直線與雙曲線位置關(guān)系典例精析

上傳人:jun****875 文檔編號:18661764 上傳時間:2021-01-02 格式:DOC 頁數(shù):9 大?。?07.91KB
收藏 版權(quán)申訴 舉報 下載
直線與雙曲線位置關(guān)系典例精析_第1頁
第1頁 / 共9頁
直線與雙曲線位置關(guān)系典例精析_第2頁
第2頁 / 共9頁
直線與雙曲線位置關(guān)系典例精析_第3頁
第3頁 / 共9頁

下載文檔到電腦,查找使用更方便

9.9 積分

下載資源

還剩頁未讀,繼續(xù)閱讀

資源描述:

《直線與雙曲線位置關(guān)系典例精析》由會員分享,可在線閱讀,更多相關(guān)《直線與雙曲線位置關(guān)系典例精析(9頁珍藏版)》請在裝配圖網(wǎng)上搜索。

1、直線和雙曲線的位置關(guān)系 一、要點(diǎn)精講 1.直線和雙曲線的位置關(guān)系有三種:相交、相切、相離. 2.弦長公式:設(shè)直線交雙曲線于,, 則, 或. 二、基礎(chǔ)自測 1.經(jīng)過點(diǎn)且與雙曲線僅有一個公共點(diǎn)的直線有( ) (A) 4條 (B) 3條 (C) 2條 (D) 1條 2.直線y= kx與雙曲線不可能( ) (A)相交 (B)只有一個交點(diǎn) (C)相離 (D)有兩個公共點(diǎn) 3.過雙曲線的一個焦點(diǎn)且與雙曲線的實(shí)軸垂直的弦叫做雙曲線的通徑,則雙曲線的通徑長是 (A) (B)

2、 (C) (D) 4.若一直線平行于雙曲線的一條漸近線,則與雙曲線的公共點(diǎn)個數(shù)為 . 解:與雙曲線漸近線平行的直線與雙曲線有且只有一個公共點(diǎn),應(yīng)注意直線與雙曲線不是相切 5.經(jīng)過雙曲線的右焦點(diǎn)且斜率為2的直線被雙曲線截得的線段的長是 . 6.直線在雙曲線上截得的弦長為4,且的斜率為2,求直線的方程. 三、典例精析 題型一:直線與雙曲線的位置關(guān)系 1. 如果直線與雙曲線沒有公共點(diǎn),求的取值范圍.有兩個公共點(diǎn)呢? 解,所以△=, 所以,,故選D. 2.(2010安徽)若直線y

3、=kx+2與雙曲線x2-y2=6的右支交于不同的兩點(diǎn),則k的取值范圍是 (  ) A. B. C. D. 解:由得(1-k2)x2-4kx-10=0,∴,解得-

4、用根與系數(shù)的關(guān)系或“平方差法”求解.此時,若已知點(diǎn)在雙曲線的內(nèi)部,則中點(diǎn)弦一定存在,所求出的直線可不檢驗,若已知點(diǎn)在雙曲線的外部,中點(diǎn)弦可能存在,也可能不存在,因而對所求直線必須進(jìn)行檢驗,以免增解,若用待定系數(shù)法時,只需求出k值對判別式△>0進(jìn)行驗證即可. 6. 雙曲線方程為. 問:以定點(diǎn)B(1,1)為中點(diǎn)的弦存在嗎?若存在,求出其所在直線的方程;若不存在,請說明理由. 7、已知中心在原點(diǎn),頂點(diǎn)在軸上,離心率為的雙曲線經(jīng)過點(diǎn) (Ⅰ)求雙曲線的方程; (Ⅱ)動直線經(jīng)過的重心,與雙曲線交于不同的兩點(diǎn),問是否存在直線使平分線段。試證明你的結(jié)論。

5、 題型三: 求雙曲線方程 8. 已知焦點(diǎn)在x軸上的雙曲線上一點(diǎn),到雙曲線兩個焦點(diǎn)的距離分別為4和8,直線被雙曲線截得的弦長為,求此雙曲線的標(biāo)準(zhǔn)方程. 9、設(shè)雙曲線與直線相交于不同的點(diǎn)A、B. ⑴求雙曲線的離心率的取值范圍; ⑵設(shè)直線與軸的交點(diǎn)為,且,求的值。 解:(1)將y=-x+1代入雙曲線-y2=1中得(1-a2)x2+2a2x-2a2=0 ① 由題設(shè)條件知, ,解得0且e≠. (2)設(shè)A(x1,y1),B(x2,y2),P(0,1). ∵=,

6、 ∴(x1,y1-1)=(x2,y2-1).∴x1=x2, ∵x1、x2是方程①的兩根,且1-a2≠0, ∴x2=-,x=-, 消去x2得,-=, ∵a>0,∴a=. 10. 已知雙曲線的焦點(diǎn)為,,過且斜率為的直線交雙曲線于、兩點(diǎn),若 (其中為原點(diǎn)),,求雙曲線方程。 11. 雙曲線的中心為原點(diǎn),焦點(diǎn)在軸上,兩條漸近線分別為,經(jīng)過右焦點(diǎn)垂直于的直線分別交于兩點(diǎn).已知成等差數(shù)列,且與同向. (Ⅰ)求雙曲線的離心率; (Ⅱ)設(shè)被雙曲線所截得的線段的長為4,求雙曲線的方程. 解:(Ⅰ)設(shè),, 由勾股定理可得: 得:,, 由倍角公式,解得,則離心率

7、. (Ⅱ)過直線方程為,與雙曲線方程聯(lián)立,將,代入, 化簡有 將數(shù)值代入,有, 解得 故所求的雙曲線方程為。 12、已知雙曲線-=1(b>a>0),O為坐標(biāo)原點(diǎn),離心率e=2,點(diǎn)M(,)在雙曲線上. (1) 求雙曲線的方程;(2) 若直線l與雙曲線交于P,Q兩點(diǎn),且.求+的值. 解: (1)∵e=2,∴c=2a,b2=c2-a2=3a2,雙曲線方程為-=1,即3x2-y2=3a2. ∵點(diǎn)M(,)在雙曲線上,∴15-3=3a2.∴a2=4. ∴所求雙曲線的方程為-=1. (2)設(shè)直線OP的方程為y=kx(k≠0),聯(lián)立-=1,得 ∴|OP|2=x2+y2=.

8、則OQ的方程為y=-x, 同理有|OQ|2==, ∴+===. 13.(2012上海)在平面直角坐標(biāo)系xOy中,已知雙曲線C1:2x2-y2=1. (1)過C1的左頂點(diǎn)引C1的一條漸近線的平行線,求該直線與另一條漸近線及x軸圍成的三角形的面積; (2)設(shè)斜率為1的直線l交C1于P、Q兩點(diǎn).若l與圓x2+y2=1相切,求證:OP⊥OQ; (3)設(shè)橢圓C2:4x2+y2=1.若M、N分別是C1、C2上的動點(diǎn),且OM⊥ON,求證:O到直線MN的距離是定值. 解:(1)雙曲線C1:,左頂點(diǎn)A,漸近線方程為:y=x. 過點(diǎn)A與漸近線y=x平行的直線方程為,即y=x+1. 解方程組,得.

9、 ∴所求三角形的面積為S=|OA||y|=. (2)證明:設(shè)直線PQ的方程是y=x+b,∵直線PQ與已知圓相切,∴=1,即b2=2. 由得x2-2bx-b2-1=0. 設(shè)P(x1,y1)、Q(x2,y2),則 又y1y2=(x1+b)(x2+b), ∴=x1x2+y1y2=2x1x2+b(x1+x2)+b2=2(-1-b2)+2b2+b2=b2-2=0. 故OP⊥OQ. (3)證明:當(dāng)直線ON垂直于x軸時,|ON|=1,|OM|=,則O到直線MN的距離為. 當(dāng)直線ON不垂直于x軸時,設(shè)直線ON的方程為y=kx(顯然), 則直線OM的方程為y=-x. 由得 ∴|O

10、N|2=.同理|OM|2=. 設(shè)O到直線MN的距離為d. ∵(|OM|2+|ON|2)d2=|OM|2|ON|2, ∴=+==3,即d=. 綜上,O到直線MN的距離是定值. 五、能力提升 1.若不論k為何值,直線y=k(x-2)+b與雙曲線總有公共點(diǎn),則b的取值范圍是( ) (A) (B) (C) (D) 2.過雙曲線的右焦點(diǎn)F作直線交雙曲線于A、B兩點(diǎn),若|AB|=4,則這樣的直線有( ) (A)1條 (B)2條 (C)3條 (D)4條 3.過點(diǎn)的直線與雙曲

11、線有且僅有一個公共點(diǎn),且這個公共點(diǎn)恰是雙曲線的左頂點(diǎn),則雙曲線的實(shí)軸長等于( ) (A)2 (B)4 (C) 1或2 (D) 2或4 4. 已知雙曲線的右焦點(diǎn)為F,若過點(diǎn)F且傾斜角為的直線與雙曲線的右支有且只有一個交點(diǎn),則此雙曲線離心率的取值范圍是( ) (A) (1,2] (B)(1,2) (C) [2,+∞) (D) (2,+∞) 6.直線與雙曲線的右支交于不同兩點(diǎn),則k的取值范圍是 . 7. 已知傾斜角為的直線被雙曲線截得的弦長,求直線的方程. 8. 設(shè)直線與雙曲線于相交于A、B兩點(diǎn),且弦AB中點(diǎn)的橫坐標(biāo)為. (1)求的值;(2)求雙曲線離心率. 9. 已知雙曲線的離心率,左、右焦點(diǎn)分別為、,左準(zhǔn)線為,能否在雙曲線的左支上找到一點(diǎn)P,使得是P到的距離與的等比中項?

展開閱讀全文
溫馨提示:
1: 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
2: 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
3.本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
5. 裝配圖網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

相關(guān)資源

更多
正為您匹配相似的精品文檔
關(guān)于我們 - 網(wǎng)站聲明 - 網(wǎng)站地圖 - 資源地圖 - 友情鏈接 - 網(wǎng)站客服 - 聯(lián)系我們

copyright@ 2023-2025  zhuangpeitu.com 裝配圖網(wǎng)版權(quán)所有   聯(lián)系電話:18123376007

備案號:ICP2024067431-1 川公網(wǎng)安備51140202000466號


本站為文檔C2C交易模式,即用戶上傳的文檔直接被用戶下載,本站只是中間服務(wù)平臺,本站所有文檔下載所得的收益歸上傳人(含作者)所有。裝配圖網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對上載內(nèi)容本身不做任何修改或編輯。若文檔所含內(nèi)容侵犯了您的版權(quán)或隱私,請立即通知裝配圖網(wǎng),我們立即給予刪除!