同課異構(gòu)《線段的垂直平分線的性質(zhì)》教案 (省一等獎(jiǎng))
《同課異構(gòu)《線段的垂直平分線的性質(zhì)》教案 (省一等獎(jiǎng))》由會(huì)員分享,可在線閱讀,更多相關(guān)《同課異構(gòu)《線段的垂直平分線的性質(zhì)》教案 (省一等獎(jiǎng))(6頁(yè)珍藏版)》請(qǐng)?jiān)谘b配圖網(wǎng)上搜索。
1、. ........... . ..................................... . ..... 13.1.2 線段垂直平分線 ◆教學(xué)目標(biāo)◆ ◆知識(shí)與技能: 理解線段垂直平分線的性質(zhì)和判定,及其應(yīng)用。 ◆過(guò)程與方法: 通過(guò)動(dòng)手實(shí)踐與觀察體會(huì)兩個(gè)圖形成軸對(duì)稱(chēng)的性質(zhì),培養(yǎng)抽象思維能力. ◆情感態(tài)度和價(jià)值觀: 通過(guò)探究活動(dòng)來(lái)發(fā)現(xiàn)結(jié)論,經(jīng)過(guò)知識(shí)的再發(fā)現(xiàn)過(guò)程,在探究活動(dòng)的過(guò)程中培養(yǎng)創(chuàng)新思維能力, 改變學(xué)習(xí)方式. ◆教學(xué)重點(diǎn)與難 點(diǎn)◆ ◆重點(diǎn):線段垂直平分線的性質(zhì)和判定和應(yīng)用及成軸對(duì)稱(chēng)的兩個(gè)圖形的性質(zhì). ◆難點(diǎn):線段垂直平分線的性質(zhì)
2、和判定和應(yīng)用及成軸對(duì)稱(chēng)的兩個(gè)圖形的性質(zhì)。 ◆教學(xué)過(guò)程◆ 一、 溫故知新: 1.什么是軸對(duì)稱(chēng)圖形?什么是軸對(duì)稱(chēng)? 二、新知講解: 1.情景引入:如圖 ABC 和△A′B′C′關(guān)于直線 MN 對(duì)稱(chēng),點(diǎn) A′、B′、C′分別是點(diǎn) A、 B、C 的對(duì)稱(chēng)點(diǎn),線段 A A′、B B′、C C′與直線 MN 有什么關(guān)系? 解題方法:1〕可以利用直尺、圓規(guī)度 2〕可以利用軸對(duì)稱(chēng)的定義解題 結(jié)論:對(duì)稱(chēng)軸所在直線經(jīng)過(guò)對(duì)稱(chēng)點(diǎn)所連線段的中點(diǎn),并且垂直這條線段。 2.結(jié)論總結(jié):線段的垂直平分線的定義:經(jīng)過(guò)線段中點(diǎn)并且垂直于這條線段的直線,叫做 這條線段的垂直平分線。也叫這條的線段的中垂線
3、.〔課本 32 頁(yè)〕 注:垂直平分線與線段有兩種關(guān)系:位置關(guān)系——垂直,數(shù)量關(guān)系——平分 3.性質(zhì)探究: 圖形 軸對(duì)稱(chēng)的性質(zhì):〔1〕成軸對(duì)稱(chēng)的兩個(gè)圖形全等?!?〕對(duì)稱(chēng)軸是任何一對(duì) 對(duì)應(yīng)點(diǎn)所連線段的垂直平分線?!?〕兩個(gè)圖形成軸對(duì)稱(chēng)如果它們的對(duì)應(yīng)線段或延長(zhǎng)線相交, 那么交點(diǎn)一定在對(duì)稱(chēng)軸上。類(lèi)似的,軸對(duì)稱(chēng)圖形的對(duì)稱(chēng)軸,是任何一對(duì)對(duì) 應(yīng)點(diǎn) 所連線段的 垂直平分線。 注:包含兩層含義:一對(duì)對(duì)應(yīng)點(diǎn)就能做出它們的對(duì)稱(chēng)軸,一點(diǎn)和對(duì)稱(chēng)軸就能做出該點(diǎn)關(guān)于對(duì) 稱(chēng)軸的對(duì)稱(chēng)點(diǎn)。 的性質(zhì)歸納: 性質(zhì)定理:線段垂直平分線上的點(diǎn)與這條直線 的兩個(gè)端點(diǎn)距離相等. 幾何語(yǔ)言:∵直線 l 是線段 AB 的
4、垂直平分線,點(diǎn) P 在垂直平分線上,∴PA=PB。 反過(guò)來(lái),假設(shè) PA=PB,那么點(diǎn) P 是否在垂直平分線上?看課本 33 頁(yè)的探究。 〔通過(guò)做輔助線,再利用全等三角形的判定方法證明〕 定理:與一條線段兩個(gè)端點(diǎn)距離相等的點(diǎn),在這條線段的垂直平分線上.幾何語(yǔ)言:∵PA=PB, ∴點(diǎn) P 在線段 AB 的垂直 平分線上 歸納:在線段 AB 的垂直平分線 l 上的點(diǎn)與 A、B 的距離相等;反過(guò)來(lái),與兩點(diǎn) A、B 的距離 相等的點(diǎn)都在 l 上,所以直線 l 可以點(diǎn)成與兩點(diǎn) A、B 的距離相等的所有點(diǎn)的集合。 三、穩(wěn)固提高 例 1: 如以下圖,有一塊三角形田地,AB=AC=10m,作 AB 的
5、垂直平分線 ED 交 AC 于 D,交 AB 于 E,量得△BDC 的周長(zhǎng)為 17m,請(qǐng)你替測(cè)量人員計(jì)算 BC 的長(zhǎng).〔解題過(guò)程略〕 例 2, 如圖,在△ABC 中,∠ACB=90°,D 是 BC 延長(zhǎng)線上一點(diǎn),E 是 AB 上一點(diǎn),且在 BD 的垂直平分線上,DE 交 AC 于 F. 求證:E 在 AF 的垂直平分線上 四、課堂檢測(cè): 1.如圖,DE 是 AC 的垂直平分線,AB=10cm,BC=11cm,求 ΔABD 的周長(zhǎng)? 2.△ABC 中,DE 是 AC 的垂直平分線,AE=3cm,△ABD 的周長(zhǎng)為 13cm, ABC 的周長(zhǎng)。 三、收
6、獲 請(qǐng)你談?wù)劚竟?jié)課的學(xué)到的知識(shí)有哪些? 四、作業(yè) P65,66 頁(yè) 6、9 ◆板書(shū)設(shè)計(jì)◆ 線段的垂直平分線性質(zhì)定理: 幾何意義: ◆課后思考◆ [教學(xué)反思] 學(xué)生對(duì)展開(kāi)圖通過(guò)各種途徑有了一些了解,但仍不能把平面與立體很好的結(jié)合;在遇 到問(wèn)題時(shí),多數(shù)學(xué)生不愿意自己探索,都要尋求幫助。在今后的教學(xué)中,我會(huì)不斷的鉆研探 索,使我的課堂真正成為學(xué)生學(xué)習(xí)的樂(lè)園。 本節(jié)課的教學(xué)活動(dòng),主要是讓學(xué)生通過(guò)觀察、動(dòng)手操作,熟悉長(zhǎng)方體、正方體的展開(kāi)圖 以及圖形折 疊后的形狀。教學(xué)時(shí),我讓每個(gè)學(xué)生帶長(zhǎng)方體或正方體的紙盒 ,每個(gè)學(xué)生都剪 一剪,并展示所剪圖形
7、的形狀。由于剪的方法不同,展開(kāi)圖的形狀也可能是不同的。學(xué)生在 剪、拆盒子過(guò)程中,很容易把盒子拆散了,無(wú)法形成完整的展開(kāi)圖,就要求適當(dāng)進(jìn)行指導(dǎo)。 通過(guò)動(dòng)手操作,動(dòng)腦思考,集體交流,不僅提高了學(xué)生的空間思維能力,而且在情感上每位 學(xué)生 都獲得了成功的體驗(yàn),建立自信心。 24.1 圓 (第 3 課時(shí)) 教學(xué)內(nèi)容 1.圓周角的概念. 2.圓周角定理:在同圓或等圓中,同弧或等弧所對(duì)的圓周角相等,?都等于這條弦所對(duì) 的圓心角的一半. 推論:半圓〔或直徑〕所對(duì)的圓周角是直角,90°的圓周角所對(duì)的弦是直徑及其它們的 應(yīng)用. 教學(xué)目標(biāo) 1.了解圓周角的概念. 2.理解圓周角的定理
8、:在同圓或等圓中,同弧或等弧所對(duì)的圓周角相等,?都等于這條 弧所對(duì)的圓心角的一半. 3.理解圓周角定理的推論:半圓〔或直徑〕所對(duì)的圓周角是直角,90?°的圓周角所對(duì) 的弦是直徑. 4.熟練掌握?qǐng)A周角的定理及其推理的靈活運(yùn)用. 設(shè)置情景,給出圓周角概念,探究這些圓周角與圓心角的關(guān)系,運(yùn)用數(shù)學(xué)分類(lèi)思想給予 邏輯證明定理,得出推導(dǎo),讓學(xué)生活動(dòng)證明定理推論的正確性,最后運(yùn)用定理及其推導(dǎo)解決 一些實(shí)際問(wèn)題. 重難點(diǎn)、關(guān)鍵 1.重點(diǎn):圓周角的定理、圓周角的定理的推導(dǎo)及運(yùn)用它們解題. 2.難點(diǎn):運(yùn)用數(shù)學(xué)分類(lèi)思想證明圓周角的定理. 3.關(guān)鍵:探究圓周角的定理的存在. 教學(xué)過(guò)程 一、復(fù)習(xí)引入
9、 〔學(xué)生活動(dòng)〕請(qǐng)同學(xué)們口答下面兩個(gè)問(wèn)題. 1.什么叫圓心角? 2.圓心角、弦、弧之間有什么內(nèi)在聯(lián)系呢? 老師點(diǎn)評(píng):〔1〕我們把頂點(diǎn)在圓心的角叫圓心角. 〔2〕在同圓或等圓中,如果兩個(gè)圓心角、兩條弧、兩條弦中有一組量相等,?那么它們 所對(duì)的其余各組量都分別相等. 剛剛講的,頂點(diǎn)在圓心上的角,有一組等量的關(guān)系,如果頂點(diǎn)不在圓心上,它在其它的 位置上?如在圓周上,是否還存在一些等量關(guān)系呢?這就是我們今天要探討, 要研究,要解決的問(wèn)題. 二、探索新知 問(wèn)題:如下圖的⊙O,我們?cè)谏溟T(mén)游戲中,設(shè) E、F 是球門(mén),?設(shè)球員們只 能在 EF 所在的⊙O 其它位置射門(mén),
10、如下圖的 A、B、C 點(diǎn).通過(guò)觀察,我們可 以發(fā)現(xiàn)像∠EAF、∠EBF、∠ECF 這樣的角,它們的頂點(diǎn)在圓上,?并且兩邊都 與圓相交的角叫做圓周角. 現(xiàn)在通過(guò)圓周角的概念和度量的方法答復(fù)下面的問(wèn)題. 1.一個(gè)弧上所對(duì)的圓周角的個(gè)數(shù)有多少個(gè)? 2.同弧所對(duì)的圓周角的度數(shù)是否發(fā)生變化? A C 3.同弧上的圓周角與圓心角有什么關(guān)系? 〔學(xué)生分組討論〕提問(wèn)二、三位同學(xué)代表發(fā)言. O 老師點(diǎn)評(píng): 1.一個(gè)弧上所對(duì)的圓周角的個(gè)數(shù)有無(wú)數(shù)多個(gè). B 2.通過(guò)度量,我們可以發(fā)現(xiàn),同弧所對(duì)的圓周角是沒(méi)有變化的. 3.通過(guò)度量,我們可以得出,同弧
11、上的圓周角是圓心角的一半. 下面,我們通過(guò)邏輯證明來(lái)說(shuō)明“同弧所對(duì)的圓周角的度數(shù)沒(méi)有變化, ? 并且 A D 它的度數(shù)恰好等于這條弧所對(duì)的圓心角的度數(shù)的一半.〞 〔1〕設(shè)圓周角∠ABC 的一邊 BC 是⊙O 的直徑,如下圖 ∵∠AOC 是△ABO 的外角 B O C ∴∠AOC=∠ABO+∠BAO ∵OA=OB ∴∠ABO=∠BAO ∴∠AOC=∠ABO ∴∠ABC= 1 2 ∠AOC 〔2〕如圖,圓周角∠ABC 的兩邊 AB、AC 在一條直徑 OD 的兩側(cè),那么∠ABC= ∠AOC 嗎?請(qǐng)同學(xué)們獨(dú)立完成這道
12、題的說(shuō)明過(guò)程. 1 2 老師點(diǎn)評(píng):連結(jié) BO 交⊙O 于 D 同理∠AOD 是△ABO 的外角,∠COD 是△BOC 的外角,?那么就有∠AOD=2∠ABO,∠DOC=2∠CBO,因此∠AOC=2∠ABC. 〔3〕如圖,圓周角∠ABC 的兩邊 AB、AC 在一條直徑 OD 的同側(cè),那么∠ABC= ∠AOC 嗎?請(qǐng)同學(xué)們獨(dú)立完成證明. 1 2 老師點(diǎn)評(píng):連結(jié) OA、OC,連結(jié) BO 并延長(zhǎng)交⊙O 于 D,那么∠AOD=2∠ABD,∠COD=2∠CBO, 而∠ABC=∠ABD-∠CBO= 1 1 1 ∠AOD- ∠COD= ∠AOC 2 2 2
13、 現(xiàn)在,我如果在畫(huà)一個(gè)任意的圓周角∠AB′C,?同樣可證得它等于同弧上圓心角一半, 因此,同弧上的圓周角是相等的. 從〔1〕、〔2〕、〔3〕,我們可以總結(jié)歸納出圓周角定理: 在同圓或等圓中,同弧等弧所對(duì)的圓周角相等,都等于這條弧所對(duì)的圓心角的一半. 進(jìn)一步,我們還可以得到下面的推導(dǎo): 半圓〔或直徑〕所對(duì)的圓周角是直角,90°的圓周角所對(duì)的弦是直徑. 下面,我們通過(guò)這個(gè)定理和推論來(lái)解一些題目. 例 1.如圖,AB 是⊙O 的直徑,BD 是⊙O 的弦,延長(zhǎng) BD 到 C,使 AC=AB,BD 與 CD 的大小有什么關(guān)系?為什么? 分析:BD=CD,因?yàn)?AB=AC,所
14、以這個(gè)△ABC 是等腰,要證明 D 是 BC 的中點(diǎn), ?只要連結(jié) AD 證明 AD 是高或是∠BAC 的平分線即可. 解:BD=CD 理由是:如圖 24-30,連接 AD ∵AB 是⊙O 的直徑 ∴∠ADB=90°即 AD⊥BC 又∵AC=AB ∴BD=CD 三、穩(wěn)固練習(xí) 1.教材 P92 思考題. 2.教材 P93 練習(xí). 四、應(yīng)用拓展 例 2.如圖,△ABC 內(nèi)接于⊙O,∠A、∠B、∠C 的對(duì)邊分別設(shè)為 a,b,c,⊙O 半徑為 R,求證: a b c = = =2R. sin A sin B sin C a b c a b c 分析:要證
15、明 = = =2R,只要證明 =2R, =2R, =2R, sin A sin B sin C sin A sin B sin C a b c 即 sinA= ,sinB= ,sinC= ,因此,十清楚顯要在直角三 2 R 2 R 2 R 角形中進(jìn)行. 證明:連接 CO 并延長(zhǎng)交⊙O 于 D,連接 DB ∵CD 是直徑 ∴∠DBC=90° 又∵∠A=∠D 在 DBC 中,sinD= BC a ,即 2R= DC sin A b c 同理可證: =2R, =2R sin B sin C a b c ∴ = = =2R sin A sin B s
16、in C 五、歸納小結(jié)〔學(xué)生歸納,老師點(diǎn)評(píng)〕 本節(jié)課應(yīng)掌握: 1.圓周角的概念; 2.圓周角的定理:在同圓或等圓中,同弧或等弧所對(duì)的圓周角相等,?都相等這條弧所 對(duì)的圓心角的一半; 3.半圓〔或直徑〕所對(duì)的圓周角是直角,90°的圓周角所對(duì)的弦是直徑. 4.應(yīng)用圓周角的定理及其推導(dǎo)解決一些具體問(wèn)題. 六、布置作業(yè) 1.教材 P95 綜合運(yùn)用 9、10、 [教學(xué)反思] 學(xué)生對(duì)展開(kāi)圖通過(guò)各種途徑有了一些了解,但仍不能把平面與立體很好的結(jié)合;在遇 到問(wèn)題時(shí),多數(shù)學(xué)生不愿意自己探索,都要尋求幫助。在今后的教學(xué)中,我會(huì)不斷的鉆研探 索,使我的課堂真正成為學(xué)生學(xué)習(xí)的樂(lè)園。 本節(jié)課的教學(xué)活動(dòng),主要是讓學(xué)生通過(guò)觀察、動(dòng)手操作,熟悉長(zhǎng)方體、正方體的展開(kāi)圖 以及圖形折 疊后的形狀。教學(xué)時(shí),我讓每個(gè)學(xué)生帶長(zhǎng)方體或正方體的紙盒 ,每個(gè)學(xué)生都剪 一剪,并展示所剪圖形的形狀。由于剪的方法不同,展開(kāi)圖的形狀也可能是不同的。學(xué)生在 剪、拆盒子過(guò)程中,很容易把盒子拆散了,無(wú)法形成完整的展開(kāi)圖,就要求適當(dāng)進(jìn)行指導(dǎo)。 通過(guò)動(dòng)手操作,動(dòng)腦思考,集體交流,不僅提高了學(xué)生的空間思維能力,而且在情感上每位 學(xué)生 都獲得了成功的體驗(yàn),建立自信心。
- 溫馨提示:
1: 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
2: 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶(hù)所有。
3.本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
5. 裝配圖網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶(hù)上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶(hù)上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶(hù)因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025《增值稅法》高質(zhì)量發(fā)展的增值稅制度規(guī)范增值稅的征收和繳納
- 深入學(xué)習(xí)《中華人民共和國(guó)科學(xué)技術(shù)普及法》推進(jìn)實(shí)現(xiàn)高水平科技自立自強(qiáng)推動(dòng)經(jīng)濟(jì)發(fā)展和社會(huì)進(jìn)步
- 激揚(yáng)正氣淬煉本色踐行使命廉潔從政黨課
- 加強(qiáng)廉潔文化建設(shè)夯實(shí)廉政思想根基培育風(fēng)清氣正的政治生態(tài)
- 深入學(xué)習(xí)2024《突發(fā)事件應(yīng)對(duì)法》全文提高突發(fā)事件預(yù)防和應(yīng)對(duì)能力規(guī)范突發(fā)事件應(yīng)對(duì)活動(dòng)保護(hù)人民生命財(cái)產(chǎn)安全
- 2023年四年級(jí)數(shù)學(xué)上冊(cè)第一輪單元滾動(dòng)復(fù)習(xí)第10天平行四邊形和梯形作業(yè)課件新人教版
- 2023年四年級(jí)數(shù)學(xué)上冊(cè)第14單元階段性綜合復(fù)習(xí)作業(yè)課件新人教版
- 2023年四年級(jí)數(shù)學(xué)上冊(cè)易錯(cuò)清單十五課件新人教版
- 2023年四年級(jí)數(shù)學(xué)上冊(cè)易錯(cuò)清單七課件西師大版
- 2023年五年級(jí)數(shù)學(xué)下冊(cè)易錯(cuò)清單六作業(yè)課件北師大版
- 2023年五年級(jí)數(shù)學(xué)下冊(cè)易錯(cuò)清單二作業(yè)課件北師大版
- 2023年五年級(jí)數(shù)學(xué)下冊(cè)四分?jǐn)?shù)的意義和性質(zhì)第10課時(shí)異分母分?jǐn)?shù)的大小比較作業(yè)課件蘇教版
- 2023年五年級(jí)數(shù)學(xué)下冊(cè)周周練四作業(yè)課件北師大版
- 2023年五年級(jí)數(shù)學(xué)下冊(cè)六折線統(tǒng)計(jì)圖單元復(fù)習(xí)卡作業(yè)課件西師大版
- 2023年四年級(jí)數(shù)學(xué)上冊(cè)6除數(shù)是兩位數(shù)的除法單元易錯(cuò)集錦一作業(yè)課件新人教版