(浙江專用)2019高考數(shù)學二輪復習 專題三 數(shù)列與不等式 第3講 數(shù)列的綜合問題課件.ppt

上傳人:tian****1990 文檔編號:14043595 上傳時間:2020-07-01 格式:PPT 頁數(shù):52 大?。?.52MB
收藏 版權申訴 舉報 下載
(浙江專用)2019高考數(shù)學二輪復習 專題三 數(shù)列與不等式 第3講 數(shù)列的綜合問題課件.ppt_第1頁
第1頁 / 共52頁
(浙江專用)2019高考數(shù)學二輪復習 專題三 數(shù)列與不等式 第3講 數(shù)列的綜合問題課件.ppt_第2頁
第2頁 / 共52頁
(浙江專用)2019高考數(shù)學二輪復習 專題三 數(shù)列與不等式 第3講 數(shù)列的綜合問題課件.ppt_第3頁
第3頁 / 共52頁

下載文檔到電腦,查找使用更方便

14.9 積分

下載資源

還剩頁未讀,繼續(xù)閱讀

資源描述:

《(浙江專用)2019高考數(shù)學二輪復習 專題三 數(shù)列與不等式 第3講 數(shù)列的綜合問題課件.ppt》由會員分享,可在線閱讀,更多相關《(浙江專用)2019高考數(shù)學二輪復習 專題三 數(shù)列與不等式 第3講 數(shù)列的綜合問題課件.ppt(52頁珍藏版)》請在裝配圖網(wǎng)上搜索。

1、第3講 數(shù)列的綜合問題,專題三 數(shù)列與不等式,板塊三 專題突破核心考點,,[考情考向分析],1.數(shù)列的綜合問題,往往將數(shù)列與函數(shù)、不等式結(jié)合,探求數(shù)列中的最值或證明不等式. 2.以等差數(shù)列、等比數(shù)列為背景,利用函數(shù)觀點探求參數(shù)的值或范圍. 3.與數(shù)列有關的不等式的證明問題是高考考查的一個熱點,也是一個難點,主要涉及到的方法有作差法、放縮法、數(shù)學歸納法等.,,,熱點分類突破,真題押題精練,內(nèi)容索引,熱點分類突破,,熱點一 利用Sn,an的關系式求an,1.數(shù)列{an}中,an與Sn的關系,2.求數(shù)列通項的常用方法 (1)公式法:利用等差(比)數(shù)列求通項公式. (2)在已知數(shù)列{an}中,滿足an

2、+1-an=f(n),且f(1)+f(2)+…+f(n)可求,則可用累加法求數(shù)列的通項an.,(4)將遞推關系進行變換,轉(zhuǎn)化為常見數(shù)列(等差、等比數(shù)列).,例1 (2018浙江)已知等比數(shù)列{an}的公比q>1,且a3+a4+a5=28,a4+2是a3,a5的等差中項.數(shù)列{bn}滿足b1=1,數(shù)列{(bn+1-bn)an}的前n項和為2n2+n. (1)求q的值;,解答,解 由a4+2是a3,a5的等差中項, 得a3+a5=2a4+4, 所以a3+a4+a5=3a4+4=28,解得a4=8.,因為q>1,所以q=2.,(2)求數(shù)列{bn}的通項公式.,解答,解 設cn=(bn+1-bn)an

3、,數(shù)列{cn}的前n項和為Sn.,由(1)可得an=2n-1,,當n=1時,b1=1也滿足上式,,給出Sn與an的遞推關系,求an,常用思路:一是利用Sn-Sn-1=an(n≥2)轉(zhuǎn)化為an的遞推關系,再求其通項公式;二是轉(zhuǎn)化為Sn的遞推關系,先求出Sn與n之間的關系,再求an.,,跟蹤演練1 已知數(shù)列{an}的前n項和Sn滿足:a1an=S1+Sn. (1)求數(shù)列{an}的通項公式;,解答,解 由已知a1an=S1+Sn, ①,當n≥2時,由已知可得a1an-1=S1+Sn-1, ②,若a1=0,則an=0,此時數(shù)列{an}的通項公式為an=0.,即此時數(shù)列{an}是以2為首項,2為公

4、比的等比數(shù)列, 故an=2n(n∈N*). 綜上所述,數(shù)列{an}的通項公式為an=0或an=2n(n∈N*).,解答,解 因為an>0,故an=2n.,由n-5≥0,解得n≥5,所以當n=4或n=5時,Tn最小,,數(shù)列與函數(shù)的綜合問題一般是利用函數(shù)作為背景,給出數(shù)列所滿足的條件,解決這類問題的關鍵在于利用數(shù)列與函數(shù)的對應關系,將條件進行準確的轉(zhuǎn)化.,,熱點二 數(shù)列與函數(shù)、不等式的綜合問題,(1)若x≥0時,f(x)≤0,求λ的最小值;,解答,解 由已知可得f(0)=0,,①若λ≤0,則當x>0時,f′(x)>0,f(x)單調(diào)遞增, ∴f(x)≥f(0)=0,不合題意;,則當x>0時,f′(x

5、)<0,f(x)單調(diào)遞減, 當x≥0時,f(x)≤f(0)=0,符合題意.,證明,以上各式兩邊分別相加可得,解決數(shù)列與函數(shù)、不等式的綜合問題要注意以下幾點 (1)數(shù)列是一類特殊的函數(shù),函數(shù)定義域是正整數(shù),在求數(shù)列最值或不等關系時要特別重視. (2)解題時準確構(gòu)造函數(shù),利用函數(shù)性質(zhì)時注意限制條件. (3)不等關系證明中進行適當?shù)姆趴s.,,跟蹤演練2 設fn(x)=x+x2+…+xn-1,x≥0,n∈N,n≥2. (1)求fn′(2);,解答,解 由題設fn′(x)=1+2x+…+nxn-1, 所以fn′(2)=1+22+…+(n-1)2n-2+n2n-1, ① 則2fn′(2)=2+222+…+

6、(n-1)2n-1+n2n, ② 由①-②得,-fn′(2)=1+2+22+…+2n-1-n2n,所以fn′(2)=(n-1)2n+1.,證明,證明 因為fn(0)=-10,,,熱點三 數(shù)列的實際應用,數(shù)列與不等式的綜合問題把數(shù)列知識與不等式的內(nèi)容整合在一起,形成了關于證明不等式、求不等式中的參數(shù)取值范圍、求數(shù)列中的最大(小)項、比較數(shù)列中項的大小等問題,求解方法既要用到不等式知識,又要用到數(shù)列的基礎知識,經(jīng)常涉及到放縮法和數(shù)學歸納法的使用.,例3 (2018浙江省名校協(xié)作體聯(lián)考)已知數(shù)列{an}中,a1=1,an+1=2an+(-1)n(n∈N*).,證明,證明 ∵an+1=2an+(-1

7、)n,,證明,證明,數(shù)列中的不等式問題主要有證明數(shù)列不等式、比較大小或恒成立問題,解決方法如下: (1)利用數(shù)列(或函數(shù))的單調(diào)性. (2)放縮法:①先求和后放縮;②先放縮后求和,包括放縮后成等差(或等比)數(shù)列再求和,或者放縮后用裂項相消法求和. (3)數(shù)學歸納法.,,跟蹤演練3 (2018杭州質(zhì)檢)已知數(shù)列{an}滿足a1=1,an+1=an+ (c>0,n∈N*). (1)證明:an+1>an≥1;,證明,證明 因為c>0,a1=1,,下面用數(shù)學歸納法證明an≥1. ①當n=1時,a1=1≥1; ②假設當n=k時,ak≥1,,所以當n∈N*時,an≥1. 所以an+1>an≥1.,證明,證

8、明 由(1)知當n≥m時,an≥am≥1,,證明,真題押題精練,真題體驗,1.(2018全國Ⅰ)記Sn為數(shù)列{an}的前n項和.若Sn=2an+1,則S6=________.,解析,答案,-63,解析 ∵Sn=2an+1,當n≥2時,Sn-1=2an-1+1, ∴an=Sn-Sn-1=2an-2an-1(n≥2), 即an=2an-1(n≥2). 當n=1時,a1=S1=2a1+1,得a1=-1. ∴數(shù)列{an}是首項a1=-1,公比q=2的等比數(shù)列,,∴S6=1-26=-63.,2.(2017浙江)已知數(shù)列{xn}滿足:x1=1,xn=xn+1+ln(1+xn+1)(n∈N*). 證明:當n

9、∈N*時, (1)00. 假設當n=k(k∈N*)時,xk>0, 那么當n=k+1時,若xk+1≤0, 則00, 因此xn>0(n∈N*). 所以xn=xn+1+ln(1+xn+1)>xn+1, 因此0

展開閱讀全文
溫馨提示:
1: 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
2: 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
3.本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
5. 裝配圖網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

相關資源

更多
正為您匹配相似的精品文檔
關于我們 - 網(wǎng)站聲明 - 網(wǎng)站地圖 - 資源地圖 - 友情鏈接 - 網(wǎng)站客服 - 聯(lián)系我們

copyright@ 2023-2025  zhuangpeitu.com 裝配圖網(wǎng)版權所有   聯(lián)系電話:18123376007

備案號:ICP2024067431-1 川公網(wǎng)安備51140202000466號


本站為文檔C2C交易模式,即用戶上傳的文檔直接被用戶下載,本站只是中間服務平臺,本站所有文檔下載所得的收益歸上傳人(含作者)所有。裝配圖網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對上載內(nèi)容本身不做任何修改或編輯。若文檔所含內(nèi)容侵犯了您的版權或隱私,請立即通知裝配圖網(wǎng),我們立即給予刪除!