同課異構省一等獎《冪的乘方 積的乘方》教案 (省一等獎)

上傳人:一*** 文檔編號:146949942 上傳時間:2022-09-01 格式:DOC 頁數:6 大?。?72.50KB
收藏 版權申訴 舉報 下載
同課異構省一等獎《冪的乘方 積的乘方》教案 (省一等獎)_第1頁
第1頁 / 共6頁
同課異構省一等獎《冪的乘方 積的乘方》教案 (省一等獎)_第2頁
第2頁 / 共6頁
同課異構省一等獎《冪的乘方 積的乘方》教案 (省一等獎)_第3頁
第3頁 / 共6頁

下載文檔到電腦,查找使用更方便

10 積分

下載資源

還剩頁未讀,繼續(xù)閱讀

資源描述:

《同課異構省一等獎《冪的乘方 積的乘方》教案 (省一等獎)》由會員分享,可在線閱讀,更多相關《同課異構省一等獎《冪的乘方 積的乘方》教案 (省一等獎)(6頁珍藏版)》請在裝配圖網上搜索。

1、=3 =a ( 課題 教 學 目標 重點 難點 教 學 手 段 方法  冪的乘方、積的乘方 14.1 冪的乘方、積的乘方 1.理解冪的乘方與積的乘方性質的推導根據. 2.會運用冪的乘方與積的乘方性質進行計算. 3.在類比同底數冪的乘法性質學習冪的乘方與積的乘方性質時,體會三者 的聯(lián)系和區(qū)別及類比、歸 納的思想方法. 冪的乘方與積的乘方的性質 正確理解和應用同底數冪的乘法法那么 多媒體課件、講練結合 教 學 過程 情 境 引 入  教師活動 1.提出問題:問題 1 有一個邊長 為

2、 a2 的正方體鐵盒,這個鐵盒 的 容積是多少? 問題 2 根據乘方的意義及同底數 冪的乘法填空:  學生活動 引導學生認真思考并做題 鼓勵學生大膽探索。  說明或 設計意圖 通過練習的方 式,先讓學生 復習乘方的知 識,并緊接 著 利用乘方的知 識探索新課的 內容 學生在探索練 習的指導下, 自主的完成有 (3  2)3=3  2  ′32  ′32  ()  引導學生觀察,說出引例的底數、指 關的練習,并 在練習中發(fā)現 新  (a  2)3=a  2  ′a 

3、 2  ′a  2  () 數,并能用乘方的概念解答問 題。 冪的乘方的法 那么,從猜測 課 講 解  (a m)3=a m ′a m ′a m =a 2.通過上面的探索活動,發(fā)現了什 到探索到理解 法那么的實際 意義,從而從 本質上認識、 么? a 與任意正 整數 m ,n 的情況。 在教師的引導下完成老師提出的問 題,積極探索尋求規(guī)律。 學習冪的乘法 的來歷。讓學 生自己發(fā)現冪 的乘方的性質 特點〔如底數、 4.帶著學生小結:冪的乘方,底數 不變,指數相乘。  用文字表示發(fā)現的規(guī)律。 冪的乘方,

4、底數不變,指 數相乘。 用算式表示發(fā)現的規(guī)律。  指數發(fā)生了怎 樣的變化〕,并 運用自己的語 言進行描述。 然后再讓學生 回憶這一性質 (a  m)n=a  m  ? a  m  ? a  m  =a  m ?n 的得來過程, 進一步體會冪 講解和分析課本 96 頁 例題 2  學生完成課本 97 頁練習 的意義。 學生通過練習 穩(wěn)固剛剛學習 〔1〕  (103 ) 5 的新知識。在 此根底上加深 例 知識的應用。 題 〔2〕 (a 4 ) 4

5、 與 練 習 〔3〕 (a m ) 2 新 知 引 入 新  -(x 4 ) 3 〔4〕 2.教師提出問題: 問題 3 一個邊長為 a 的正方體鐵 盒,現將它的邊 長變?yōu)?原來的 b 倍,所得的鐵盒的容積 是多少? 1.根據乘方的意義和乘法的運律, 探索〔ab〕的 n 次方的運算結果。  完成老師提出的問題。引導學生自主 探究、討論、嘗試、歸納。 通過復習承上 啟下,為新課 做好準備。 由乘方的意義 及同底數冪的 乘法得到積的 乘方的運算性 質,循序漸進, 學 生 易 于 接 受。 在老師的提示下完成〔ab〕

6、的 n 次 方 通過學生自己 的運算。 慨括總結,既 分組探討所發(fā)現的規(guī)律。 培養(yǎng)了學生的 積的乘方,等于把積的每一個因式 參與意識,又 課 講  (ab)  n  =a  n  ? b  n 分別乘方,再把所得的冪相乘. 歸納了他們歸 納及口頭表達 解 嘗試用算式和文字小結發(fā)現的規(guī)律。 能力。 通過教師有意 2.用式子表示發(fā)現的規(guī)律。 識的引導,讓 3.用文字表示發(fā)現的規(guī)律。 積的乘方,等于把積的每一個因式  (ab)  n  =a  n  ? b  n 

7、 學生在現有知 識的根底上開 分別乘方,再把所得的冪相乘. 講解復習課本 97 頁 例題 3 計算  完成課本 98 頁的練習 動腦筋、積極 思考,這是理 解性質、 推導 性質的關鍵。 對 題 目 的 處 例 題  〔1〕  (2 a)  3 理,要充分調 動學生的參與 與 練  〔2〕  ( -5b)  3 意識,訓練學 生運用已有知 習  〔3〕  (xy  2 ) 2 識去解決新問 題的能力。 〔4〕  ( -2 x  3 ) 4 思考老師提出

8、的問題,認真總結  課堂歸納總結 對學生來說, 可以使學生上 課 堂 小 結  〔1〕本 節(jié)課學習了哪些主要內容? 〔2〕冪的三個運算性質是什么?它 們有什么區(qū)別和 聯(lián)系? 課聽講集中, 還可以歸納總 結的能力。 板 書 設計  冪的乘方、積的乘方 復習引入 探索新知,講授新課 例題和練習 穩(wěn)固練習 總結拓展。 作業(yè):習題 14.1 1〔3〕〔4〕〔5〕〔6〕 2 課 后 反 思 [教學反思] 學生對展開圖通過各種途徑有了一些了解,但仍不能把平面與立體很好的結合;在遇到問題

9、時,多數學生 不愿意自己探索,都要尋求幫助。在今后的教學中,我會不斷的鉆研探索,使我的課堂真正成為學生學習的樂園。 本節(jié)課的教學活動,主要是讓學生通過觀察、動手操作,熟悉長方體、正方體的展開圖以及圖形折疊后的形 狀。教學時,我讓每個學生帶長方體或正方體的紙盒,每個學生都剪一剪,并展示所剪圖形的形狀。由于剪的方 法不同,展開圖的形狀也可能是不同的。學生在剪、拆盒子過程中,很容易把盒子拆散了,無法形成完整的展開 圖,就要求適當進行指導。通過動手操作,動腦思考,集體交流,不僅提高了學生的空間思維能力,而且在情感 上每位學生 都獲得了成功的體驗,建立自信心。 24.1

10、圓 (第 3 課時) 教學內容 1.圓周角的概念. 2.圓周角定理:在同圓或等圓中,同弧或等弧所對的圓周角相等,?都等于這條弦所對的圓心角的一半. 推論:半圓〔或直徑〕所對的圓周角是直角,90°的圓周角所對的弦是直徑及其它們的應用. 教學目標 1.了解圓周角的概念. 2.理解圓周角的定理:在同圓或等圓中,同弧或等弧所對的圓周角相等,?都等于這條弧所對的圓心角的一 半. 3.理解圓周角定理的推論:半圓〔或直徑〕所對的圓周角是直角,90?°的圓周角所對的弦是直徑. 4.熟練掌握圓周角的定理及其推理的靈活運用. 設置情景,給出圓周角概念,探究這些圓周角與圓心角的關系,運用數學分

11、類思想給予邏輯證明定理,得出 推導,讓學生活動證明定理推論的正確性,最后運用定理及其推導解決一些實際問題. 重難點、關鍵 1.重點:圓周角的定理、圓周角的定理的推導及運用它們解題. 2.難點:運用數學分類思想證明圓周角的定理. 3.關鍵:探究圓周角的定理的存在. 教學過程 一、復習引入 〔學生活動〕請同學們口答下面兩個問題. 1.什么叫圓心角? 2.圓心角、弦、弧之間有什么內在聯(lián)系呢? 老師點評:〔1〕我們把頂點在圓心的角叫圓心角. 〔2〕在同圓或等圓中,如果兩個圓心角、兩條弧、兩條弦中有一組量相等,?那么它們所對的其余各組量都 分別相等. 剛剛講的,頂點在圓心上的

12、角,有一組等量的關系,如果頂點不在圓心 上,它在其 它的位置上?如在圓周上,是否還存在一些等量關系呢?這就是我們今天要探討,要研究,要解決的問題. 二、探索新知 問題:如下列圖的⊙O,我們在射門游戲中,設 E、F 是球門,?設球員們只能在 EF 所在的⊙O 其它位置射門, 如下列圖的 A、B、C 點.通過觀察,我們可以發(fā)現像∠EAF、∠EBF、∠ECF 這樣的角,它們的頂點在圓上,?并且 兩邊都與圓相交的角叫做圓周角. 現在通過圓周角的概念和度量的方法答復下面的問題. 1.一個弧上所對的圓周角的個數有多少個? 2.同弧所對的圓周角的度數是否發(fā)生變化? A C

13、 3.同弧上的圓周角與圓心角有什么關系? 〔學生分組討論〕提問二、三位同學代表發(fā)言.  O 老師點評: 1.一個弧上所對的圓周角的個數有無數多個.  B 2.通過度量,我們可以發(fā)現,同弧所對的圓周角是沒有變化的. 3.通過度量,我們可以得出,同弧上的圓周角是圓心角的一半. 下面,我們通過邏輯證明來說明“同弧所對的圓周角的度數沒有變化, ? A  D  并且 它的度數恰好等于這條弧所對的圓心角的度數的一半.〞 〔1〕設圓周角∠ABC 的一邊 BC 是⊙O 的直徑,如下列圖 ∵∠AOC 是△ABO 的外角 ∴∠AOC=∠ABO+∠

14、BAO  B O  C ∵OA=OB ∴∠ABO=∠BAO ∴∠AOC=∠ABO ∴∠ABC= 1 2  ∠AOC 〔2〕如圖,圓周角∠ABC 的兩邊 AB、AC 在一條直徑 OD 的兩側,那么∠ABC= 請同學們獨立完成這道題的說明過程. 1 2  ∠AOC 嗎? 老師點評:連結 BO 交⊙O 于 D 同理∠AOD 是△ABO 的外角,∠COD 是△BOC 那么就有∠AOD=2∠ABO,∠DOC=2∠CBO,因此∠AOC=2∠ABC. 的外角, ? 〔3〕如圖,圓周角∠ABC 的兩邊 AB、AC 在一條

15、直徑 OD 的同側,那么∠ABC= 請同學們獨立完成證明. 1 2  ∠AOC 嗎? 老師點評:連結 OA、OC,連結 BO 并延長交⊙O 于 D,那么∠AOD=2∠ABD,∠COD=2∠CBO,而∠ABC=∠ABD- ∠CBO= 1 1 1 ∠AOD- ∠COD= ∠AOC 2 2 2 現在,我如果在畫一個任意的圓周角∠AB′C,?同樣可證得它等于同弧上圓心角一半,因此,同弧上的圓周 角是相等的. 從〔1〕、〔2〕、〔3〕,我們可以總結歸納出圓周角定理: 在同圓或等圓中,同弧等弧所對的圓周角相等,都等于這條弧所對的圓心角的一半. 進一步,我們還

16、可以得到下面的推導: 半圓〔或直徑〕所對的圓周角是直角,90°的圓周角所對的弦是直徑. 下面,我們通過這個定理和推論來解一些題目. 例 1.如圖,AB 是⊙O 的直徑,BD 是⊙O 的弦,延長 BD 到 C,使 AC=AB,BD 的大小有什么關系?為什么? 與 CD 分析:BD=CD,因為 AB=AC,所以這個△ABC 是等腰,要證明 D 是 BC 的中點, ? 只要 連結 AD 證明 AD 是高或是∠BAC 的平分線即可. 解:BD=CD 理由是:如圖 24-30,連接 AD ∵AB 是⊙O 的直徑 ∴∠ADB=90°即 AD⊥BC 又∵AC=AB

17、 ∴BD=CD 三、穩(wěn)固練習 1.教材 P92 思考題. 2.教材 P93 練習. 四、應用拓展 例 2 .如圖,△ ABC 內接于⊙ O ,∠ A 、∠ B 、∠ C 的對邊分別設為 a ,b ,c ,⊙ O 半徑為 R ,求證: a b c = = =2R. sin A sin B sin C a b c a b c a b 分析:要證明 = = =2R,只要證明 =2R, =2R, =2R,即 sinA= ,sinB= , sin A sin B sin C sin A sin B sin C 2 R 2 R sinC= c 2R  ,因此,十清楚

18、顯要在直角三角形中進行. 證明:連接 CO 并延長交⊙O 于 D,連接 DB ∵CD 是直徑 ∴∠DBC=90° 又∵∠A=∠D 在 DBC 中,sinD= BC a ,即 2R= DC sin A b c 同理可證: =2R, =2R sin B sin C a b c ∴ = = =2R sin A sin B sin C 五、歸納小結〔學生歸納,老師點評〕 本節(jié)課應掌握: 1.圓周角的概念; 2.圓周角的定理:在同圓或等圓中,同弧或等弧所對的圓周角相等,?都相等這條弧所對的圓心角的一半; 3.半圓〔或直徑〕所對的圓周角是直角,90°的圓

19、周角所對的弦是直徑. 4.應用圓周角的定理及其推導解決一些具體問題. 六、布置作業(yè) 1.教材 P95 綜合運用 9、10、 [教學反思] 學生對展開圖通過各種途徑有了一些了解,但仍不能把平面與立體很好的結合;在遇到問題時,多數學生 不愿意自己探索,都要尋求幫助。在今后的教學中,我會不斷的鉆研探索,使我的課堂真正成為學生學習的樂園。 本節(jié)課的教學活動,主要是讓學生通過觀察、動手操作,熟悉長方體、正方體的展開圖以及圖形折疊后的形 狀。教學時,我讓每個學生帶長方體或正方體的紙盒,每個學生都剪一剪,并展示所剪圖形的形狀。由于剪的方 法不同,展開圖的形狀也可能是不同的。學生在剪、拆盒子過程中,很容易把盒子拆散了,無法形成完整的展開 圖,就要求適當進行指導。通過動手操作,動腦思考,集體交流,不僅提高了學生的空間思維能力,而且在情感 上每位學生 都獲得了成功的體驗,建立自信心。

展開閱讀全文
溫馨提示:
1: 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
2: 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
3.本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
5. 裝配圖網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

相關資源

更多
正為您匹配相似的精品文檔
關于我們 - 網站聲明 - 網站地圖 - 資源地圖 - 友情鏈接 - 網站客服 - 聯(lián)系我們

copyright@ 2023-2025  zhuangpeitu.com 裝配圖網版權所有   聯(lián)系電話:18123376007

備案號:ICP2024067431-1 川公網安備51140202000466號


本站為文檔C2C交易模式,即用戶上傳的文檔直接被用戶下載,本站只是中間服務平臺,本站所有文檔下載所得的收益歸上傳人(含作者)所有。裝配圖網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對上載內容本身不做任何修改或編輯。若文檔所含內容侵犯了您的版權或隱私,請立即通知裝配圖網,我們立即給予刪除!