《排列、組合與二項式定理(理).ppt》由會員分享,可在線閱讀,更多相關(guān)《排列、組合與二項式定理(理).ppt(32頁珍藏版)》請在裝配圖網(wǎng)上搜索。
1、1掌握分類計數(shù)原理與分步計數(shù)原理,并能用它們分析和解決一些簡單的應(yīng)用問題 2理解排列的意義,掌握排列數(shù)計算公式,并能用它解決一些簡單的應(yīng)用問題 3理解組合的意義,掌握組合數(shù)計算公式和組合數(shù)的性質(zhì),并能用它們解決一些簡單的應(yīng)用問題 4掌握二項式定理和二項展開式的性質(zhì),并能用它們計算和證明一些簡單的問題,1本部分內(nèi)容在高考中所占分?jǐn)?shù)大約在3%6%之間 2本部分考查的內(nèi)容主要是:分類與分步計數(shù)原理,排列與組合及二項式定理的有關(guān)內(nèi)容 3命題規(guī)律:此部分在命題時,題目類型一般為選擇或填空題,高考對本部分內(nèi)容的考查特點是側(cè)重基礎(chǔ),多數(shù)高考試題的難度與課本中習(xí)題難度相當(dāng),但在高考試卷中分值所占比例超過占總課
2、時的比例在解答題時,將可能出現(xiàn)與其它知識點(函數(shù)、不等式、幾何等)相結(jié)合的綜合題,有一定的難度,1兩個計數(shù)原理 分類計數(shù)原理與分步計數(shù)原理,都是關(guān)于完成一件事的不同方法種數(shù)的問題 “分類”與“分步”的區(qū)別:關(guān)鍵是看事情完成情況,如果每種方法都能將事件完成則是分類;如果必須要連續(xù)若干步才能將事件完成則是分步分類要用分類計數(shù)原理將種數(shù)相加;分步要用分步計數(shù)原理將種數(shù)相乘,金手指駕校網(wǎng) 金手指駕駛員考試2016科目1考試網(wǎng) 科目1考試安全文明網(wǎng) 2016文明駕駛考題安全文明考試網(wǎng) 2016文明駕駛模擬考試,Grammar Focus,(3)應(yīng)用題 解排列組合問題應(yīng)遵循的原則:先特殊后一般,先選后排,
3、先分類后分步 常用策略:(a)相鄰問題捆綁法;(b)不相鄰問題插空法;(c)多排問題單排法;(d)定序問題倍縮法;(e)多元問題分類法;(f)有序分配問題分步法;(g)交叉問題集合法;(h)至少或至多問題間接法;(i)選排問題先取后排法;(j)局部與整體問題排除法;(k)復(fù)雜問題轉(zhuǎn)化法,3二項式定理 (1)定理:(ab)nCanCan1bCanrbrCabn1Cbn(nN*) 通項(展開式的第r1項):Tr1Canrbr.其中C(r0,1,,n)叫做二項式系數(shù) (2)二項式系數(shù)的性質(zhì) 在二項式展開式中,與首末兩端“等距離”的兩項的二項式系數(shù)相等,即,例1(2011浙江金華十校)有一項活動,需在
4、3名老師、8名男生和5名女生中選人參加 (1)若只需一人參加,有多少種不同選法? (2)若需老師、男生、女生各一人參加,有多少種不同選法? (3)若需一名老師、一名學(xué)生參加,有多少種不同選法? 分析根據(jù)“分類互斥”、“分步互依”合理地選用計數(shù)原理,解析(1)有三類選人的辦法:3名老師中選一人,有3種方法;8名男生中選一人,有8種方法;5名女生中選一人,有5種方法 由分類計數(shù)原理,共有38516種選法 (2)分三步選人,第一步選老師,有3種方法;第二步選男生,有8種方法;第三步選女生,有5種方法 由分步計數(shù)原理,共有385120種選法,(3)可分兩類,第一類又分兩步:第一類,選一名老師再選一名男
5、生,有3824種選法;第二類,選一名老師再選一名女生,有3515種選法 再由分類計數(shù)原理,共有241539種選法,評析用兩個計數(shù)原理解決計數(shù)問題時,最重要的 在開始計算之前要進行仔細(xì)分析,確定需分類還是分步 (1)分類時要做到不重不漏,分類后再對每類進行計數(shù),最后用分類加法計數(shù)原理求和,得到總數(shù) (2)分步要做到“步驟完整”完成了所有步驟恰好完成任務(wù),當(dāng)然步驟之間要相互獨立,分步后再計算每一步的方法數(shù),最后根據(jù)分步乘法計數(shù)原理,把完成每一步的方法數(shù)相乘,得到總數(shù),(2011東北四市聯(lián)考)計劃在4個體育館舉辦排球、籃球、足球3個項目的比賽,每個項目的比賽只能安排在一個體育館進行,則在同一個體育館
6、比賽的項目不超過2項的安排方案共有() A24種 B36種 C42種 D60種 答案D,解析每個項目的比賽安排在任意一個體育館進行,共有4364種安排方案;三個項目都在同一個體育館比賽,共有4種安排方案;所以在同一個體育館比賽的項目不超過2項的安排方案共有60種,故選D.,例2(2011大連二模)由0,1,2,3,4,5這六個數(shù)字組成的不重復(fù)的六位數(shù)中,不出現(xiàn)“135”與“24”的六位數(shù)的個數(shù)為() A582 B504 C490 D486 答案C 解析先求出現(xiàn)“135”或“24”的六位數(shù)的個數(shù):AAAAAA18964110,而組成的不重復(fù)的六位數(shù)的個數(shù)為:AA600,因此不出現(xiàn)“135”與“2
7、4”的六位數(shù)的個數(shù)為:600110490.,評析區(qū)分某一問題是排列還是組合問題,關(guān)鍵看選出的元素與順序是否有關(guān),若交換某兩個元素的位置對結(jié)果產(chǎn)生影響,則是排列問題;若交換任意兩個元素的位置對結(jié)果沒有影響,則是組合問題,也就是說排列問題與選取元素的順序有關(guān),組合問題與選取元素的順序有關(guān),某臺小型晚會由6個節(jié)目組成,演出順序有如下要求:節(jié)目甲必須排在前兩位,節(jié)目乙不能排在第一位,節(jié)目丙必須排在最后一位,該臺晚會節(jié)目演出順序的編排方案共有() A36種 B42種 C48種 D54種 答案B 解析分兩類,第一類:甲排在第一位時,丙排在最后一位;中間4個節(jié)目無限制條件,有A種排法;第二類:甲排在第二位時
8、,從甲、乙、丙之外的3個節(jié)目中選1個節(jié)目排在第1位時有C種排法,其他3個節(jié)目有A種排法,故有CA種排法依分類加法計數(shù)原理,知共有ACA42(種)編排方案.,例3用數(shù)字0,1,2,3,4,5,6組成沒有重復(fù)的四位數(shù),其中個位、十位和百位上的數(shù)字之和為偶數(shù)的四位數(shù)共有____________個(用數(shù)字作答) 分析排列組合問題,一般先選后排,要注意特殊元素或特殊位置優(yōu)先的策略 答案324,評析排列組合問題常用方法有兩類:即特殊元素優(yōu)先考慮與特殊位置優(yōu)先考慮兩種遵循基本原則:先選后排,即先組合后排列注意做到不重復(fù)不遺漏,有4位同學(xué)在同一天的上、下午參加“身高與體重”、“立定跳遠(yuǎn)”、“肺活量”、“握力”
9、、“臺階”五個項目的測試,每位同學(xué)上、下午各測試一個項目,且不重復(fù)若上午不測“握力”項目,下午不測“臺階”項目,其余項目上、下午都各測試一人,則不同的安排方式共有________種(用數(shù)字作答) 答案264,解析由條件上午不測“握力”,則4名同學(xué)測四個項目,則A;下午不測“臺階”但不能與上午所測項目重復(fù),如 下午甲測“握力”乙丙丁所測不與上午重復(fù)有2種,甲測“身高”“立定”、“肺活量”中一種,則339,故A(29)264種.,例4如圖,一環(huán)形花壇分成A、B、C、D四塊,現(xiàn)有4種不同的花供選種,要求在每塊里種1種花,且相鄰的2塊種不同的花,則不同的種法總數(shù)為() A96 B84 C60 D48,分析可按花壇種花種數(shù)進行分類,最多用4種,最少用2種 答案B,評析本例可看成是一類應(yīng)用問題涂色問題,它也是排列組合的一類綜合應(yīng)用問題,答案B,