖擊的主運(yùn)動(dòng),取=1.2~1.6;
—?jiǎng)虞d荷系數(shù),查表3-6;
—齒向載荷分布系數(shù),查表3-9;
Y—標(biāo)準(zhǔn)齒輪齒形系數(shù),查表3-8;
[]—許用接觸應(yīng)力(MPa),查表3-9;
[]—許用彎曲應(yīng)力(MPa),查表3-9。
Ⅸ軸上的直齒齒輪采用整淬的方式進(jìn)行熱處理
傳至Ⅸ軸時(shí)的最大轉(zhuǎn)速為:
N==5.42kw
齒輪的模數(shù)與齒數(shù)為33×2,且齒寬為B=20mm
u=1.05
=≤[]=1250MP
故齒輪符合標(biāo)準(zhǔn)
驗(yàn)算58×2的齒輪:
58×2齒輪采用整淬
N==5.1kw B=20mm u=1
=≤[]=1250MP
故此齒輪合格
2.2.5.2傳動(dòng)軸的驗(yàn)算
對于傳動(dòng)軸,除重載軸外,一般無須進(jìn)行強(qiáng)度校核,只進(jìn)行剛度驗(yàn)算。
軸的抗彎斷面慣性矩()
花鍵軸 =
式中 d—花鍵軸的小徑(mm);
D—花軸的大徑(mm);
b、N—花鍵軸鍵寬,鍵數(shù);
傳動(dòng)軸上彎曲載荷的計(jì)算,一般由危險(xiǎn)斷面上的最大扭矩求得:
=
式中 N—該軸傳遞的最大功率(kw);
—該軸的計(jì)算轉(zhuǎn)速(r/min)。
傳動(dòng)軸上的彎矩載荷有輸入扭矩齒輪和輸出扭矩齒輪的圓周力、徑向力,齒 輪的圓周力:
式中 D—齒輪節(jié)圓直徑(mm),D=mZ。
齒輪的徑向力:
式中 α—為齒輪的嚙合角;
ρ—齒面摩擦角;
β—齒輪的螺旋角;
=22.32mm
符合校驗(yàn)條件
花鍵軸鍵側(cè)擠壓應(yīng)力的驗(yàn)算
花鍵鍵側(cè)工作表面的擠壓應(yīng)力為:
式中 —花鍵傳遞的最大轉(zhuǎn)矩();
D、d—花鍵軸的大徑和小徑(mm);
L—花鍵工作長度;
N—花鍵鍵數(shù);
K—載荷分布不均勻系數(shù),K=0.7~0.8;
故此花鍵軸校核合格
2.2.5.3軸組件的剛度驗(yàn)算
《機(jī)床設(shè)計(jì)》的教科書中的主軸組件柔度方程系在主軸端部C點(diǎn)家在時(shí)主軸和軸承兩相柔度的迭加,其極值方程為:
式中 L?!侠砜缇啵?
C —主軸懸伸梁;
﹑—后﹑前支撐軸承剛度
機(jī)床傳動(dòng)軸用滾動(dòng)軸承,主要是因疲勞破壞而失效,故應(yīng)進(jìn)行疲勞驗(yàn)算。其額定壽命的計(jì)算公式為:
C—滾動(dòng)軸承的額定負(fù)載(N),根據(jù)《軸承手冊》或《機(jī)床設(shè)計(jì)手冊》查取,單位用(kgf)應(yīng)換算成(N);
—速度系數(shù), 為滾動(dòng)軸承的計(jì)算轉(zhuǎn)速(r/mm) —壽命系數(shù),
—壽命系數(shù),對球軸承=3,對滾子軸承=;
工作情況系數(shù),對輕度沖擊和振動(dòng)的機(jī)床(車床、銑床、鉆床、磨床等多數(shù)機(jī)床),;
—功率利用系數(shù),查表3—3;
—速度轉(zhuǎn)化系數(shù),查表3—2;
—齒輪輪換工作系數(shù),查《機(jī)床設(shè)計(jì)手冊》;
P—當(dāng)量動(dòng)載荷,按《機(jī)床設(shè)計(jì)手冊》。
故軸承校核合格
2.2.6 傳動(dòng)系統(tǒng)的Ⅴ軸及軸上零件設(shè)計(jì)
2.2.6.1齒輪的驗(yàn)算
驗(yàn)算齒輪強(qiáng)度,應(yīng)選擇相同模數(shù)承受載荷最大且齒數(shù)最小的齒輪,來進(jìn)行接觸應(yīng)力和彎曲應(yīng)力驗(yàn)算。一般對高速傳動(dòng)的齒輪進(jìn)行驗(yàn)算齒面接觸應(yīng)力,對低速傳動(dòng)的齒輪進(jìn)行驗(yàn)算齒根彎曲應(yīng)力。
對硬齒面、軟齒芯滲碳淬火的齒輪,一定要驗(yàn)算齒根彎曲應(yīng)力。
接觸應(yīng)力的驗(yàn)算公式為
(MPa)≤[] (2-9)
彎曲應(yīng)力的驗(yàn)算公式為
(2-10)
式中 N-齒輪傳遞功率(KW),N=;
-電動(dòng)機(jī)額定功率(KW);
-從電動(dòng)機(jī)到所計(jì)算的齒輪的機(jī)械效率;
-齒輪計(jì)算轉(zhuǎn)速(r/min);
m-初算的齒輪模數(shù)(mm);
B-齒寬(mm)
Z-小齒輪齒數(shù);
u-大齒輪與小齒輪齒數(shù)之比,u≥1,“+”號用于外嚙合,“-”號用于內(nèi)嚙合;
-壽命系數(shù):
-工作期限系數(shù):
Y—標(biāo)準(zhǔn)齒輪齒形系數(shù),查表3-8;
[]—許用接觸應(yīng)力(MPa),查表3-9;
[]—許用彎曲應(yīng)力(MPa),查表3-9。T-齒輪在機(jī)床工作期限()內(nèi)的總工作時(shí)間(h),對于中型機(jī)床的齒輪取=15000~20000h,同一變速組內(nèi)的齒輪總工作時(shí)間可近似地認(rèn)為T=/P,P為變速組的傳動(dòng)副數(shù);
-齒輪的最低轉(zhuǎn)速(r/min);
-基準(zhǔn)循環(huán)次數(shù);查表3-1(以下均參見《機(jī)床設(shè)計(jì)指導(dǎo)》)
m—疲勞曲線指數(shù),查表3-1;
—速度轉(zhuǎn)化系數(shù),查表3-2;
—功率利用系數(shù),查表3-3;
—材料強(qiáng)化系數(shù),查表3-4;
—的極限值,見表3-5,當(dāng)≥時(shí),則取=;當(dāng)<時(shí),取=;
—工作情況系數(shù),中等沖擊的主運(yùn)動(dòng),取=1.2~1.6;
—?jiǎng)虞d荷系數(shù),查表3-6;
—齒向載荷分布系數(shù),查表3-9;
如果驗(yàn)算結(jié)果或不合格,可以改變初算時(shí)選定的材料或熱處理方法,如仍不滿足時(shí),就得采取調(diào)整齒寬或重新選擇齒數(shù)及模數(shù)等措施。
軸上的斜齒輪采用調(diào)質(zhì)處理的方式進(jìn)行熱處理
傳至五軸時(shí)的最大轉(zhuǎn)速為:
N==5.42kw
1.斜齒輪為26×4,且齒寬為B=35mm
u=1.05
=≤[]=1560MP
故斜齒輪符合標(biāo)準(zhǔn)
2.驗(yàn)算80×2.5的齒輪:
80×2.5齒輪采用調(diào)質(zhì)熱處理
N==211.39kw B=26mm u=1
=≤[]=1250MP
故此齒輪合格
3.驗(yàn)算50×2.5的齒輪:
50×2.5齒輪采用調(diào)質(zhì)熱處理
N==5.1kw B=10mm u=4
=≤[]=1250MP
故此齒輪合格
2.2.6.2傳動(dòng)軸的驗(yàn)算
對于傳動(dòng)軸,除重載軸外,一般無須進(jìn)行強(qiáng)度校核,只進(jìn)行剛度驗(yàn)算。
V軸的抗彎斷面慣性矩()
花鍵軸 =
式中 d—花鍵軸的小徑(mm);
i—花軸的大徑(mm);
b、N—花鍵軸鍵寬,鍵數(shù);
傳動(dòng)軸上彎曲載荷的計(jì)算,一般由危險(xiǎn)斷面上的最大扭矩求得:
=
式中 N—該軸傳遞的最大功率(kw);
—該軸的計(jì)算轉(zhuǎn)速(r/min)。
傳動(dòng)軸上的彎矩載荷有輸入扭矩齒輪和輸出扭矩齒輪的圓周力、徑向力,齒輪的圓周力:
式中 D—齒輪節(jié)圓直徑(mm),D=mZ。
齒輪的徑向力:
式中 α—為齒輪的嚙合角;
ρ—齒面摩擦角;
β—齒輪的螺旋角;
=31.43mm
符合校驗(yàn)條件
花鍵軸鍵側(cè)擠壓應(yīng)力的驗(yàn)算
花鍵鍵側(cè)工作表面的擠壓應(yīng)力為:
式中 —花鍵傳遞的最大轉(zhuǎn)矩();
D、d—花鍵軸的大徑和小徑(mm);
L—花鍵工作長度;
N—花鍵鍵數(shù);
K—載荷分布不均勻系數(shù),K=0.7~0.8;
故此五軸花鍵軸校核合格
2.2.6.3軸組件的剛度驗(yàn)算
《機(jī)床設(shè)計(jì)》的教科書中的主軸組件柔度方程系在主軸端部C點(diǎn)家在時(shí)主軸和軸承兩相柔度的迭加,其極值方程為:
式中 L。—合理跨距;
C —主軸懸伸梁;
﹑—后﹑前支撐軸承剛度
機(jī)床傳動(dòng)軸用滾動(dòng)軸承,主要是因疲勞破壞而失效,故應(yīng)進(jìn)行疲勞驗(yàn)算。其額定壽命的計(jì)算公式為:
C—滾動(dòng)軸承的額定負(fù)載(N),根據(jù)《軸承手冊》或《機(jī)床設(shè)計(jì)手冊》查取,單位用(kgf)應(yīng)換算成(N);
—速度系數(shù), 為滾動(dòng)軸承的計(jì)算轉(zhuǎn)速(r/mm) —壽命系數(shù),
—壽命系數(shù),對球軸承=3,對滾子軸承=;
工作情況系數(shù),對輕度沖擊和振動(dòng)的機(jī)床(車床、銑床、鉆床、磨床等多數(shù)機(jī)床),;
—功率利用系數(shù),查表3—3;
—速度轉(zhuǎn)化系數(shù),查表3—2;
—齒輪輪換工作系數(shù),查《機(jī)床設(shè)計(jì)手冊》;
P—當(dāng)量動(dòng)載荷,按《機(jī)床設(shè)計(jì)手冊》。
故軸承校核合格
沈陽化工大學(xué)科亞學(xué)院說明書 第三章結(jié)論
沈陽化工大學(xué)畢業(yè)設(shè)計(jì)說明書 3結(jié)論
第三章 結(jié)論
在本設(shè)計(jì)中,本人做了車床主軸箱的設(shè)計(jì)。
這次設(shè)計(jì)的結(jié)果不算太完美,與我的知識水平和缺乏實(shí)踐經(jīng)驗(yàn)有關(guān)。這點(diǎn)讓我深深的體會(huì)到努力學(xué)習(xí)的正確性,也明白了書到用時(shí)方恨少的無奈;實(shí)踐能教會(huì)我們很多在生活和工作中有用的東西,而且這些東西我們不能僅僅通過課堂的學(xué)習(xí)和老師的指導(dǎo)得到。在設(shè)計(jì)中我也遇到了其它許多的問題,例如,主軸箱傳動(dòng)系統(tǒng)是一個(gè)復(fù)雜的系統(tǒng),剛開始我一點(diǎn)都不了解,后來通過查閱大量的書刊資料和指導(dǎo)老師的講解,終于弄明白了,教會(huì)了我學(xué)無止境的道理,人就要活到老學(xué)到老。
本次設(shè)計(jì)用了很長的時(shí)間,回想起來,花在畫圖的時(shí)間不多,主要還是在設(shè)計(jì)計(jì)算上。通過本次課程設(shè)計(jì),我不但鞏固了舊的知識,如:機(jī)械設(shè)計(jì)、金屬切削機(jī)床等。利用繪圖軟件繪圖,而且學(xué)會(huì)了怎樣設(shè)計(jì)變速箱,如何設(shè)計(jì)每一個(gè)細(xì)節(jié)。
課程設(shè)計(jì)是一次知識綜合的考研,要考慮的問題很多,一個(gè)人的能力時(shí)間是有限的,我們通過討論更加深一層設(shè)計(jì)的過程。從最初的總素的查找和整理,到文獻(xiàn)翻譯,然后初步進(jìn)行設(shè)計(jì),最后進(jìn)行設(shè)計(jì)計(jì)算和畫圖。在這個(gè)過程中,我們的趙艷春老師對我們的指導(dǎo)是不可或缺的,她對我們要求嚴(yán)格,問題解答詳細(xì),使我們順利的完成了畢業(yè)設(shè)計(jì)任務(wù),所以再次要感謝老師與同學(xué)的幫助。
這次設(shè)計(jì)能讓我在以后的學(xué)習(xí)和工作中改正我在技術(shù)水平和性格上的缺陷,能鞭策我,使我不斷地提高和進(jìn)步,讓我時(shí)時(shí)刻刻清醒地做個(gè)有崇高的理想、有正確的人生價(jià)值觀和努力向上進(jìn)取的人。
沈陽化工大學(xué)畢業(yè)設(shè)計(jì)說明書 第四章 致謝
沈陽化工大學(xué)畢業(yè)設(shè)計(jì)說明書 致謝
致 謝
半年的時(shí)間轉(zhuǎn)瞬即逝,緊張的畢業(yè)設(shè)計(jì)已經(jīng)到了收尾的階段。在這半年的時(shí)間里,在趙艷春老師的悉心指導(dǎo)下,我的畢業(yè)設(shè)計(jì)課程按期完成。在此我向老師致以崇高的敬意,沒有您細(xì)心指導(dǎo),就沒有我今天的成功,我真誠的向老師道一聲:感謝您!
我畢業(yè)設(shè)計(jì)的如期完成,除了趙艷春老師以外,整個(gè)設(shè)計(jì)小組的同學(xué)在設(shè)計(jì)過程中給我的幫助也是非常的重要的,在此對他們真誠的說一聲:謝謝你們!
最后祝所有老師和同學(xué)們身體健康,工作順利!
沈陽化工大學(xué)畢業(yè)設(shè)計(jì)說明書 第五章 參考文獻(xiàn)
參考文獻(xiàn)
[1] 任殿閣,張佩勤.機(jī)床設(shè)計(jì)指導(dǎo)(第三版).北京:北京工業(yè)出版社,2002:76-80
[2] 劉朝儒,彭福萌.機(jī)械制圖(第四版).北京:高等教育出版社,2006.12
[3] 楊德武,鄢利群.機(jī)械設(shè)計(jì)基礎(chǔ)[M].長春:吉林科學(xué)技術(shù)出版社,2006:191-220
[4] 成大先.機(jī)械設(shè)計(jì)手冊(第三版).第1卷[M].北京:化學(xué)工業(yè)出版社,2002:76-80
[5] 成大先.機(jī)械設(shè)計(jì)手冊(第三版).第2卷[M].北京:化學(xué)工業(yè)出版社,2002:430-436
[6]成大先.機(jī)械設(shè)計(jì)手冊(第三版).第3卷[M].北京:北京工業(yè)出版社,2002:32-40
[7] 成大先.機(jī)械設(shè)計(jì)手冊(第三版).第4卷[M].北京:北京工業(yè)出版社,2002:256-187
[8] 劉杰,趙春雨,宋偉剛等.機(jī)電一體化技術(shù)基礎(chǔ)與產(chǎn)品設(shè)計(jì)[M].北京:冶金工業(yè)出版社