沙石振動篩的設(shè)計【同步電機驅(qū)動的雙軸慣性式振動篩】
購買設(shè)計請充值后下載,,資源目錄下的文件所見即所得,都可以點開預(yù)覽,,資料完整,充值下載可得到資源目錄里的所有文件。。。【注】:dwg后綴為CAD圖紙,doc,docx為WORD文檔,原稿無水印,可編輯。。。具體請見文件預(yù)覽,有不明白之處,可咨詢QQ:12401814
黃河科技學(xué)院畢業(yè)設(shè)計(文獻翻譯) 第 7 頁 混合振動篩動力學(xué)分析 摘要:一種新型的多自由度振動篩和高效率的多自由度機械動力學(xué)原理介紹。其突出的特點是有一個額外的高頻率和振幅振動時間短。它能有效地增加物料破碎概率,消除致盲光圈,以及篩分效率高。一系列的力學(xué)方程的參數(shù)。建立了振動波形圖進行仿真計算。 關(guān)鍵詞:振動篩;篩分效率;混沌動力學(xué)分析 1 簡介 精確篩選煤的過程是一種提高產(chǎn)品質(zhì)量結(jié)構(gòu)的煤炭生產(chǎn)和提高經(jīng)濟效益和社會節(jié)能效益的有效方法。目前,關(guān)鍵問題是精確篩選過程抑制潮濕原煤的顆粒大小、表面積大小,水引起的孔徑和致盲。普通振動篩完成篩選這個任務(wù)是困難的?,F(xiàn)有的濕法篩選機很難使用粉煤干法篩分潮濕原煤。因此,在最近幾年的機械工程和礦物加工工程,重點是在研究了加工的難篩物料。因為篩選機是很容易被蒙蔽的篩選,這個話題在國內(nèi)和國外被廣泛而深入的研究。在本文中,我們打算開發(fā)一個新型多自由度混合振動篩。 2 混合振動篩的工作原理及結(jié)構(gòu) 圖1是一個混合振動篩的結(jié)構(gòu),振動器構(gòu)成部分1,2,3,4,和5。長桿1和3導(dǎo)致加速度振動周期長,短桿2和4加速度振動周期短,疊加的振動使材料松散獲得較高的篩分效率。為了使物料篩容易,篩箱應(yīng)該傾斜,大角度(約30o)為粘性材料。振動篩,組件1為主動元件。驅(qū)動轉(zhuǎn)矩,篩箱和材料形成一個動態(tài)系統(tǒng)。當電機驅(qū)動系統(tǒng)運動時,篩箱將有一個混合運動。這一運動將有效地促進篩選效率激勵頻率和設(shè)計。 1、 曲柄 2、短桿1 3、連桿 4、短桿2 5 支撐桿 圖1 混合振動篩的動力示意圖 圖1所示的混合振動自由度是F=3×5-(2×6+0)=3。根據(jù)經(jīng)典機構(gòu)的定義,充要條件是指定的運動是與原來的數(shù)目相等的運動的程度。如果一些自由運動是比原來的更大的數(shù)量,我們不能把它稱為機制。然而,隨著機構(gòu)動力學(xué)的發(fā)展,機制的概念已經(jīng)擴展。如果我們認為對于空間運動副或彈性元件在分析動態(tài)的組成部分,一些自由運動數(shù)量遠遠大于原來的組件,然后機制是動力機制。當一些原有的元件數(shù)小于自由運動,位置跟隨功能的大規(guī)模的機制,慣性矩,和外部力量。適當?shù)倪x擇尺寸時,輸出的運動機制可能是復(fù)合運動的長周期振動后,短周期振動。該機構(gòu)有三個自由度的運動,一個產(chǎn)生長期的幅度振動篩網(wǎng),其他兩個創(chuàng)造高頻率和混合振動。目前,混合現(xiàn)象被認為是一個最復(fù)雜的運動動態(tài)系統(tǒng),其中包括各種動態(tài)系統(tǒng)?;旌鲜欠蔷€性動態(tài)行為,產(chǎn)生固定點和周期點,達到特定形式的“障礙”通過乘法過程。對于非線性動力學(xué),人們用線性模型方法來進行對真實系統(tǒng)簡化的動態(tài)分析與設(shè)計。然而,這種線性近似并不總是可行的,忽視非線性因素,往往造成不可接受的誤差分析與計算。近年來,人們認識到,如果他們想設(shè)計和生產(chǎn)高品質(zhì)的系統(tǒng),他們必須掌握非線性系統(tǒng)的動態(tài)行為。 振動篩取決于振動的絲網(wǎng)材料投入、碰撞、分離、滾動或滑動,從而實現(xiàn)篩箱通過相對碰撞之間的材料和絲網(wǎng)。有另外一個長周期振動可以通過短時間的概率增加碰撞之間的材料、材料與材料之間的網(wǎng)格,然后可以很容易地分散和篩選。這個新的混合振動篩的篩分效率可以達到目的。 3 動態(tài)分析混合振動篩 如圖1所示在建立的坐標系的各部分,曲柄長度是l1,角速度是δ1,A1點的轉(zhuǎn)動慣量是JA;長連桿是l2,角位移是δ2,C點的轉(zhuǎn)動慣量是JC;短桿2和4的長度是e1和e2,角位移是τ1和τ2,短桿4在D點的轉(zhuǎn)動慣量是JD,E點在坐標上水平和垂直方向的距離是x5和y5。 3.1 分解運動方程 從圖2中,我們可以得到分解的微分方程: (1) 圖2 應(yīng)力分析 圖3 第一個偏心軸的應(yīng)力分析 3.2 第一個偏心軸的運動方程 從圖3中,我們可以得到第一偏心軸的微分方程: (2) (3) (4) 3.3 導(dǎo)桿的運動方程 從圖4中,我們可以得到連桿的微分方程: 圖4 連桿的應(yīng)力分析 圖5 偏心軸的應(yīng)力分析 (5) (6) (7) 3.4 偏心軸的運動方程 從圖5中,我們可以得到偏心軸的微分方程: (8) (9) (10) 3.5 篩箱的運動方程 (11) (12) 圖6 模型盒的應(yīng)力分析 從約束條件,我們可以得到封閉機制的矢量方程: (13) (14) (15) (16) (17) (18) (19) 一階導(dǎo)數(shù)的時間變量方程是從公式(14)到公式(19) (20) (21) (22) (23) (24) (25) 二階導(dǎo)數(shù)的時間變量方程是從公式(20)到公式(25) (26) (27) (28) (29) (30) (31) 根據(jù)消費設(shè)備歐拉公式(13) (32) (33) (34) 第一、二導(dǎo)數(shù)的時間變量方程的分別在(32)和(33) (35) (36) (37) (38) 加速篩箱框符合對角移動 (39) 4 模擬曲線分析 根據(jù)上述公式,應(yīng)用程序,模擬運動的軌跡,我們可以得到曲線,并選擇一些進行進一步分析。 圖7 當e1=e2=0mm時,篩箱的運動軌跡 圖8 當e1=e2=1mm時,篩箱的運動軌跡 圖9 當e1=e2=3mm時,篩箱的運動軌跡 圖10 當e1=e2=6mm時,篩箱的運動軌跡 根據(jù)數(shù)字7,8,9,和10,水平方向(x)表示時間,垂直方(y)表示位移。為了在動力學(xué)方法的基礎(chǔ)上測試出正確的解決方案,如圖7所示,我們假設(shè)的短桿長度是e1=e2=0mm。在轉(zhuǎn)速恒定在這種情況下,本運動曲線的篩箱單和長幅往復(fù)運動。其運動軌跡固定,不存在混合現(xiàn)象,表明從類似于動態(tài)方法中獲得動力學(xué)結(jié)果。因此,無論是通過動態(tài)方程和仿真都是準確的。 如圖8所示,在短桿長度是e1=e2=1mm,雖然可以看到高諧波運動,但不明顯;篩選粘性材料,材料之間崩潰的概率小。如圖9所示,在短桿長度是e1=e2=3mm,高諧波運動是明顯的,原周期運動不會受損,混合運動是顯而易見的。因此,性質(zhì)的高諧波運動可以增加率崩潰,材料易分散。應(yīng)在增加粘性材料、提高粘度和致盲作出努力,。如圖9所示,在短桿長度是e1=e2=6mm,高諧波運動是非常明顯的,但頻率和振幅開始減少。平衡的運動被摧毀,它不再有積極努力提高粘度和盲目。 5 結(jié)論 一種新型的多自由度振動篩及高效多自由度的提出,使長期使用的振幅振動頻率高、振幅疊加短振動。理論上,它可以有效地增加的材料或材料絲網(wǎng),分散的粘性材料,和單獨的材料網(wǎng)之間碰撞的概率。因此,它能有效的避免粘合材料之間的粘合和消除致盲孔徑。根據(jù)MATELAB運動曲線,在它有可能獲得高頻率和振幅的振動的基礎(chǔ)上,長期振幅要適當?shù)倪x擇短桿長度以達到更好的屏蔽作用的粘性材料。 參考文獻 [1] 劉C,設(shè)計和試驗研究篩選機構(gòu),煤炭學(xué)報,3(2004)364 - 366。 [2] 劉C,動態(tài)特性的翻轉(zhuǎn)篩箱,其工藝參數(shù)的研究,中國礦業(yè)大學(xué)學(xué)報,29(2000)290-292。 [3] 趙Y和劉C,干法篩分的理論和應(yīng)用,科學(xué)出版社,1999。 單位代碼 0 2 學(xué) 號 100305001 分 類 號 TH6 密 級 秘密 畢業(yè)設(shè)計 文獻翻譯 院(系)名稱 工學(xué)院機械系 專業(yè)名稱 機械設(shè)計制造及其自動化 學(xué)生姓名 馬春陽 指導(dǎo)教師 楊漢嵩 2012年 03 月 10 日 The 6th International Conference on Mining Science & Technology Dynamic analysis of a chaotic vibrating screen Song Yan*, Jiang Xiao-hong, Song Juan, Zhang Jian-xun China University of Mining & Technology, Xuzhou 221116, China Abstract A new type of multi-degree-of-freedom and highly efficient vibrating screen based on multi-degree of freedom mechanics principle of dynamics is presented. Its prominent character is to have an additionally high frequency and short amplitude vibration on long amplitude vibration. And it can efficiently increase probability of material crashing, eliminate blinding aperture,and get high screening efficiency. A series of mechanics Equ.s are set up and parameter vibrating wave charts are gained by emluator of Matlab. Keywords: vibrating screen; dynamic analysis; screening efficiency; chaos 1. Introduction The precisely screening process of coal is an effective way to improve the quality and structure of coal production and to increase economic efficiency and social energy saving benefit. At present, the key problem of restraining the precisely screening process of moist raw coal is the small size of particles, big specific surface area, and blinding aperture caused by water. It is difficult for ordinary vibrating screen to complete this screening task. Existing wet screening machines make it difficult to use fine-coal dry screening to screen the wet raw coal. Therefore, in recent years for the mechanical engineering and mineral process engineering, the focus is on the research into proscessing the difficult screening materials. As the screening machine is very easy to be blinded when screening, this topic has been extensively and deeply studied both at home and abroad. In this paper, we intend to develop a new type of multi-degree-of-freedom chaotic vibrating screen. 2. Structure and working principle of chaotic vibrating screen Figure 1 is the structure of a chaotic vibrating screen. Vibrator is constituted of components 1, 2, 3, 4, and 5.Long bars 1 and 3 cause acceleration vibration of long period, short bars 2 and 4 cause acceleration vibration of short period, the superposition of the two vibrations make the material loose and get a high screening efficiency.In order to make the material screen easier, the box of screen should be tilted for a large angle (about 30o) for viscous material. The vibrating screen, component 1 is an initiative component. Driving torque, components, box of the screen and material form a dynamic system. When the motor drives the power system into motion, box of thescreen will have a chaotic motion. This motion will effectively promote screening efficiency if incentive frequency and bars are designed suitably. 1 winch; 2 short bar 1; 3 connecting rod 2; 4 short rod; 5 stander5 Fig. 1. Diagram of dynamics of the chaotic vibrating screen The degree of freedom of the chaotic vibration shown in Fig. 1 is F=3×5-(2×6+0)=3. According to the definition of classic institutions, the necessary and sufficient condition of the specified movement is that the number of the original is equal to the number of the degree of motion. If the number of freedom of motion is greater than the number of the original, we can not call it mechanism. However, with the development of the mechanism dynamics,the concept of mechanism has become extended. If we think about the space of kinematic pair or elasticity of components when analyzing dynamic of components, the number of the freedom of motion is far greater than the number of the original components’, then the mechanism is dynamic mechanism. When the number of original components is less than the number freedom of motion, the location of the follower is the function of the mass of the mechanism, moment of inertia, and external force. When the size is suitably selected, the output movement of the mechanism may be the compound movement of long period vibration followed with short period vibration. This mechanism has three freedom degrees of motion, one generates long amplitude vibration on screen mesh, the other two create high frequency and chaotic vibration. At present, chaotic phenomenon is considered to be one of the most complex motions in dynamic system, which includes all kinds of dynamic system. Chaos is a nonlinear dynamic behavior, which generate fixed point and periodic point, and reach specific form of "disorder" through multiplicative process. As for nonlinear dynamics, people used to make the linear model to approach to true system, simplify dynamic analysis and design. However, this linear approximation is not always feasible, the nonlinear factors which are overlooked often cause unacceptable error in analysis and calculation. In recent years, people realized that, ifthey want to design and produce high-quality system, they must command the nonlinear dynamic behavior of the system. Vibrating screens depend on the vibrating of the screen mesh making materials to throw, collide, separate, and roll or slid so that it can implement screen through relative collision between materials and screen mesh. To have an additionally long period vibration on short period vibration can increase the probability of collision between materials and materials and between materials and screen meshs, then the materials can be easily decentralized and screened. This new chaotic vibrating screen can achieve the purpose of screening efficiency. 3. Dynamic analysis of chaotic vibrating screen In building coordinate system of every component shown in figure 1, given that the length of crack 1 is l1, angular velocity is δ1, rotational inertia about point A1 is JA; the length of connecting bar is l2, angular displacement is δ2, rotational inertia about point C is JC; the lengths of short bars 2 and 4 is e1 and e2 , angular displacement is τ1 and τ2,rotational inertia of short bar 4 about point D is JD, horizontal and vertical distance between point E on the screen box and the origin of the coordinate is x5 and y5. 3.1. Motion equations of crack From figure 2, we can get the rotational differential equation of the crack: (1) Fig. 2. Stress analysis model of the crack Fig. 3. Stress analysis model of the first eccentric shaft 3.2. Motion equations of the first eccentric shaft From figure 3, we can get differential equations of the first eccentric shaft: (2) (3) (4) 3.3. Motion equations of the guide bar From figure 4, we can get differential equations of the connecting bar: Fig. 4. Stress analysis model of the connecting bar Fig. 5. Stress analysis model of the second eccentric shaft (5) (6) (7) 3.4. Motion equations of the second eccentric shaft From figure 5, we can get the differential equations of the second eccentric shaft: (8) (9) (10) 3.5. Motion equations of the box (11) (12) Fig. 6. Stress analysis model of the box From constrain conditions, we can get vector closed equations of the mechanism: (13) (14) (15) (16) (17) (18) (19) The first derivative on time of every variable is got from Equ. (14) to Equ. (19) (20) (21) (22) (23) (24) (25) The second derivative on time of every variable is got from Equ. (20) to Equ. (25) (26) (27) (28) (29) (30) (31) Expend Equ. (13) according to Euler’s formula (32) (33) (34) The first and the second derivatives with respect to time are got respectively in Equ. (32) and Equ. (33) (35) (36) (37) (38) The acceleration of the screen box moving diagonally satisfy (39) 4. Simulating curves and analysis According to the above formulas, using MATLAB to program, simulating the movement trajectory, we can get curves, and choose some of them for further analysis. Fig. 7. When e1=e2=0mm,the movement trajectory of screen box Fig. 8. When e1=e2=1mm,the movement trajectory of screen box Fig. 9. When e1=e2=3mm,the movement trajectory of screen box Fig. 10. When e1=e2=6mm,the movement trajectory of screen box According to figures 7, 8, 9, and 10, the horizontal direction (x) represent time, the vertical direction (y) represent displacement. In order to test the correctness of the solutions based on dynamics method, we suppose that the length of short bars be e1=e2=0mm. Given that the rotational speed is a constant in this situation, as shown in figure 7, the movement curve of the screen box is single and long amplitude reciprocating motion. Its movement trajectory is fixed and there is no chaotic phenomena, indicating that the result obtained from dynamic method is similar to the result obtained from kinetic method. Therefore, both the dynamic equations and simulation through MATLAB are accurate. As shown in figure 8, when the length of the bars is e1=e2 =1mm, the character of the high harmonic movement can be seen but not obvious; for screening viscous material, the probability of crashing among materials is small. As shown in figure 9, when the length of the bars is e1=e2= 3mm, the character of the high harmonic movement is obvious, the original character of the periodic movement isn’t damaged, and the chaotic movement is obvious. Therefore, the character of the highly harmonic movement can increase the rate of the crashing and make the materials easy to be dispersed. For increasing viscous materials, an obvious effort should be made to improve the viscosity and blinding. As shown in figure 9, when the length of the bars is e1=e2=6mm, the character of the high harmonic movement is very obvious, but the frequency and the amplitude begin to reduce. The balance of the movement is destroyed, it no longer has the positive effort to improve the viscosity and blind. 5. Conclusion A new type of multi-degree-of-freedom and high efficient vibrating screen based on multi-degree of freedom is presented, which makes use of long amplitude vibrating superimposing high frequency and short amplitude vibration. In theory, it can efficiently increase probability of crashing among materials or between materials and screen mesh, scatter viscous materials, and separate materials from screen mesh. Therefore, it will effectively avoid bonding between materials and eliminate blinding aperture. According to movement curves got from MATELAB, it is possible to get a high frequency and short amplitude vibration on the basis of long amplitude as long as the length of bars is suitably chosen so as to achieve better screening effect for viscous material. References [1] C. Liu, Design and experimental research of screening machine of two degrees of freedom. Journal of Coal. 3 (2004) 364-366. [2] C. Liu, Dynamic characteristics of the flip screen and researches of its process parameters. China University of Mining Journal. 29 (2000) 290-292. [3] Y. Zhao and C. Liu, Theory and application of dry screening. The Science Press, 1999.沙石振動篩的設(shè)計【同步電機驅(qū)動的雙軸慣性式振動篩】.zip |
沙石振動篩的設(shè)計【同步電機驅(qū)動的雙軸慣性式振動篩】 |
壓縮包目錄 | 預(yù)覽區(qū) |
|
請點擊導(dǎo)航文件預(yù)覽
|
編號:12687420
類型:共享資源
大小:1.39MB
格式:ZIP
上傳時間:2020-05-13
40
積分
積分
- 關(guān) 鍵 詞:
- 同步電機驅(qū)動的雙軸慣性式振動篩 沙石振動篩的設(shè)計【同步電機驅(qū)動的雙軸慣性式振動篩】 沙石 振動篩 設(shè)計 同步電機 驅(qū)動 慣性
- 資源描述:
-
購買設(shè)計請充值后下載,,資源目錄下的文件所見即所得,都可以點開預(yù)覽,,資料完整,充值下載可得到資源目錄里的所有文件。。?!咀ⅰ浚篸wg后綴為CAD圖紙,doc,docx為WORD文檔,原稿無水印,可編輯。。。具體請見文件預(yù)覽,有不明白之處,可咨詢QQ:12401814
展開閱讀全文
裝配圖網(wǎng)所有資源均是用戶自行上傳分享,僅供網(wǎng)友學(xué)習(xí)交流,未經(jīng)上傳用戶書面授權(quán),請勿作他用。
相關(guān)資源
更多正為您匹配相似的精品文檔
鏈接地址:http://m.zhongcaozhi.com.cn/p-12687420.html