離散信道的信道容量.ppt

上傳人:xin****828 文檔編號:15982432 上傳時間:2020-09-15 格式:PPT 頁數(shù):33 大?。?98.05KB
收藏 版權(quán)申訴 舉報 下載
離散信道的信道容量.ppt_第1頁
第1頁 / 共33頁
離散信道的信道容量.ppt_第2頁
第2頁 / 共33頁
離散信道的信道容量.ppt_第3頁
第3頁 / 共33頁

下載文檔到電腦,查找使用更方便

9.9 積分

下載資源

還剩頁未讀,繼續(xù)閱讀

資源描述:

《離散信道的信道容量.ppt》由會員分享,可在線閱讀,更多相關《離散信道的信道容量.ppt(33頁珍藏版)》請在裝配圖網(wǎng)上搜索。

1、1,第五章 離散信道的信道容量,第五章 離散信道的信道容量,內(nèi)容提要: 信道對于信息率的容納并不是無限制的,它不僅與物理信道本身的特性有關,還與信道輸入信號的統(tǒng)計特性有關,它有一個極限值,即信道容量,信道容量是有關信道的一個很重要的物理量。這一章研究信道,研究在信道中傳輸?shù)拿總€符號所攜帶的信息量,并定義信道容量。,3,本章重點: 1.信道容量的定義; 2.平均互信息量達到信道容量的充要條件; 3.幾種特殊離散信道信道容量的計算。,5.1 信道容量的定義,信息傳輸率是衡量通信質(zhì)量的一個重要指標,由定理2.1知:對于固定信道,總存在某種輸入概率分布q(x),使I(X; Y)達到最大值,定義這個最

2、大值為信道容量,記為C。 (比特/碼符號) (5-2) 使I(X; Y)達到信道容量的分布q (x)為最佳分布。,5.2 離散無記憶信道容量的計算,定理5.1 如果信道是離散無記憶(DMC)的,則CN NC, 其中C是同一信道傳輸單符號時的信道容量。,下面一條定理給出了一維信道和N維信道的信道容量之間的關系。,若信道離散無記憶,則根據(jù)定理2.4有:,若 (1) 輸入的N個符號統(tǒng)計獨立,即信源離散無記憶,根據(jù)定理2.3有:,(2)對每個i,輸入分布q (xi) 可使I (Xi; Yi) 達到信道容量C,則: = = NC CN NC

3、 (5-5),綜合式(5-4)和(5-5),在信源和信道都離散無記憶的情況下,有CN = NC,即定理中等號成立,這時N長序列的傳輸問題可歸結(jié)為單符號傳輸問題。,5.2.1 達到信道容量的充要條件,定理5.2 使平均互信息量I(X; Y)達到信道容量C的充要條件是信道輸入概率分布 ,簡記為q (X) = q (x1), q (x2), , q (xM)滿足: (5-6),介紹幾種無噪信道,對于無噪信道,信道的輸入X和輸出Y之間有著確定的關系,一般有三類:無損信道、確定信道和

4、無損確定信道。,【例5.2】 無損信道 無損信道的輸入符號集元素個數(shù)小于輸出符號集的元素個數(shù),信道的一個輸入對應多個互不交叉的輸出,如圖5-2所示,信道輸入符號集X =x1, x2, x3,輸出符號集Y =y1, y2, y3, y4, y5 , y6,其信道轉(zhuǎn)移概率矩陣記為 ,計算該信道的信道容量。,圖5-2 無損信道,2. 根據(jù)定義計算信道容量C 從上式可看出,求信道容量C的問題轉(zhuǎn)化為尋找某種分布q (x) 使信源熵H(X)達到最大,由極大離散熵定理知道,在信源消息等概分布時 ,熵值達到最大,即有,1. 先考察平均互信息量I(X; Y)= H(X)-H(XY),在無噪信

5、道條件下,H(XY)= 0,則平均互信息量I(X; Y)= H(X),3. 根據(jù)平均互信息量I(X; Y)達到信道容量的充要條件式(5-6)對C進行驗證: 先根據(jù)計算出(yj), j =1,2,3,4,5,6,再計算出:,5.2.2 幾類特殊的信道,定義5.1 如果信道轉(zhuǎn)移概率矩陣P中,每一行元素都是另一行相同元素的不同排列,則稱該信道關于行(輸入)對稱。,定義5.2 如果信道轉(zhuǎn)移概率矩陣P中,每一列元素都是另一列相同元素的不同排列,則稱該信道關于列(輸出)對稱。,定義5.3 如果信道轉(zhuǎn)移概率矩陣P可按輸出符號集Y分成幾個子集(子矩陣),而每一子集關于行、列都對稱,稱此信道為準對稱信道。,1.

6、 準對稱信道,【例5.6】 信道輸入符號集X = x1, x2,輸出符號集Y = y1, y2, y3, y4,給定信道 轉(zhuǎn)移概率矩陣 ,求該信道的信道容量C。,這是一個準對稱信道,根據(jù)定理5.3,當X等概分布, 時,信道容量 平均互信息量 I(X; Y)= H(Y)-H(YX) (5-7),定理5.3 實現(xiàn)DMC準對稱信道的信道容量的分布為等概分布。,由 ,先算出 (5-8),將式(5-8)和 代入式(5-7),可算得信道容量

7、 = 0.0325 (比特/符號),【例5.8】 信道輸入符號集X = x1, x2 ,輸出符號集Y = y1, y2, y3,給定信道轉(zhuǎn)移概率矩陣 ,求信道容量C。,設使平均互信息量達到信道容量的信源分布為 q(x1) = ,q(x2) =1- 。 由 可算出,2. 信源只含兩個消息,平均互信息量 I(X; Y) = H(Y) H (YX) = -(1-q) log + (1-) log (1-) 根據(jù)定義,求C的問題就轉(zhuǎn)化為為何值時,I(X; Y ) 達到最大值。令 則信道容量 C = I (X; Y)a=0.5 = 1-q,計算信道容量C按下面步驟進

8、行: (1)先驗證信道轉(zhuǎn)移概率矩陣P =p(yjxi)是方陣,且矩陣P的行列式p(yjxi)0;,3.信道轉(zhuǎn)移概率矩陣為非奇異方陣,(2)計算出逆矩陣P-1= p-1 (yjxk);,(3)根據(jù)式(5-17),計算出;,,(4)根據(jù)式(5-18) ,計算出信道容量C;,,,,(5) 驗證是否滿足q(xi) 0, i =1, 2, , K。 l先由式(5-16) 計算出(yk) k =1, 2, , K l再由式(5-21) 計算,【例5.9】 給出信道轉(zhuǎn)移概率矩陣 ,求信道容量C。,(1)P矩陣的行列式 ,說明P是一個非奇異方陣。,,(2)P的逆矩陣,,(3)算出,(4)信道容量

9、 (奈特/碼符號),(5)下面驗證是否q (xi) 0,i =1, 2 先根據(jù) 算出 再算得,圖5-9 兩個信道,5.3 組合信道的容量,考慮有兩個信道。信道1 信道2:,5.3.1 獨立并行信道,在這種情況下,二個信道作為一個信道使用,傳送符號 ,接收符號 ,根據(jù)定理2.4,對于離散無記憶信道,下式成立 (5-22),對上面不等式兩邊取最大值,得 C C 1 + C2 (5-23),推廣到N個信道的并行組合,當N個信道并行獨立使用時,記Ck (k = 1, 2, , N )為第k個信道

10、的信道容量,C為組合信道的總?cè)萘?,則有 (5-24),等號成立的條件,都要求信源離散無記憶,即要求信道獨立使用且輸入獨立。,5.3.2 和信道,兩個信道輪流使用,使用概率分別為p1, p2,且p1+p2 = 1,記概率分布P =(p1, p2),和信道的平均互信息計算如下 I(P)= I(p1, p2) = p1I(X;Y)+ p 2 I(X /;Y /)+ H 2(P) 式中:H 2(P) = - p1 log p1 - p2 log p2。,根據(jù)定義,有 (5-26),求使式(5-26)取極大值的P 令

11、 ,對數(shù)以2為底,注意到p2 = 1- p1, 得 記 C1 - log p1 = C2 - log p2 = (為待定常數(shù)) (5-27),從式(5-27)中解出: (5-28),,將式(5-28)代入條件p1+p2 = 1,得 (5-29),式(5-28)中的p1, p2就是使平均互信息量I(p1, p2)達到最大的取值,將其代入式(5-26),得:,= (p1+p2)=,將式(5-29)代入式(5-30)得:,推廣到N個信道輪流使用的情況, 當N個信道以不同概率輪流使用時,記Ck (k = 1, 2, , N )為第k個信道的信道容量,C為組合信道

12、的總?cè)萘?,則有 (5-31),5.3.3 串行信道,將兩個信道級聯(lián),有X / = Y,如圖5-10所示 。,圖5-10 串行信道,串行信道的信道轉(zhuǎn)移概率 用矩陣表示為: (5-32),串行級聯(lián)信道的信道轉(zhuǎn)移概率趨向于兩個獨立信道轉(zhuǎn)移概率的均值。若將N個轉(zhuǎn)移概率相同的信道級聯(lián),當N 時,其總信道容量將趨于零。,信道1:P1 = p (yx) ,信道2:P2 = p (yx ) ,信道1和信道2是獨立的,信道2的輸出Z只與其輸入Y及信道轉(zhuǎn)移概率P2 = p (yx )有關,而與X無關。因此信道1和信道2串連就構(gòu)成了一個馬爾可夫鏈,對

13、于馬爾可夫鏈有如下定理:,數(shù)據(jù)處理定理:無論經(jīng)過何種數(shù)據(jù)處理,都不會使信息量增加。,定理5.4 若隨機變量X、Y、Z組成一個馬爾可夫鏈,如圖5-11所示,則有 I(X; Z) I(X; Y) (5-33) I(X; Z) I(Y; Z) (5-34),【例5.11】 兩個離散信道 , ,將它們串行連接使用,如圖 5-10,計算總信道容量C。,(1)先計算總信道的信道轉(zhuǎn)移概率矩陣,串聯(lián)信道的總信道矩陣P等于第一級信道的信道矩陣P1,從而概率滿足 p (yx) = p (zx) (對所有

14、的x,y,z) (5-36),對式(5-36)兩邊關于x求和,得 p (y) = p (z) (5-37) 利用式(5-37),由式(5-36)得,(2)計算信道容量C,在例5.11中,第一個信道是輸入只有兩個消息的情況,設最佳分布為 q (x1) = ,q (x2) = 1-,仿照例5.8可算出 = 0.4,則信道容量C = C1 = 0.32 (比特/符號)。,本章主要定義了信道容量及討論了信道容量的計算方法。討論并證明了使平均互信息量達到信道容量的充要條件,并給出如下幾種

15、情況下信道容量的計算方法 (1) 準對稱信道 (2) 信源只含兩個消息 (3) 信道轉(zhuǎn)移概率矩陣為可逆方陣 還討論了多個信道組合使用情況下,總信道容量的計算方法,討論了以下幾種情況: (1)N個信道獨立并行使用:記每個信道單獨使用時的信道容量為Ck ,k=1,2, , N,則總信道容量C滿足 ,當N個信道獨立輸入且獨立使用時等號成立。 (2)N個信道輪流使用:各信道使用概率為pk ,k =1,2, , N, 總信道容量為 ,每個信道的使用概率為,本 章 小 結(jié),(3)N個信道串聯(lián)使用:記各個信道的信道轉(zhuǎn)移概率矩陣為Pk ,k =1,2, , N,則總信道的信道轉(zhuǎn)移概率矩陣P等于各信道轉(zhuǎn)移概率矩陣相乘,即P = P1 P2 PN ,矩陣的乘法要滿足:左乘矩陣的列數(shù)應等于右乘矩陣的行數(shù),且矩陣相乘不滿足交換率。,

展開閱讀全文
溫馨提示:
1: 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
2: 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
3.本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
5. 裝配圖網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

相關資源

更多
正為您匹配相似的精品文檔
關于我們 - 網(wǎng)站聲明 - 網(wǎng)站地圖 - 資源地圖 - 友情鏈接 - 網(wǎng)站客服 - 聯(lián)系我們

copyright@ 2023-2025  zhuangpeitu.com 裝配圖網(wǎng)版權(quán)所有   聯(lián)系電話:18123376007

備案號:ICP2024067431-1 川公網(wǎng)安備51140202000466號


本站為文檔C2C交易模式,即用戶上傳的文檔直接被用戶下載,本站只是中間服務平臺,本站所有文檔下載所得的收益歸上傳人(含作者)所有。裝配圖網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對上載內(nèi)容本身不做任何修改或編輯。若文檔所含內(nèi)容侵犯了您的版權(quán)或隱私,請立即通知裝配圖網(wǎng),我們立即給予刪除!