小型水稻脫粒機(jī)設(shè)計(jì)【半喂入、弓齒式滾筒脫粒機(jī)脫?!?/h1>
小型水稻脫粒機(jī)設(shè)計(jì)【半喂入、弓齒式滾筒脫粒機(jī)脫粒】,半喂入、弓齒式滾筒脫粒機(jī)脫粒,小型水稻脫粒機(jī)設(shè)計(jì)【半喂入、弓齒式滾筒脫粒機(jī)脫?!?小型,水稻,脫粒機(jī),設(shè)計(jì),半喂入,弓齒式,滾筒,脫粒
湖 南 農(nóng) 業(yè) 大 學(xué)
全日制普通本科生畢業(yè)設(shè)計(jì)
小型水稻脫粒機(jī)設(shè)計(jì)
THE DESIGN OF SMALL RICE THRESHER
學(xué)生姓名:汪佳堰
學(xué) 號(hào):200940615109
年級(jí)專業(yè)及班級(jí):2009級(jí)農(nóng)業(yè)機(jī)械化及其自動(dòng)化(1)班
指導(dǎo)老師及職稱:翁偉 講師
學(xué) 院:工學(xué)院
湖南·長(zhǎng)沙
提交日期:2013年05月
湖南農(nóng)業(yè)大學(xué)全日制普通本科生畢業(yè)設(shè)計(jì)
誠(chéng) 信 聲 明
本人鄭重聲明:所呈交的本科畢業(yè)設(shè)計(jì)是本人在指導(dǎo)老師的指導(dǎo)下,進(jìn)行研究工作所取得的成果,成果不存在知識(shí)產(chǎn)權(quán)爭(zhēng)議。除文中已經(jīng)注明引用的內(nèi)容外,本論文不含任何其他個(gè)人或集體已經(jīng)發(fā)表或撰寫過(guò)的作品成果。對(duì)本文的研究做出重要貢獻(xiàn)的個(gè)人和集體在文中均作了明確的說(shuō)明并表示了謝意。本人完全意識(shí)到本聲明的法律結(jié)果由本人承擔(dān)。
畢業(yè)設(shè)計(jì)作者簽名:
年 月 日
目 錄
摘要……………………………………………………………………………………1
關(guān)鍵詞…………………………………………………………………………………1
1前言…………………………………………………………………………………1
1.1課題研究的和意義……………………………………………………2
1.2小型水稻脫粒機(jī)的現(xiàn)狀……………………………………………………2
1.3本設(shè)計(jì)的創(chuàng)新思路…………………………………………………………3
1.4主要計(jì)算參數(shù)……………………………………………………………………3
2總體方案確定…………………………………………………………………………4
2.1脫粒機(jī)的工作原理…………………………………………………………………4
2.2設(shè)計(jì)目的……………………………………………………………………………4
2.3 設(shè)計(jì)任務(wù)……………………………………………………………………………4
2.4 系統(tǒng)功能描述和功能分解…………………………………………………………5
2.4.1喂入部分…………………………………………………………………………5
2.4.2 脫粒部分…………………………………………………………………………5
2.4.3 篩選部分…………………………………………………………………………5
2.5總體方案的設(shè)計(jì)和求解……………………………………………………………6
3脫粒裝置設(shè)計(jì)…………………………………………………………………………6
3.1脫粒原理………………………………………………………………………6
3.2 脫粒裝置類型選擇……………………………………………………………7
3.3 脫粒滾筒轉(zhuǎn)速計(jì)算……………………………………………………………8
3.4 滾筒直徑計(jì)算…………………………………………………………………8
3.5 脫粒滾筒長(zhǎng)度確定……………………………………………………………9
3.6 滾筒脫粒齒確定………………………………………………………………9
3.6.1弓齒形狀選擇…………………………………………………………9
3.6.2弓齒排列………………………………………………………………9
3.6.3相關(guān)參數(shù)計(jì)算…………………………………………………………10
4清選裝置設(shè)計(jì)………………………………………………………………………10
4.1清選原理………………………………………………………………………10
4.2 清選裝置類型選擇……………………………………………………………10
4.3 風(fēng)機(jī)參數(shù)計(jì)算…………………………………………………………………10
4.3.1風(fēng)機(jī)參數(shù)選擇………………………………………………………………11
4.3.1風(fēng)機(jī)計(jì)算……………………………………………………………………11
4.4振動(dòng)篩設(shè)計(jì)………………………………………………………………………12
4.4.1振動(dòng)篩設(shè)計(jì)……………………………………………………………………12
4.5凹版設(shè)計(jì)………………………………………………………………………12
4.5.1凹版類型確定…………………………………………………………12
4.5.2凹版直徑確定…………………………………………………………12
4.5.3凹版與滾筒之間間隙確定……………………………………………12
5動(dòng)力選擇……………………………………………………………………………12
5.1整機(jī)消耗的功率計(jì)算…………………………………………………………12
5.1.1脫粒裝置的消耗的功率計(jì)算…………………………………………13
5.1.2清選裝置的消耗的功率………………………………………………13
5.2電動(dòng)機(jī)選擇……………………………………………………………………14
6傳動(dòng)裝置的設(shè)計(jì)……………………………………………………………………14
6.1傳動(dòng)路線………………………………………………………………………14
6.2確定傳動(dòng)裝置的傳動(dòng)比………………………………………………………14
6.3確定傳動(dòng)裝置的動(dòng)力參數(shù)……………………………………………………14
6.4皮帶輪的設(shè)計(jì)與計(jì)算…………………………………………………………15
6.4.1帶型確定………………………………………………………………15
6.4.2帶輪直徑與帶速確定…………………………………………………15
6.4.3帶的基準(zhǔn)長(zhǎng)度和軸間距確定…………………………………………16
6.5驗(yàn)算小帶輪的包角……………………………………………………………16
6.6確定V帶的根數(shù)………………………………………………………………16
6.7單根V帶預(yù)警力計(jì)算…………………………………………………………16
6.8計(jì)算壓軸力……………………………………………………………………17
7圓柱齒輪的設(shè)計(jì)與計(jì)算……………………………………………………………17
7.1材料的選擇及許用應(yīng)力確定…………………………………………………17
7.2按輪齒接觸強(qiáng)度計(jì)算…………………………………………………………17
7.3按齒根彎曲強(qiáng)度計(jì)算…………………………………………………………18
8軸設(shè)計(jì)與計(jì)算………………………………………………………………………19
8.1軸的材料選擇…………………………………………………………………19
8.2軸的最小直徑確定……………………………………………………………19
8.3軸結(jié)構(gòu)設(shè)計(jì)……………………………………………………………………19
9鍵連接選擇…………………………………………………………………………20
10滾動(dòng)軸承選用……………………………………………………………………20
11主要部件校核……………………………………………………………………20
11.1圓柱齒輪校核………………………………………………………………20
11.2軸校核………………………………………………………………………20
11.2.1軸上載荷計(jì)算………………………………………………………21
11.2.2按彎扭合成應(yīng)力校核軸的強(qiáng)度……………………………………21
11.2.3精確校核軸的疲勞強(qiáng)度……………………………………………21
11.3鍵強(qiáng)度校核…………………………………………………………………22
11.4滾動(dòng)軸承校核………………………………………………………………22
11.4.1當(dāng)量動(dòng)載荷計(jì)算……………………………………………………22
11.4.2計(jì)算所需的徑向基本額定動(dòng)載荷…………………………………22
11.4.3 驗(yàn)算軸承的壽命………………………………………………………23
12 結(jié)論…………………………………………………………………………………23
參考文獻(xiàn)………………………………………………………………………………23
致謝……………………………………………………………………………………24
小型水稻脫粒機(jī)
學(xué) 生:汪佳堰
指導(dǎo)老師:翁 偉
(湖南農(nóng)業(yè)大學(xué)工學(xué)院,長(zhǎng)沙 410128)
摘 要: 為了滿足湖南農(nóng)村水稻脫粒生產(chǎn)的需要,設(shè)計(jì)一種針對(duì)湖南市場(chǎng)的水稻脫粒機(jī)已迫在眉睫,該水稻脫粒機(jī)可一次性完成脫粒、篩選、分離和裝袋作業(yè)。該機(jī)體積小、重量輕,操作靈活,通過(guò)性與適應(yīng)性好,較好地解決了丘陵、山區(qū)和水田水稻收獲的難題。該機(jī)采用半喂入、弓齒式滾筒脫粒機(jī)脫粒,確保脫粒干凈、破碎率低,分離性能好。
關(guān)鍵詞:水稻脫粒機(jī);脫粒;分離;清選
The Design of Small Rice Thresher
Student:Wang Jiayan
Tutor:Weng Wei
(College of Engineering , Hunan Agricultural University, Changsha 410128, China)
Abstract:In order to meet the needs of rural Hunan threshing rice,design of a rice thresher for The Hunan market has been imminent, this rice thresher can complete threshing, separation, screening and packaging operation. This machine has the advantages of small volume, light weight, flexible operation, though and good adaptability,can solve the problems of hills, mountains, and paddy rice harvest. The machine uses half- feeding, bow roller gear threshers threshing, ensure threshing clean, broken rate is low, good separation performance.
Key Words: Rice thresher; Thresh ;Separate;Clean
1 前言
水稻在三大糧食作物面積和產(chǎn)量?jī)H次于小麥,多于玉米。亞洲的水稻種植面積占世界的90%以上,中國(guó)的水稻的總產(chǎn)量和面積位于世界第一位和第二位。目前中國(guó)的水稻種植面積達(dá)4.3億畝,水稻作為我國(guó)第一大糧食作物,約占糧食總產(chǎn)量的40%。水稻生產(chǎn)不僅擔(dān)負(fù)著確保我國(guó)糧食安全的重任,還肩負(fù)實(shí)現(xiàn)種糧增效、稻農(nóng)增收和全面推進(jìn)新農(nóng)村建設(shè)的重大使命。但是和西方的發(fā)達(dá)國(guó)家相比較,我國(guó)的水稻收獲的機(jī)械化程度嚴(yán)重偏低,收獲過(guò)程中糧食的損失大,制約著我國(guó)農(nóng)村產(chǎn)業(yè)結(jié)構(gòu)調(diào)整和農(nóng)民收入水平的增長(zhǎng)。
1.1 課題研究意義
水稻是我國(guó)第一大糧食作物,不到30%的種植面積,生產(chǎn)了約占世界總產(chǎn)量40%左右的糧食,近些年水稻種植面積處于穩(wěn)步上升的狀態(tài)。在目前水稻收獲機(jī)械多種形式并存條件下,為了滿足廣大用戶莖桿需求量的不斷提高,在消化吸收國(guó)內(nèi)外同類機(jī)型的基礎(chǔ)上,設(shè)計(jì)一種水稻半喂入脫粒機(jī)械,該機(jī)采用半喂入、軸流開式滾筒、風(fēng)扇清選等機(jī)構(gòu),使其具有結(jié)構(gòu)簡(jiǎn)單、體積小、重量輕、脫粒質(zhì)量好等特點(diǎn)。該機(jī)也適合小麥的脫粒。
近幾年,隨著聯(lián)合收割機(jī)易地作業(yè)范圍的不斷擴(kuò)大,聯(lián)合收割機(jī)發(fā)展十分迅速 使脫粒機(jī)市場(chǎng)受到一定沖擊。在這種形勢(shì)下聯(lián)合收割機(jī)、脫粒機(jī)和割曬機(jī)將如何發(fā)展脫粒機(jī)還沒有發(fā)展前途 這是脫粒機(jī)生產(chǎn)企業(yè)和經(jīng)營(yíng)部門普遍關(guān)注的問(wèn)題。據(jù)不完全統(tǒng)計(jì) 目前我國(guó)種植面積基本穩(wěn)定在 3 000 萬(wàn) hm 2 以 1998 年為例 全國(guó)小麥機(jī)收面積為 1 800萬(wàn) hm 2 其中聯(lián)合收割機(jī)收獲面積為 800 萬(wàn) hm 2 由割曬機(jī)收割后脫粒的收獲面積為 1000 萬(wàn) hm 2 。聯(lián)合收割機(jī)和割曬機(jī)的收獲面積分別占小麥種植面積的 26. 7 和 33. 3 。此外還有1 200 萬(wàn) hm 2 的山區(qū)和丘陵小塊地的小麥?zhǔn)斋@ 還全靠人工收割后 由脫粒機(jī)械進(jìn)行脫粒加工。因此脫粒機(jī)械的作業(yè)量目前仍占全國(guó)小麥種植面積的70左右。
綜上所述,盡管近幾年聯(lián)合收割機(jī)的發(fā)展迅猛 , 但由于我國(guó)地域遼闊 , 氣候和地理?xiàng)l件以及栽培品種、種植方式有較大的差異,加上經(jīng)濟(jì)發(fā)展不平衡 , 有些聯(lián)合收獲機(jī)械的性能和部分關(guān)鍵技術(shù)尚不成熟 ,在今后一段時(shí)間內(nèi), 小型脫粒機(jī)在我國(guó)的糧食收獲作業(yè)中, 特別是在山區(qū)、丘陵小塊地、間作套種和雜糧種植地區(qū)仍是不可缺少的作業(yè)機(jī)具[1]。
1.2 國(guó)內(nèi)研究現(xiàn)狀
按“因地制宜、分類指導(dǎo)、重點(diǎn)突破、全面推進(jìn)”的原則,抓關(guān)鍵環(huán)節(jié)和適用技術(shù),大力推廣水稻收獲機(jī)械,積極做好組織服務(wù)工作,提高水稻機(jī)收水平。機(jī)械化收獲是水稻生產(chǎn)的一個(gè)主要環(huán)節(jié),也是推進(jìn)水稻生產(chǎn)全程機(jī)械化的難點(diǎn)之一。針對(duì)水稻生產(chǎn)機(jī)械化中存在的某些技術(shù)難題,各地農(nóng)機(jī)部門積極立項(xiàng)研究,大膽探索試驗(yàn),對(duì)小型收獲機(jī)械的改進(jìn)與推廣,對(duì)氣吸式水稻播種機(jī)的研制,對(duì)動(dòng)力脫粒清選機(jī)的開發(fā)等,為選擇、推廣水稻生產(chǎn)機(jī)械及技術(shù)提供了科學(xué)依據(jù)。
廣東省在推進(jìn)水稻生產(chǎn)機(jī)械化的過(guò)程中雖然做了大量工作,但由于原來(lái)的基礎(chǔ)薄弱,受一些深層次的因素影響較大,導(dǎo)致水稻生產(chǎn)主要環(huán)節(jié)的機(jī)械化水平仍然較低,栽植、烘干機(jī)械很難推廣,耕種收綜合機(jī)械化水平遠(yuǎn)遠(yuǎn)低于全國(guó)平均水平,處于中下游位置,與先進(jìn)的省份相比差距較大。
我國(guó)對(duì)中小型脫粒機(jī)的應(yīng)用還不是很全面和完善,本著這個(gè)宗旨我選擇了這個(gè)課題以增強(qiáng)和提高我國(guó)在小型脫粒機(jī)方面的技術(shù)。以滿足人均耕地面積少、缺乏先進(jìn)適用機(jī)具廣大的農(nóng)民。
1.3 本設(shè)計(jì)的創(chuàng)新思路
本次設(shè)計(jì)的主要目的是針對(duì)現(xiàn)存的小型水稻脫粒結(jié)構(gòu)進(jìn)行了優(yōu)化、對(duì)其存在的一些缺點(diǎn)進(jìn)行改進(jìn);首先在原理上,主要以梳刷脫粒為主,打擊原理為輔兩者相互結(jié)合的脫離方式對(duì)水稻進(jìn)行脫粒,這主要體現(xiàn)在脫離滾筒的齒的設(shè)計(jì)上。其次,清選方面是采用風(fēng)機(jī)和篩子結(jié)合進(jìn)行清選,在一定方面上提高了稻粒和雜質(zhì)的分離,提高了稻粒的純凈度。
1.4. 主要計(jì)算參數(shù)
在水稻籽粒含水13%-18%,其技術(shù)參數(shù)為:
單位功率生產(chǎn)率 :>240kg/(kw·h);
脫凈率:>95%;
破碎率: >3%;
轉(zhuǎn)速:>600/min;
入口間隙: >20-30mm;
出口間隙: >4-10 mm;
滾筒直徑:>φ400mm;
喂入方式:半喂入;
外型尺寸:1300×950×1100mm;
整機(jī)重量:60kg。
2 總體方案確定
2.1 脫粒機(jī)工作原理[4]
被割谷物經(jīng)脫粒機(jī)械經(jīng)人工由喂入口進(jìn)入由脫粒滾筒和凹版組成的脫粒裝置進(jìn)行打擊和搓擦后,短脫出物通過(guò)柵格狀凹版進(jìn)入由振動(dòng)篩篩和風(fēng)機(jī)組成的清糧裝置進(jìn)行清選;在風(fēng)機(jī)和清選篩的聯(lián)合作用下,穎殼等細(xì)小輕雜物被吹出機(jī)外,干凈的籽粒經(jīng)由籽粒收集裝置進(jìn)入集糧裝置,然后由出糧口排出機(jī)外。
2.2 設(shè)計(jì)目的
進(jìn)一步加深學(xué)生對(duì)大學(xué)所學(xué)理論知識(shí)的理解,培養(yǎng)學(xué)生運(yùn)用理論知識(shí)獨(dú)立解決有關(guān)本課程實(shí)際問(wèn)題的能力,使學(xué)生對(duì)設(shè)計(jì)有一完整和系統(tǒng)的概念;同時(shí)通過(guò)畢業(yè)設(shè)計(jì),培養(yǎng)學(xué)生計(jì)算,使用技術(shù)資料及繪制圖形的工程設(shè)計(jì)能力,為今后的工作打下堅(jiān)實(shí)的基礎(chǔ)。
2.3 設(shè)計(jì)任務(wù)
1)傳動(dòng)裝置的設(shè)計(jì);
2)脫粒裝置的設(shè)計(jì);
3)清選裝置的設(shè)計(jì);
4)動(dòng)力的匹配。
要求:1)輸送流暢;
2)生產(chǎn)效率:1噸/時(shí);
3)要求機(jī)構(gòu)設(shè)計(jì)方案合理、結(jié)構(gòu)緊湊,體積小,質(zhì)量輕,噪音小、無(wú)污染,使用方便;
4)完成3張A0圖紙(折合),并要求CAD繪制;
5)撰寫設(shè)計(jì)說(shuō)明書,文字在1.0~1.5萬(wàn)字間,條理清楚,計(jì)算有據(jù),翻譯一定數(shù)量的英文(摘要);
6)設(shè)計(jì)說(shuō)明書的內(nèi)容包括:課題的目的、意義、國(guó)內(nèi)外動(dòng)態(tài);研究的主要內(nèi)容;總體方案的擬定和主要參數(shù)的設(shè)計(jì)計(jì)算;傳動(dòng)方案的確定及設(shè)計(jì)計(jì)算,主要工作部件的設(shè)計(jì);主要零件分析計(jì)算和校核;參考文獻(xiàn),鳴謝。
2.4 系統(tǒng)的功能描述和功能分解
2.4.1 喂入部分
喂入部位與弓齒滾筒的弓齒部位存在一定的間隙,將已割下來(lái)的水稻經(jīng)過(guò)人工從喂入口進(jìn)入,水稻的穗部分進(jìn)入脫粒部位,即弓齒滾筒和編織式凹板之間,進(jìn)行脫粒。
2.4.2 脫粒部分
脫粒部分主要是由弓齒滾筒、柵格板式凹板構(gòu)成。水稻穗在弓齒滾筒和柵格式凹板之間進(jìn)行脫粒,將已脫下的谷粒從柵格式凹板的縫隙漏下,落到下滑板,經(jīng)過(guò)振動(dòng)篩和風(fēng)機(jī)的清選,由出糧口排出機(jī)體之外[2]。
2.4.3 篩選部分
篩選部分主要是由柵格式凹板、風(fēng)機(jī)、振動(dòng)篩完成,當(dāng)水稻穗進(jìn)入脫粒部分后,經(jīng)過(guò)弓齒滾筒的脫粒,水稻脫粒之后,再將谷粒經(jīng)過(guò)編織式凹板,從凹板的縫隙漏出。谷粒順著斜滑板,在振動(dòng)篩和風(fēng)機(jī)的綜合作用下,將谷粒和雜質(zhì)分開[3]。
本設(shè)計(jì)要求實(shí)現(xiàn)水稻的脫粒以及水稻莖稈的分離,其主要功能是脫粒,機(jī)構(gòu)的脫粒需要?jiǎng)恿Γ@就涉及到動(dòng)力的選擇與安裝,為機(jī)構(gòu)的動(dòng)力功能;脫粒機(jī)的工作還需要控制,這是脫粒機(jī)的控制功能。根據(jù)上述分析,繪制的機(jī)構(gòu)功能構(gòu)成圖[4]如圖1所示
圖1 水稻脫粒機(jī)的機(jī)構(gòu)功能構(gòu)成
Fig 1 Rice thresher body function structure figure
為了實(shí)現(xiàn)脫粒機(jī)的脫粒功能,脫粒機(jī)需要?jiǎng)恿Γ瑥陌l(fā)動(dòng)機(jī)輸出的動(dòng)力經(jīng)過(guò)皮帶輪傳遞給脫粒滾筒;根據(jù)不同的條件,脫粒滾筒需要不同的轉(zhuǎn)速,這要求脫粒機(jī)需要調(diào)節(jié)控制功能。
2.5 總體方案設(shè)計(jì)和求解
分析可知,脫粒機(jī)包括動(dòng)力部分、脫粒部分、傳動(dòng)部分,根據(jù)功能可以尋求其功能載體,根據(jù)功能載體可以形成形態(tài)學(xué)矩陣,如表1所示[5]。
表1 水稻脫粒機(jī)的形態(tài)學(xué)矩陣
Table 1 Rice thresher morphological matrix
分功能 功能解
1 2 3 4
A 驅(qū)動(dòng) 水冷柴油機(jī) 汽油機(jī) 電動(dòng)機(jī) 風(fēng)機(jī)冷柴油機(jī)
B 脫粒 全喂入 半喂入
C 傳動(dòng) 帶傳動(dòng) 鏈傳動(dòng) 圓柱齒輪傳動(dòng) 同步帶傳動(dòng)
D 清選 氣流式 風(fēng)扇篩子式 氣流清選筒
根據(jù)形態(tài)學(xué)矩陣可知,本設(shè)計(jì)共有4×2×4×3=96種方案可以供選擇。根據(jù)設(shè)計(jì)說(shuō)明書的要求,水稻脫粒機(jī)要輸送流暢,動(dòng)力足夠且穩(wěn)定性好,以及結(jié)合農(nóng)村的具體情況考慮,經(jīng)過(guò)綜合分析,選用A3×B2×C1×D2。動(dòng)力經(jīng)發(fā)動(dòng)機(jī)輸出,通過(guò)V帶將動(dòng)力三部分輸出,一部分給脫粒滾筒,一部分給分離裝置 ,一部分給清選裝置。
3 脫粒裝置設(shè)計(jì)
3.1 脫粒原理
1)沖擊脫粒:靠脫粒元件與谷物穗頭的相互沖擊作用而進(jìn)行脫粒。沖擊速度越高,脫粒能力越強(qiáng),但破碎率也越大。
2)搓擦脫粒:靠脫粒元件與谷物之間,以及谷物與谷物之間的相互摩擦而使谷物脫粒。脫粒裝置的脫粒間隙的大小至關(guān)重要。
3)梳刷脫粒:靠脫粒元件對(duì)谷物施加拉力而進(jìn)行的脫粒。
4)碾壓脫粒:靠脫粒元件對(duì)谷物施加擠壓力而進(jìn)行的脫粒。此時(shí)作用在谷物上的力主要是沿谷粒表面的法向力。
5)振動(dòng)脫粒:靠脫粒元件對(duì)谷物施加高頻振動(dòng)而進(jìn)行的脫粒。
上述幾種脫粒方式是在長(zhǎng)期的生產(chǎn)實(shí)踐過(guò)程中總結(jié)而來(lái)的,水稻為帶殼貯存。如果裸存的話,存放時(shí)間很短。水稻的籽粒脆硬,容易破碎。因此,本設(shè)計(jì)采用梳刷脫粒為主,打擊脫粒為輔,兩者配合完成脫粒[6]。
3.2 脫粒裝置類型選擇
脫粒裝置按不同的方式分有不同的類型,按喂入方式可分為:全喂入和半喂入[6];
按脫粒齒形可分為:
1)切流紋桿滾筒式脫粒裝置,其由紋桿滾筒、柵格狀凹版、間隙調(diào)節(jié)裝置等組成。以搓擦脫粒為主、沖擊為輔,脫粒能力和分離能力強(qiáng),斷穗率小。但當(dāng)喂入不均勻、谷物濕度大時(shí),脫粒質(zhì)量明顯下降。是全喂入脫粒裝置的一種形式。
2)切流釘齒滾筒式脫粒裝置,其由釘齒滾筒和釘齒凹板組成。利用釘齒對(duì)谷物的強(qiáng)烈沖擊以及在脫粒間隙內(nèi)的搓擦而進(jìn)行脫粒。抓取能力強(qiáng)、對(duì)不均勻喂入和濕作物有較強(qiáng)的適應(yīng)性。但斷稈率較高,分離效果較差。是全喂入切線式脫粒裝置。
3)雙滾筒脫粒裝置,采用兩個(gè)滾筒串聯(lián)工作。第一個(gè)滾筒的轉(zhuǎn)速較低,可以把成熟的好、飽滿的籽粒先脫下來(lái)。第二個(gè)滾筒的轉(zhuǎn)速較高,間隙較小,可使前一滾筒未脫凈的谷粒完全脫粒。是釘齒式滾筒和紋桿式滾筒兩個(gè)滾筒串聯(lián)。
4)軸流滾筒脫粒裝置,軸流式滾筒功率耗用受作物物理機(jī)械特性影響較大,比傳統(tǒng)型更為敏感,喂入作物長(zhǎng)度、含水率的影響均較大。
5)弓齒滾筒式脫粒裝置,適用脫粒水稻,也可以兼脫小麥。脫粒僅穗頭進(jìn)入滾筒,脫粒后能保證莖桿完整;凹板篩分離物含雜率小有利于后續(xù)的清選;絕大部分谷粒能夠由凹板篩分離出來(lái),谷粒的破碎和損傷很少,功率消耗小。但是只適應(yīng)脫粒梢部接穗的作物,不適應(yīng)矮桿作物,對(duì)作物的適應(yīng)性差。弓齒滾筒式脫粒裝置是一種半喂入式切流型脫粒裝置。
考慮到成本和農(nóng)村稻田等因素,水稻脫粒主要適用半喂入式,本設(shè)計(jì)采用的是弓齒滾筒半喂入脫粒裝置。脫粒方式分為上脫、下脫和側(cè)脫三種形式。
上脫式分離效果好,滾筒位置低,喂入性能差,適用于一般半喂入脫粒機(jī)和聯(lián)合收割機(jī);下脫式分離性能差,斷穗和帶柄少;側(cè)脫式分離性能和喂入性能較好,適用于臥式聯(lián)合收割機(jī)。本設(shè)計(jì)采用的是上脫式。
3.3 脫粒滾筒轉(zhuǎn)速計(jì)算
滾筒的轉(zhuǎn)速一般根據(jù)滾筒的有效直徑來(lái)計(jì)算。當(dāng)滾筒速度增加時(shí),脫凈率增加,水稻帶柄率減少,但破碎率和斷莖率都會(huì)增加,當(dāng)圓周速度大于12米/秒時(shí),水稻脫凈率在99%以上,但如果圓周速度過(guò)大,脫離效率提高并不顯著,僅使谷粒在滾筒上跳動(dòng)加劇,增加谷粒的拋散損失[7]。當(dāng)滾筒的圓周速度太小時(shí),弓齒對(duì)穗的沖擊力減弱,從而延長(zhǎng)脫粒時(shí)間而降低生產(chǎn)率。通常情況下對(duì)于水稻來(lái)說(shuō):。根據(jù)圓周速度V可以求得滾筒的轉(zhuǎn)速。
(1)
式中: D——滾筒直徑(不包括弓齒高度);
H——弓齒的高度,弓齒高度,取,
滾筒轉(zhuǎn)速
取。
3.4 滾筒直徑計(jì)算
滾筒圈直徑D由防止?jié)L筒纏草和滾筒對(duì)莖稈的最大允許包角兩個(gè)條件確定[8], 其計(jì)算公式為:
其中 L——下作物的長(zhǎng)度mm;
l——作物喂入深度, 一般大于400mm[9];
ɑ——所包圍滾筒的允許包角,一般為120o[10]。
一般況下, 選用較大直徑為有利, 其原因是:作物喂得深, 未進(jìn)未脫損失少;喂入口弧度大, 可以提高喂入性能;滾筒不易纏草, 對(duì)作物品種和濕度的適應(yīng)性好;凹板篩面積大, 分離能力強(qiáng);引轉(zhuǎn)動(dòng)慣量大, 運(yùn)轉(zhuǎn)平穩(wěn), 適應(yīng)超負(fù)荷的性能良好;凹板曲率小,喂進(jìn)脫粒室的莖稈折斷少, 有利于減少功率消耗[11]。
L取1200mm,l取300mm。則
由上式可得:,
由上式可得:。
根據(jù)角及喂入長(zhǎng)度,求得滾筒直徑。
滾筒直徑一般為(按齒頂計(jì)算)[12],齒根處直徑一般為。由于本次設(shè)計(jì)中的采用的是半喂入式脫粒裝置,因此進(jìn)入脫粒裝置的只是作物的穗頭部分,故不用擔(dān)心莖桿纏繞的問(wèn)題,可以取滾筒直徑為400mm[13] (不含弓齒高)。
3.5 脫粒滾筒長(zhǎng)度確定
它與喂入速度和弓齒總數(shù)有關(guān)[14]。半喂入脫粒機(jī)工作時(shí)作物潮濕, 工作量大,一般選為600-1000mm,本機(jī)設(shè)計(jì)滾筒長(zhǎng)度定為700mm[15].
3.6 滾筒脫粒齒設(shè)計(jì)
3.6.1 弓齒形狀選擇
弓齒的形狀有“V”字形及“U”字形兩種。試驗(yàn)結(jié)果表明“V”字形弓齒頂角為22o時(shí),消耗的功率和斷穗率都最少。“U”字形弓齒圓弧大的功率消耗小,斷穗率也小。本設(shè)計(jì)滾筒上脫粒齒采用三重齒,它們能夠提高梳刷、脫粒質(zhì)量,并且滾筒不易纏草。弓齒用65鋼制造,淬火部位的硬度為HRC 45-55[16]。
3.6.2 弓齒的排列
在長(zhǎng)期的生產(chǎn)實(shí)踐中證明,半喂入式的脫粒滾筒的弓齒排列,按一定的螺旋排列是能夠獲得滿意的脫粒性能的。弓齒依螺旋排列的目地除了達(dá)到脫粒時(shí)負(fù)荷均勻外,而且還能促使雜余沿軸向流動(dòng)。所以,選擇弓齒的排列按照螺旋線分區(qū)的排列、選擇螺旋線頭數(shù)為3,分為三個(gè)區(qū)段且螺旋線的方向是順著喂入方向向后傾斜。
第一區(qū)段為梳整區(qū),約占滾筒全長(zhǎng)的,梳整齒選材為6—8mm 的鋼絲,對(duì)作梳導(dǎo)和推送,梳整齒安裝在滾筒喂入端的錐形面上??拷谷肟诘牡谝粋€(gè)齒是小型的,高度也低,第二、第三個(gè)齒較大,高度也逐漸增加,齒跡逐漸增加;齒頂多為圓弧型,齒的強(qiáng)度較大,以適應(yīng)剛喂入的較大符合。梳整齒一般高h(yuǎn)為35~60毫米,齒根寬為60~110毫米,齒面與滾筒的回轉(zhuǎn)方向偏,排列較稀,以利于導(dǎo)禾稈進(jìn)入滾筒,并將谷穗加以梳整脫粒。
第二區(qū)段為脫粒區(qū),約占滾筒全長(zhǎng)的70~75%。鋼絲直徑5—6mm,它又分前后兩區(qū)。前區(qū)約占全長(zhǎng)的40~45%。由于谷物剛進(jìn)入脫粒間隙,脫粒量較大,安裝了加強(qiáng)齒。為避免打斷莖桿,齒的排列較稀,齒跡距也較大(約25~36毫米),齒頂也略低,約60毫米以保持稍大的脫粒間隙,后區(qū)約占全長(zhǎng)的30%,安裝著脫粒齒,主要用來(lái)將難脫的籽粒脫凈。所以弓齒排列較密,齒跡距為15~25毫米,脫粒齒高約65~75毫米,以保持較小的脫粒間隙,齒腳的跨距較小,約35毫米左右,齒形較尖。
第三區(qū)為排稿區(qū),只占滾筒全長(zhǎng)的8~10%,鋼絲直徑5—6mm,為加強(qiáng)排草能力,齒距較密,為60毫米左右,齒形與脫粒齒相同[17]。
3.6.3 由螺旋排列法計(jì)算各參數(shù)
螺旋排列的列數(shù):
。
弓齒軸向間距:
。
相鄰二圓周弓齒沿圓周方向?qū)?yīng)錯(cuò)開的弧長(zhǎng):
弓齒數(shù):[17]
4 清選裝置設(shè)計(jì)
4.1 清選原理
經(jīng)脫粒裝置脫下的和經(jīng)分離裝置分離出的短脫出物中混有斷、碎莖稈、穎殼和灰塵等細(xì)小夾雜物。清選裝置的功用就是將混合物中的籽粒分離出來(lái),將其他混雜物排出機(jī)外,以得到清潔的籽粒。清選原理大致可以分為兩類:一類是按照谷粒的空氣動(dòng)力特性(懸浮速度)進(jìn)行清選。另一類是利用氣流和篩子配合進(jìn)行清選。
4.2 清選裝置類型的選擇
清糧裝置的類型主要有:氣流式、篩子式和氣流篩子組合式[18]。
(1)氣流式清選裝置:按照谷物混合物各組成部分的空氣動(dòng)力特性的不同進(jìn)行選別。根據(jù)這一原理,可利用相關(guān)機(jī)械將混合物擲向空中,或利用風(fēng)機(jī)產(chǎn)生的氣流對(duì)谷物進(jìn)行分離和選別,飄浮速度小的輕雜物吹的較遠(yuǎn),而飄浮速度大的籽粒將落在距風(fēng)機(jī)較近的地方。
(2)篩子式清選裝置;利用混合物各組成部分的尺寸特性的差異進(jìn)行分離和選別。具體方法是:根據(jù)谷粒的大小、形狀,設(shè)計(jì)適當(dāng)?shù)暮Y孔,以達(dá)到篩選的目的。
(3)氣流篩子組合式清選裝置:利用混合物各組成部分的尺寸特性和空氣動(dòng)力特性將篩子和風(fēng)機(jī)配合進(jìn)行分離選別。清糧效果好,在多數(shù)脫粒機(jī)和聯(lián)合收獲機(jī)上采用這種配合形式。
本設(shè)計(jì)采用第三種清選裝置,氣流篩子式清選裝置。
4.3 風(fēng)機(jī)參數(shù)的選擇和計(jì)算
4.3.1 風(fēng)機(jī)參數(shù)的選擇
本設(shè)計(jì)中的風(fēng)機(jī)采用的是農(nóng)機(jī)中廣泛采用的農(nóng)用型風(fēng)機(jī),葉片采用直葉,外形為切角的矩形,以改善風(fēng)機(jī)出口氣流的不均勻性,殼體為蝸殼形外殼,據(jù)試驗(yàn)飽滿谷粒的懸浮速度為之間,比重/cm3,選取風(fēng)機(jī)的風(fēng)速為。因?yàn)轱L(fēng)機(jī)轉(zhuǎn)速一般比脫粒滾筒轉(zhuǎn)速大,所以設(shè)定風(fēng)機(jī)轉(zhuǎn)速1000r/min。
(1)假設(shè)輕質(zhì)夾雜物的質(zhì)量為,
——輕質(zhì)雜質(zhì)量與空氣量之比的系數(shù),通常,
則空氣的流量為=0.050/0.25=0.20 m3/s
(2) 風(fēng)機(jī)的全壓力為:
風(fēng)扇的靜壓根據(jù)工作條件選定,一般雙篩機(jī)構(gòu)為20~25毫米水柱,單篩結(jié)構(gòu)為15毫米水柱左右,本設(shè)計(jì)采用單篩結(jié)構(gòu)。
=+=2/2+15=72×0.1+15=19.9/2
4.3.2 風(fēng)機(jī)計(jì)算
(1)風(fēng)機(jī)葉輪葉輪的外徑D1, (2)
其中:—壓力系數(shù),一般取=0.35。
代入上式得:23.61(m/s)
= =60/(3.14×650)×23.61=0.69m
取=0.70m。
(2)風(fēng)扇進(jìn)風(fēng)口的直徑
葉輪進(jìn)口利用指數(shù),0.55~0.85;氣流收縮系數(shù),0.8~1;風(fēng)扇進(jìn)口直徑與葉輪內(nèi)徑之比,一般;系數(shù),可取0.42~0.46,
代入公式可得=0.637,?。?.65
(3)風(fēng)扇寬度B
,取B=0.60m。
(4)風(fēng)機(jī)出風(fēng)口高度
,取0.25m。
(5) 風(fēng)扇功率,為傳動(dòng)效率,=0.95~0.98
(3)
(6)葉輪內(nèi)徑
=,?。?.34×0.70=0.24m
(7)葉片數(shù)的確定
,取片。
4.4 振動(dòng)篩設(shè)計(jì)
4.4.1 振動(dòng)篩設(shè)計(jì)
振動(dòng)篩是機(jī)器的主要部件,篩體內(nèi)有1~3層篩子,大多數(shù)為兩層,上下配置,本設(shè)計(jì)采用兩層篩,篩框上方是一層方形孔篩,篩孔較大,清除谷粒中的斷穗和碎徑;下方裝有孔直徑為2.5mm的圓形孔篩,篩孔較小,對(duì)谷粒進(jìn)一步清選。
4.5 凹板的設(shè)計(jì)
4.5.1 凹板類型的確定
凹板有編織篩式和柵格式兩種。
柵格式凹板篩孔寬約12-15mm,篩孔長(zhǎng)20-30mm, 剛性好,夾帶損失小、濕脫適好,但較多斷穗,帶柄較多,結(jié)構(gòu)和制造工藝復(fù)雜,一般用于與紋桿滾筒配合的全喂入裝置中。
編織篩凹板鋼絲直徑約2.5mm,處理斷穗能力很強(qiáng),篩網(wǎng)的有效面積大,夾帶損失小、濕脫適好,分離谷物的能力較強(qiáng),但濕脫性能差,易堵塞易磨損,容易變形,多在半喂入脫粒機(jī)上實(shí)用,考慮本設(shè)計(jì)是一種半喂入式脫粒機(jī)和編織式凹版結(jié)構(gòu)和制造工藝復(fù)雜,本設(shè)計(jì)采用柵格式凹板篩。
4.5.2 凹板直徑的確定
凹板直徑是決定生產(chǎn)率的主要參數(shù)(在限制滾筒轉(zhuǎn)速的情況下,凹板直徑是決定生產(chǎn)率的唯一參數(shù)),凹板直徑與生產(chǎn)率成正比,但不是一次性線性關(guān)系。
根據(jù)凹板直徑與生產(chǎn)率的關(guān)系和實(shí)際生產(chǎn)情況,本設(shè)計(jì)現(xiàn)選取凹板直徑D為490mm,對(duì)水稻脫粒機(jī)來(lái)說(shuō),其脫粒間隙就是滾筒齒頂圓與凹板圓鋼之間的間隙。
4.5.3 凹板與滾筒之間間隙的確定
滾筒與凹板入口間隙和出口間隙的比值為3:4。出入口間隙小則凹板分離能力強(qiáng),但過(guò)小易產(chǎn)生堵塞。入口間隙過(guò)大(>30mm)則滾筒抓取作物的能力和凹板前端的分離能力減弱。取入口的間隙為30mm,則出口的間隙為10mm,脫粒間隙從喂入口到出口從30mm逐漸減至10mm,在脫粒區(qū)為3-8mm,取6mm。
5 動(dòng)力的選擇
5.1 整機(jī)消耗的功率計(jì)算
5.1.1 脫粒裝置的功率消耗的計(jì)算
脫粒裝置在工作時(shí),在運(yùn)轉(zhuǎn)穩(wěn)定性較好(保障脫粒滾筒運(yùn)轉(zhuǎn)穩(wěn)定性的條件:有足夠的轉(zhuǎn)動(dòng)慣量;發(fā)動(dòng)機(jī)有足夠的儲(chǔ)備功率和較靈敏的調(diào)速器)的條件下,其功率總耗用N 由兩部分組成:一部分用于克服滾筒空轉(zhuǎn)而消耗的功率(占總功率消耗的5%-7%),一部分用于克服脫粒阻力而消耗的功率(占總功率消耗的93%-95%),所以 脫粒裝置的功率消耗為:
N =+ (kW ) (4) 1)其中空轉(zhuǎn)功率消耗: =+
式中:——系數(shù),為克服軸承及傳動(dòng)裝置的摩擦阻力的功率消耗, ;
B——系數(shù),為克服滾筒轉(zhuǎn)動(dòng)時(shí)的空氣迎風(fēng)阻力而消耗的功率, 。
2)其中脫粒功率消耗:這個(gè)過(guò)程比較復(fù)雜,水稻首先是以較低的速度進(jìn)入脫粒裝置入口處,與高速旋轉(zhuǎn)的脫粒滾筒接觸,然后被拖入脫粒間隙進(jìn)行脫粒,既有梳刷也有打擊,研究的依據(jù)是動(dòng)量守恒定律:
沖量轉(zhuǎn)換為動(dòng)量: , (5)
—單位時(shí)間喂入的谷物量;
—綜合搓擦系數(shù),0.7-0.8;
—滾筒的切向速度,15m / s。
將數(shù)據(jù)代入N =+ 得:
N= 0.52+1.5=2.02()
5.1.2 清選裝置的功率消耗的計(jì)算
清選裝置消耗的功率由下式可求得:
(6)
其中:——單位時(shí)間進(jìn)入清選裝置的脫出物質(zhì)量();
——單位脫出物質(zhì)量清選篩所需的功率(),上篩:0.4-0.5,下篩:0.25-0.3;
——選別能力系數(shù),0.8-0.9。
代入數(shù)據(jù)可得消耗的功率:
1.75()
5.2 電動(dòng)機(jī)的選擇
通過(guò)上面的計(jì)算,可以知道整個(gè)脫粒機(jī)消耗的功率,其消耗的總功率為: 0.043+2.02+1.75+1=4.813()
查機(jī)械設(shè)計(jì)手冊(cè)[19]可得,選取廣泛用于農(nóng)業(yè)上的Y系列的三相異步電機(jī),選取型號(hào)為:Y160M2-8,其額定功率為5.5,滿載轉(zhuǎn)速為.滿足水稻脫粒機(jī)的動(dòng)力的需求。
6 傳動(dòng)裝置設(shè)計(jì)
傳動(dòng)系統(tǒng)可分為主傳動(dòng)軸,風(fēng)機(jī)軸,電機(jī)軸,振動(dòng)篩軸,電動(dòng)機(jī)一方面輸出的功率通過(guò)電機(jī)軸傳動(dòng)給主軸,主軸再傳動(dòng)給振動(dòng)篩軸,另一方面通過(guò)風(fēng)機(jī)軸把功率傳動(dòng)給風(fēng)機(jī),使風(fēng)機(jī)轉(zhuǎn)動(dòng),脫粒機(jī)滿負(fù)荷作業(yè)時(shí),輸出軸轉(zhuǎn)速均按理想狀態(tài)運(yùn)行。
分配傳動(dòng)比
1)電機(jī)軸傳動(dòng)給主軸的傳動(dòng)比=1.1。
2)電動(dòng)機(jī)軸傳給風(fēng)機(jī)軸的傳動(dòng)比=0.72。
3)主軸傳給振動(dòng)篩軸的傳動(dòng)比=3.2。
6.3 傳動(dòng)裝置動(dòng)力參數(shù)的計(jì)算
電動(dòng)機(jī)輸出軸額定轉(zhuǎn)速為
1)各軸功率
電機(jī)軸軸
振動(dòng)篩軸
式中 -帶傳動(dòng)效率;查表[19]取值0.92。
2)各軸轉(zhuǎn)矩
振動(dòng)篩軸
主傳動(dòng)軸軸
6.4 皮帶輪的設(shè)計(jì)與計(jì)算
6.4.1 帶型的選定
根據(jù)總體方案的選擇,選用的是Y160M2-8電動(dòng)機(jī),其額定功率為5.5,轉(zhuǎn)速為。查機(jī)械設(shè)計(jì)手冊(cè)[19]的工況系數(shù)??傻糜?jì)算功率為:
(8)
根據(jù)計(jì)算功率和電動(dòng)機(jī)的轉(zhuǎn)速,查手冊(cè)[19]選擇采用SPZ型皮帶。
6.4.2 帶輪直徑與帶速的確定
小帶輪的直徑通過(guò)查機(jī)械設(shè)計(jì)手冊(cè)[19],有,其中是V帶的最小基準(zhǔn)直徑,過(guò)小,會(huì)降低皮帶的使用壽命。;反過(guò)來(lái),雖然可以延長(zhǎng)皮帶的使用壽命,但是帶傳動(dòng)的外形尺寸隨之增大。V帶的最小基準(zhǔn)直徑參考值如下表所示。
表3 V帶輪的最小基準(zhǔn)直徑
Table 3 V belt wheel diameter minimum standards
類型 Y Z SPZ A SPA B SPB C SPC D E
20 50 63 75 90 125 140 200 224 355 500
選取小帶輪的直徑。
大帶輪的基準(zhǔn)直徑,取。
上式中是V帶傳動(dòng)的滑動(dòng)率,值很小,在計(jì)算中可以忽略不計(jì)。
帶速的計(jì)算:
代入數(shù)據(jù)得
對(duì)于普通的V帶,,太小傳遞的功率小,太大則離心力過(guò)大,計(jì)算的結(jié)果在合理范圍內(nèi),符合設(shè)計(jì)要求。
6.4.3 帶的基準(zhǔn)長(zhǎng)度和軸間距的確定
由公式 (9)
代入數(shù)據(jù)得
所需帶的基準(zhǔn)長(zhǎng)度為:
代入數(shù)據(jù)得
則實(shí)際的軸間距為
代入數(shù)據(jù)的實(shí)際的軸間距為 。
6.5 驗(yàn)算小帶輪的包角
由下式可求帶輪包角:
一般,最小不低于,小帶輪包角合適,不需要使用張緊輪。
6.6 確定V帶根數(shù)
V帶根數(shù)可由以下公式計(jì)算:
(10) 其中 ——功率增量,考慮傳動(dòng)比時(shí),在大帶輪上的彎曲應(yīng)力較小,在壽命相同的條件下,可以增大傳遞的功率。
——包角修正系數(shù),考慮包角不等于時(shí)對(duì)傳動(dòng)能力的影響;
——帶長(zhǎng)修正系數(shù),考慮包角不為特定長(zhǎng)度時(shí)對(duì)傳動(dòng)能力的影響;
——單根V帶的基本額定功率。
查機(jī)械設(shè)計(jì)手冊(cè)[20]可得:,=0.99,=0.97,=
圓整后取V帶根數(shù)
6.7 單根V帶預(yù)緊力的計(jì)算
根據(jù)公式 (11)
=
=
6.8 計(jì)算壓軸力
根據(jù)公式 (12)
(13)
其中為正常預(yù)緊力的1.5倍。
代入數(shù)據(jù)
7 圓柱齒輪的設(shè)計(jì)與計(jì)算
7.1 材料的選擇及許用應(yīng)力的確定
根據(jù)設(shè)計(jì)方案,本設(shè)計(jì)采用的是直齒圓柱齒輪傳動(dòng),傳遞的功率為,考慮到脫粒機(jī)功率較大,故大、小齒輪都選用硬齒面。選取大、小齒輪的材料均為40Cr,并經(jīng)調(diào)質(zhì)及表面淬火,齒面硬度為48~55HRC。因采用表面淬火,輪齒的變形不大,不需要磨削,故初選7級(jí)精度。
7.2 按輪齒接觸強(qiáng)度的計(jì)算
根據(jù)公式
(14)
確定公式內(nèi)的各計(jì)算數(shù)值
1)試選載荷系數(shù);
2)計(jì)算小齒輪傳遞的轉(zhuǎn)矩:
3)由機(jī)械設(shè)計(jì)手冊(cè)[20]選取齒寬系數(shù);
4)由手冊(cè)[20]查得材料的彈性影響系數(shù)
5)按齒面硬度中間值查手冊(cè)[20得大、小齒輪得接觸疲勞強(qiáng)度極限
6)計(jì)算應(yīng)力循環(huán)次數(shù)
7)查設(shè)計(jì)手冊(cè)[19]得接觸疲勞壽命系數(shù)
8)計(jì)算接觸疲勞許用應(yīng)力
取失效概率為1%,安全系數(shù)S=1,得
計(jì)算
1)試算小齒輪分度圓直徑,代入中較小的值 (15)
2)計(jì)算圓周速度
3)計(jì)算齒寬
4)計(jì)算齒寬與齒高之比
模數(shù)
齒高
5)計(jì)算載荷系數(shù)
根據(jù),7級(jí)精度,由手冊(cè)[21]查得動(dòng)載系數(shù);
假設(shè),由手冊(cè)[21]查得齒間載荷分配系數(shù); 由手冊(cè)[21]查得使用系數(shù);
由表4查得接觸強(qiáng)度計(jì)算用齒向載荷分布系數(shù);
由機(jī)械設(shè)計(jì)手冊(cè)[21]查得彎曲疲勞強(qiáng)度計(jì)算用齒向載荷分布系數(shù). 故載荷系數(shù)
6)按實(shí)際的載荷系數(shù)校正所得的分度圓直徑,得
7)計(jì)算模數(shù)
7.3 按齒根彎曲強(qiáng)度設(shè)計(jì)
彎曲強(qiáng)度的設(shè)計(jì)公式為
(16)
確定公式內(nèi)的各計(jì)算數(shù)值
1)由手冊(cè)[21]得大、小齒輪的彎曲疲勞強(qiáng)度極限;
2)由手冊(cè)[21]查得彎曲疲勞壽命系數(shù);。
3)計(jì)算彎曲疲勞許用應(yīng)力。
取彎曲疲勞安全系數(shù)S=1.4,得
4)計(jì)算載荷系數(shù)K
5)查取齒形系數(shù)
由手冊(cè)[21]查得齒形系數(shù) 。
6)查取應(yīng)力校正系數(shù)
由手冊(cè)[21]得應(yīng)力校正系數(shù) 。
7)計(jì)算大小齒輪的并加以比較
小齒輪的數(shù)值大。
設(shè)計(jì)計(jì)算
對(duì)比計(jì)算結(jié)果,由齒面接觸疲勞強(qiáng)度計(jì)算的模數(shù)m略大于由齒根疲勞強(qiáng)度計(jì)算的模數(shù),由于齒輪模數(shù)m的大小主要取決于彎曲強(qiáng)度所決定的承載能力,而齒面接觸疲勞強(qiáng)度所決定的承載能力,僅與齒輪直徑(即模數(shù)與齒數(shù)的乘積)有關(guān),可取由彎曲強(qiáng)度算得得模數(shù)1.64,就近圓整為標(biāo)準(zhǔn)值m=2mm,按接觸強(qiáng)度算得的分度圓直徑,。
取 取
幾何尺寸計(jì)算
1)計(jì)算分度圓直徑
2)計(jì)算中心距
,取a=90mm。
3)計(jì)算齒輪寬度
驗(yàn)算
符合要求。
8 軸的設(shè)計(jì)與計(jì)算
8.1 軸的材料選擇
脫粒機(jī)在工作時(shí),脫粒軸的轉(zhuǎn)速很高,而且傳遞的扭矩很大,綜合考慮,軸的材料選擇45鋼調(diào)質(zhì)處理,硬度為195-290,其接觸疲勞強(qiáng)度極限,彎曲疲勞極限取。
8.2 軸的最小直徑確定
由公式 (17)
其中 ——該軸傳遞的功率,;
——該軸的轉(zhuǎn)速,;
——指軸的材料和承載情況確定常數(shù)。
已知 =2.02,,查機(jī)械設(shè)計(jì)手冊(cè)[21]可得C=128,代入上式可得
選。
8.3 軸的結(jié)構(gòu)設(shè)計(jì)
為了便于軸上零件的拆卸,經(jīng)常把軸做成階梯形。軸的直徑從軸端逐漸向中間增大,可依次將齒輪和帶輪等從軸的上端裝拆,為了使軸上的零件便于安裝,軸端及各軸的端部應(yīng)有倒角。軸上磨削的軸段應(yīng)有砂輪越程槽,車制螺紋軸段應(yīng)有退刀槽。
各段軸的直徑,如有配合要求的軸段,應(yīng)盡量采用標(biāo)準(zhǔn)直徑,安裝軸承、齒輪等標(biāo)準(zhǔn)件的軸徑,應(yīng)符合各標(biāo)準(zhǔn)件的內(nèi)徑系列規(guī)定。采用的套筒、螺母、軸端擋圈作軸向固定時(shí),應(yīng)把裝零件的軸段長(zhǎng)度做的比零件輪轂短,以確保螺母等緊靠零件端面。
9 鍵連接選擇
鍵連接可分為平鍵連接、半圓鍵連接、楔鍵連接和切向鍵連接。 平鍵按用途分有三種:普通平鍵、導(dǎo)向平鍵和滑鍵。平鍵的兩側(cè)面為工作面,平鍵連接是靠鍵和鍵槽側(cè)面擠壓傳遞轉(zhuǎn)矩,鍵的上表面和輪轂槽底之間留有間隙。平鍵連接具有結(jié)構(gòu)簡(jiǎn)單、裝拆方便、對(duì)中性好等優(yōu)點(diǎn),因而應(yīng)用廣泛。本設(shè)計(jì)采用的是平鍵連接 。
查表機(jī)械設(shè)計(jì)手冊(cè)[21]表4-1分別選擇軸1、2段平鍵b×h×L=8mm×7mm×27mm、b×h×L=10mm×8mm×25mm。材料為45鋼,其許用擠壓應(yīng)力,取其平均值,。
10 滾動(dòng)軸承選用
已知裝軸承處軸徑,轉(zhuǎn)速,查機(jī)械設(shè)計(jì)手冊(cè)[22],選用深溝球軸承(GB/T 276-1994摘錄),選型號(hào)為6008,其基本尺寸參數(shù)為,,安裝尺寸?;绢~定動(dòng)載荷,額定靜載荷。
11 主要部件校核
11.1 圓柱齒輪校核
齒面接觸接觸疲勞強(qiáng)度校核,公式如下:
(18)
上述式中:─齒數(shù)比; ─彈性影響系數(shù);─區(qū)域系數(shù);為輪齒的轉(zhuǎn)矩; 齒