《高等數(shù)學(xué)(微積分)課件-62微積分基本定理》由會(huì)員分享,可在線閱讀,更多相關(guān)《高等數(shù)學(xué)(微積分)課件-62微積分基本定理(27頁(yè)珍藏版)》請(qǐng)?jiān)谘b配圖網(wǎng)上搜索。
1、1 2 xa dxxf .)( .)()( xa dttfx 3 xa dttfx )()( )()()()( bxaxfdttfdxdx xa dttfxx xxa )()( )()( xxx dttfdttf xaxxa )()( a b xyo xx x)(x xxx dttf )( xf )(, xxx xx ,0 ),(fx )(limlim 00 fx xx ).()( xfx 4 5 ,tgxtgtdtdxd xa ,lnln xtdt xxa .22 xdttdxd ax xa dttdxd 2sin xx dttdxd 2 2cos 6 xa dttdxd 2sin xx 2
2、1sin 2 xxx xd dtddxddx dtdt 21)(sin21sin 21sintd )f()(f x)f(f(x) sint)f(,x sintf(x) 2 a 2 a 2xa 2 構(gòu)成的復(fù)合函數(shù)和是由則令解: 7 )()()( )( xxfdttfxa 8 xx dttdxd 2 2cos ax dttdxd 2 2cos xa dttdxd 2cos xx 2cos 4 2cos x 9 40 30 sinlim x dttxx 414sinlim )( )sin(limsinlim 3 30 x 4 0 30 x40 30 x xx x dttx dtt xx 解:利用羅必
3、塔法則 10 .lim 21cos0 2x dtex tx 00分 析 :這是 型不定式,應(yīng)用洛必達(dá)法則. 1cos 2x t dtedxd ,cos1 2 x t dtedxd)(cos2cos xe x ,sin 2cos xex 21cos0 2lim x dtex tx xex xx 2sinlim 2cos0 .21e 11 )2(,)(:2 )(,)(:1 2 0 22 fdtxexf xfdtexf x tx t求求 )31:solution1:int( )1(lim:3 300 2;xeh x dtexx tx 12 x dtttfdxd 0 )( ),(xxf x dttfd
4、xd 0 )( ),(xf 20 00 )( )()()()()( x xx dttf dtttfxfdttfxxfxF 200 )( )()()( xx dttf dttftxxf)0(,0)( xxf ,0)()( tftx,0)()(0 x dttftx ).0(0)( xxF 13 ,1)(2)( 0 dttfxxF x ,0)(2)( xfxF,1)( xf )(xF 在1,0上為單調(diào)增加函數(shù). ,01)0( F 10 )(1)1( dttfF 10 )(1 dttf ,0 所以0)( xF即原方程在1,0上只有一個(gè)解. 令 14 aFbFdxxfba xa dttfx xf CxF
5、x )(0)()()( aFCdxxfaCaF aa b a dxxf )( CbFb )()( )()( aFbF baxF )( 15 注 意當(dāng)ba 時(shí),)()()( aFbFdxxfba 仍成立.例 : 求 .131 2 xdx原式 31arctan x ).1arctan(3arctan 解 65)2(3 16 設(shè) , 求 . 215 102)( xxxxf 20 )( dxxf 10 2120 )()()( dxxfdxxfdxxf 10 2152 dxxdx原式.6 xyo 1 2 21 | dxx 200121 | dxxdxxdxx 2001 xdxxdx 2522120221
6、0 1221 xx 17 .,max22 2 dxxx ,max)( 2xxxf ,21 10 0222 xx xx xx 21 21002 2 dxxxdxdxx原式.211 xy o2xy xy 1 22 18 .)()( xa dttfx ).()( xfx ).()()( aFbFdxxfba 19 xy t t ttdtdte uduyudux xyy00 0 00cos)2( ;cos,sin)1( :)(1的導(dǎo)數(shù)數(shù)求下列方程所確定的函dttdxdxdtdxd xxxx cossin 24 )cos()2(;1)1( :2 32 求下列各導(dǎo)數(shù) x tx txxx dtte dtex
7、 dtt 0 2 2000 20 22 )(lim)2(;coslim)1( :3求下列極限解 答 解 答 解 答 解 答 20 20 294 4)2(;)1()1( :4 xdxdxxx計(jì)算下列定積分1,21 1,1)(,)()2( ;|cos|)1( :5 22020 xx xxxfdxxf dxx其中計(jì)算下列定積分 0sinsin)2(;cos)1( :,6 2 lxdxkxxdxklk證明為整數(shù)設(shè)解 答 解 答 解 答 21 xy t t ttdtdte uduyudux xyy00 0 00cos)2( ;cos,sin)1( :)(1的導(dǎo)數(shù)數(shù)求下列方程所確定的函解)1( ,sint
8、xt 因?yàn)?costyt ttxydxdy 所以ttsincos .cost)2( ,求導(dǎo)方程兩邊對(duì)x得,0cos xdxdye y ,cosye xdxdy 解得,0|sin|: 00 xyy te又由題設(shè)有,sin1 xe y 即.1sincos x xdxdy于是返 回 習(xí) 題 22 ;1)1( :2 32 4 xx xdtdxd求下列各導(dǎo)數(shù)解)11()1( 3 20 0 24 x x tdttdtdxd式)()(1 1)()(1 1 242343 xxxx 8122 1213 xxxx 23 .)cos()2( :2 cossin 2 dttdxd xx 求下列各導(dǎo)數(shù)解)cos()co
9、s()2( sin0 2cos0 2 dttdttdxd xx 式)(sin)sincos()(cos)coscos( 22 xxxx )sincos(cos)sin1(cossin 22 xxxx )sincos(cos)sincos(sin 22 xxxx )cos)(sinsincos( 2 xxx 24 x tx txxx dtte dtex dtt 0 2 2000 20 22 )(lim)2(;coslim)1( :3求下列極限解1coslim)1( 20 xx式0cos 12 2200 2lim)2( x xx tx xe edte t 式2200lim2 xx tx xe dt
10、e22 2 20 2lim2 xx xx exe e 01 12 2 25 20 294 4)2(;)1()1( :4 xdxdxxx計(jì)算下列定積分解 94 21 )()1( dxxx式94223 |)232( xx )1681(21)827(32 6145 10 2 )2()2(1 1)2( xdx式10|2arcsin x 6 26 解 20 232 223 coscoscos)1( xdxxdxxdx式 22323220 |sin|sin|sin xxx 4)1(01)1()01( 10 21 221)1()2( dxxdxx式213102 |61|)2( xxx 38)18(61)121( 1,21 1,1)(,)()2( ;|cos|)1( 22020 xx xxxfdxxf dxx其中:5計(jì)算下列定積分 27 0sinsin)2(;cos)1( :,6 2 lxdxkxxdxklk證明為整數(shù)設(shè)證)1( )2( dxkx 2 2cos1左邊 |)42sin2( kkxx dxxlkxlk )cos()cos(21左邊 |)sin()sin(21 lk xlklk xlk 0