【溫馨提示】 dwg后綴的文件為CAD圖,可編輯,無(wú)水印,高清圖,,壓縮包內(nèi)文檔可直接點(diǎn)開(kāi)預(yù)覽,需要原稿請(qǐng)自助充值下載,請(qǐng)見(jiàn)壓縮包內(nèi)的文件及預(yù)覽,所見(jiàn)才能所得,請(qǐng)細(xì)心查看有疑問(wèn)可以咨詢QQ:414951605或1304139763
浙江理工大學(xué)本科畢業(yè)設(shè)計(jì)(論文)任務(wù)書(shū)
陳偉杰同學(xué)( 機(jī)械設(shè)計(jì)制造及其自動(dòng)化專業(yè)/班級(jí):09(4) )
現(xiàn)下達(dá)畢業(yè)設(shè)計(jì)(論文)課題任務(wù)書(shū),望能保質(zhì)保量地認(rèn)真按時(shí)完成。
課題名稱
雙攪拌軸攪拌摩擦焊機(jī)設(shè)計(jì)
主要任務(wù)與
目標(biāo)
攪拌摩擦焊技術(shù)是90年代發(fā)展起來(lái)的、自發(fā)明到工業(yè)應(yīng)用時(shí)間跨度最短的一項(xiàng)固相連接新技術(shù)。著名的B o e i n g、NASA、 BAE、 HONDA、 GE、HITACHI、MARTIN等公司購(gòu)買(mǎi)了此項(xiàng)技術(shù),并已大量的在航天、航空、車(chē)輛、造船等行業(yè)得到成功地應(yīng)用。
本項(xiàng)目擬與其他同學(xué)合作開(kāi)發(fā)設(shè)計(jì)一臺(tái)雙攪拌軸攪拌摩擦焊機(jī),適合于普通厚度的平板鋁及其合金的工藝試驗(yàn)試件的焊接, 重點(diǎn)要解決的問(wèn)題:
1) 雙攪拌軸攪拌摩擦焊機(jī)整體設(shè)計(jì);
2)雙攪拌軸攪拌摩擦焊機(jī)攪拌系統(tǒng)設(shè)計(jì);
目標(biāo):
提出的設(shè)計(jì)方案可行,結(jié)構(gòu)設(shè)計(jì)合理,完成的三維、二維圖紙滿足生產(chǎn)要求。
主要內(nèi)容與基本要求
主要設(shè)計(jì)內(nèi)容有:
1)確定整機(jī)的設(shè)計(jì)方案;
2)攪拌系統(tǒng)方案設(shè)計(jì);
3)焊機(jī)裝置結(jié)構(gòu)設(shè)計(jì),完成三維、二維圖紙;
基本要求:
按照課題內(nèi)容,完成總體方案設(shè)計(jì),完成三維、二維裝配圖和零件圖,總計(jì)不少于2張零號(hào)圖紙;通過(guò)運(yùn)動(dòng)仿真完善設(shè)計(jì)。
完成畢業(yè)設(shè)計(jì)要求的各種文檔,包括文獻(xiàn)綜述、開(kāi)題報(bào)告、外文翻譯及畢業(yè)設(shè)計(jì)論文等。
嚴(yán)格按照進(jìn)度安排,保質(zhì)保量完成所承擔(dān)的任務(wù);遵守實(shí)驗(yàn)室規(guī)定。
主要參
考資料
及文獻(xiàn)
閱讀任務(wù)
查閱與課題有關(guān)的文獻(xiàn)(論文、書(shū)籍或手冊(cè)等)不少于10篇(部),寫(xiě)出符合要求的文獻(xiàn)綜述報(bào)告。主要參考文獻(xiàn)如下:
[1] 沈璐.陳影.葛繼平.沈長(zhǎng)斌異種金屬材料攪拌摩擦焊的研究現(xiàn)狀及展望[期刊論文]-電焊機(jī) 2010(6)
[2] 欒國(guó)紅.柴鵬.孫成斌鈦合金的攪拌摩擦焊探索[期刊論文]-焊接學(xué)報(bào) 2005(11)
[3] 李光.李從卿.董春林.欒國(guó)紅動(dòng)態(tài)控制低應(yīng)力無(wú)變形攪拌摩擦焊技術(shù)[期刊論文]-航空制造技術(shù) 2007(z1)
[4] 李兵.謝里陽(yáng).王磊.何雪浤攪拌摩擦焊工藝與機(jī)理的研究[期刊論文]-現(xiàn)代制造技術(shù)與裝備 2008(1)
[5] 任淑榮.馬宗義.陳禮清攪拌摩擦焊接及其加工研究現(xiàn)狀與展望[期刊論文]-材料導(dǎo)報(bào) 2007(1)
[6] 黃華.董仕節(jié).劉靜先進(jìn)的攪拌摩擦焊技術(shù)[期刊論文]-有色金屬 2006(1)
[7] 王訓(xùn)宏.王快社攪拌摩擦焊的發(fā)展現(xiàn)狀及存在的問(wèn)題[期刊論文]-焊接技術(shù) 2006(6)
[8] R.S. Mishra, Z.Y. Ma. Friction stir welding and processing [J]. Materials Science and Engineering R 2005 (50): 1–78.
[9] L.B. Johannes, R.S. Mishra. Multiple Passes of Friction Stir Processing for The Creation of Superplastic 7075 Aluminum [J]. Materials Science and Engineering: A 2007 (464):255-260.
[10] Lienert, T.J., Stellwag, W.L. Jr., Grimmett, B.B. and Warke, R.W., Friction welding studies on mild steel, Supplement to the Welding Journal, 2003, Vol. 82 No. 1, pp. 1s-9s.
外文
翻譯任務(wù)
閱讀2篇以上(10000字符左右)的外文材料,完成2000漢字以上的英譯漢翻譯。英文文獻(xiàn)參考如下:
[1] K. Leskovics, M. Kollar, P. Barczy . A study of structure and mechanical properties of welded joints in polyethylene pipes [J]. Materials Science and Engineering ,2006,A 419 :138–143.
[2] Wolters M,Venema B. Butt welding of polyethylene pipes [J]. Welding in the world,1985,23(9/10):202-207.
計(jì)劃進(jìn)度:
起止時(shí)間
內(nèi)容
2012.12.01~2012.12.07
畢業(yè)設(shè)計(jì)前期資料準(zhǔn)備、畢業(yè)設(shè)計(jì)任務(wù)書(shū)、外文翻譯任務(wù)布置。
2012.12.08~2012.12.31
教師指導(dǎo)學(xué)生查閱資料(包括外文資料),撰寫(xiě)文獻(xiàn)綜述、開(kāi)題報(bào)告及完成外文資料翻譯等工作。完成文獻(xiàn)綜述、開(kāi)題報(bào)告及完成外文資料翻譯放假前交指導(dǎo)教師。
2013.01.1~2013.01.07
完成文獻(xiàn)綜述、開(kāi)題報(bào)告及完成外文資料翻譯等等工作。
指導(dǎo)教師審核學(xué)生上交的文獻(xiàn)綜述、開(kāi)題報(bào)告及外文資料翻譯等,為小組交流、開(kāi)題報(bào)告答辯做準(zhǔn)備。
2013.01.08~2013.01.13
完成開(kāi)題報(bào)告答辯工作;
進(jìn)行總體方案設(shè)計(jì)。
2013.01.13~2013.04.05
完成攪拌系統(tǒng),傳動(dòng)機(jī)構(gòu)設(shè)計(jì),零件圖繪制。
2013.04.06~2013.04.15
畢業(yè)設(shè)計(jì)中期檢查指導(dǎo)情況,學(xué)生完成情況,以及表格與記錄的填寫(xiě)情況。
2013.04.16~2013.05.10
三維裝配圖,運(yùn)動(dòng)仿真,二維零件圖,裝配圖,論文撰寫(xiě)。
學(xué)生完成課題設(shè)計(jì),提交畢業(yè)設(shè)計(jì)(論文)。
2013.05.11~2013.05.15
教師對(duì)畢業(yè)設(shè)計(jì)(論文)的審閱;評(píng)議小組分組審閱。
2013.05.16~2009.05.20
論文答辯
實(shí)習(xí)地點(diǎn)
指導(dǎo)教師
簽 名
年 月 日
系 意 見(jiàn)
系主任簽名:
年 月 日
學(xué)院
蓋章
主管院長(zhǎng)簽名:
年 月 日
3
浙江理工大學(xué)本科畢業(yè)設(shè)計(jì)(論文)開(kāi)題報(bào)告
班 級(jí)
機(jī)械設(shè)計(jì)制造及其自動(dòng)化09(4)班
姓 名
陳偉杰
課題名稱
雙攪拌軸攪拌摩擦焊機(jī)設(shè)計(jì)
開(kāi)題報(bào)告(包括選題意義、研究的基本內(nèi)容與擬解決的主要問(wèn)題、總體研究思路與可行性分析及預(yù)期研究成果、研究工作計(jì)劃等內(nèi)容,非藝術(shù)類(lèi)不少于3000字)
目 錄
1 選題的背景與意義
2 國(guó)內(nèi)外研究現(xiàn)狀和發(fā)展趨勢(shì)
2.1 攪拌摩擦焊的發(fā)展歷史及研究成果
2.2 國(guó)內(nèi)攪拌軸摩擦焊的發(fā)展及應(yīng)用
2.3 攪拌摩擦焊中雙攪拌軸攪拌摩擦焊目前的應(yīng)用情況和前景
3 研究的基本內(nèi)容與擬解決的主要問(wèn)題
3.1 基本內(nèi)容
3.2 待解決的主要問(wèn)題
4 研究方案、可行性分析及預(yù)期研究成果
5 研究工作計(jì)劃(進(jìn)度安排)
參考文獻(xiàn)
(開(kāi)題報(bào)告全文附后)
成績(jī):
答
辯
意
見(jiàn)
(從選題、任務(wù)工作量、質(zhì)量預(yù)期、可行性等幾個(gè)方面)
答辯組長(zhǎng)簽名:
年 月 日
系
主
任
審
核
意
見(jiàn)
簽名:
年 月 日
雙攪拌軸攪拌摩擦焊機(jī)設(shè)計(jì)
陳偉杰
(機(jī)械設(shè)計(jì)制造及其自動(dòng)化09(4)班 B09300405)
1 選題的背景與意義
1991年.?dāng)嚢枘Σ梁?Friction stir Welding.FSW)由英國(guó)焊接研究所(The Welding lnstirate-TWl)發(fā)明,這項(xiàng)杰出的焊接技術(shù)一步一步地為世界制造技術(shù)的進(jìn)步做出了巨大的貢獻(xiàn)。
自1991年攪拌摩擦焊(Friction stir Welding.FSW)被發(fā)明到現(xiàn)在,該項(xiàng)技術(shù)已經(jīng)在國(guó)內(nèi)外的眾多領(lǐng)域出現(xiàn)它的身影。如今,攪拌摩擦焊焊已經(jīng)在諸多制造領(lǐng)域(船舶、軌道列車(chē)、航天、航空、汽車(chē)、兵器、電子電力等)達(dá)到規(guī)模化、工業(yè)化的應(yīng)用水平[1]。
雙攪拌軸摩擦焊縫技術(shù)作為攪拌摩擦焊的新型攪拌技術(shù),它具有以下優(yōu)勢(shì):(1)兩個(gè)攪拌頭同時(shí)焊接可以產(chǎn)生更多的熱量,該方法可以運(yùn)用于鋼及其他高溫合金攪拌摩擦焊中(2)可以確保在較小的扭矩下實(shí)現(xiàn)材料的可靠連接。這些優(yōu)點(diǎn)可以使得雙攪拌軸摩擦焊縫技術(shù)將攪拌摩擦焊的發(fā)展空間得到進(jìn)一步的拓展,將推動(dòng)制造業(yè)更快更好地發(fā)展,同時(shí)也必將擁有更廣闊的市場(chǎng),在不久的將來(lái)必將迎來(lái)快速的發(fā)展和應(yīng)用的高峰。
2 國(guó)內(nèi)外攪拌摩擦焊的發(fā)展?fàn)顩r及研究成果
2.1 攪拌摩擦焊的發(fā)展歷史及研究成果
攪拌摩擦焊在其發(fā)明初期主要解決厚度1.2毫米的鋁合金板材焊接問(wèn)題;1996年,用FSW技術(shù)解決了6~12毫米的鋁、鎂、銅合金的連接.1997年實(shí)現(xiàn)了12-25毫米厚鋁合金板的攪拌摩擦焊.并且在宇航結(jié)構(gòu)件上得到應(yīng)用。1999年攪拌摩擦焊可以焊接50毫米厚的銅合金及75毫米厚度的鋁合金零件和產(chǎn)品。2004年,英國(guó)焊接研究所已經(jīng)能夠單道單面實(shí)現(xiàn)100毫米厚鋁合金板材的攪拌摩擦焊。迄今,在材料的厚度上,單道焊可以實(shí)現(xiàn)厚度為0.8~100mm鋁合金材料的焊接:雙道焊可以焊接180mm厚的對(duì)接板材。最近,又開(kāi)發(fā)了可以連接0.4mm鋁板的微型攪拌摩擦焊技術(shù)[2]。
攪拌摩擦作為一種優(yōu)選焊接技術(shù),已經(jīng)在從技術(shù)研究向高層次的工程化和工業(yè)化應(yīng)用階段發(fā)展。就拿國(guó)外的例子來(lái)說(shuō):在美國(guó)的宇航制造工業(yè)、北歐的船舶制造工業(yè)、日本的高速列車(chē)制造等制造領(lǐng)域。總之?dāng)嚢枘Σ梁敢呀?jīng)廣泛地涉及到了在船舶制造工業(yè)、航空航天工業(yè)、軌道交通及陸路交通工業(yè)、汽車(chē)工業(yè)以及兵器、建筑、電力、能源、家電等工業(yè)。
攪拌摩擦在今年來(lái)取得的成就主要可以從以下幾方面來(lái)體現(xiàn):
(1)攪拌摩擦焊在船舶制造工業(yè)上的應(yīng)用
目前攪拌摩擦焊在船用鋁合金的焊接方面研究應(yīng)用較多,幾乎可以焊接所有系列的鋁合金材料,另外,攪拌摩擦焊也可以實(shí)現(xiàn)鋁合金與銅合金、鋁合金與鎂合金等不同材料的焊接。攪拌摩擦焊與普通摩擦焊相比,因不受軸類(lèi)零件的限制,可焊接直焊縫、角焊縫。傳統(tǒng)焊接工藝焊接鋁合金時(shí)要求對(duì)表面進(jìn)行去除氧化膜處理,并要求在48 h內(nèi)進(jìn)行焊接,而攪拌摩擦焊工藝只要在焊前去除油污即可,并對(duì)裝配要求不高。因此,攪拌摩擦焊是船用鋁合金結(jié)構(gòu)首選的連接技術(shù)。
(2)攪拌摩擦焊在航天航空工業(yè)上的應(yīng)用
以英國(guó)焊接研究所、波音、空客以及美國(guó)月蝕公司為代表的攪拌摩擦焊技術(shù)開(kāi)發(fā)和應(yīng)用的先鋒已經(jīng)取得了豐碩的成果。近期的研究結(jié)果表明攪拌摩擦焊可以在飛機(jī)機(jī)翼結(jié)構(gòu)、翼盒結(jié)構(gòu)、機(jī)身結(jié)構(gòu)、艙門(mén)結(jié)構(gòu)、裙翼結(jié)構(gòu)、機(jī)艙氣密隔板以及貨物裝卸結(jié)構(gòu)等方面得到應(yīng)用[3]。
(3)攪拌摩擦焊在高速列車(chē)鋁合金焊接的應(yīng)用
在攪拌摩擦焊出現(xiàn)后,攪拌摩擦焊由于是一種無(wú)需外加焊接材料的焊接方法,因此沒(méi)有熔化焊接時(shí)選擇焊接材料的困難,也節(jié)省了焊材費(fèi)用。更重要的是沒(méi)有熔化焊接凝固時(shí)的一次結(jié)晶過(guò)程,克服了焊接高強(qiáng)鋁合金時(shí)的結(jié)晶裂紋、氣孔和夾雜傾向,不會(huì)產(chǎn)生焊縫塌陷問(wèn)題,也不會(huì)形成焊縫鑄造組織和低強(qiáng)區(qū)。因此攪拌摩擦取代了先前的熔化焊,成為焊接高速列車(chē)時(shí)優(yōu)先選擇的焊接方法[4]。
(4)攪拌摩擦焊在其他領(lǐng)域的應(yīng)用
攪拌摩擦焊除了上述3個(gè)領(lǐng)域外,還在軌道交通及陸路交通工業(yè)、汽車(chē)工業(yè)在兵器、建筑、電力、能源、家電等工業(yè)中的應(yīng)用也越來(lái)越廣泛。而且都取得了或多或少的成就[5]。
2.2 國(guó)內(nèi)攪拌軸摩擦焊的術(shù)發(fā)展發(fā)展應(yīng)用
2002年,北京航空制造工程研究所與英國(guó)焊接研究所正式簽署攪拌摩擦焊專利許可協(xié)議,并在技術(shù)合作的基礎(chǔ)上成立了中國(guó)攪拌摩擦焊中心。中國(guó)攪拌摩擦焊中心的成立標(biāo)志著攪拌摩擦焊技術(shù)正式登陸中國(guó)。中國(guó)攪拌摩擦焊中心全權(quán)代表英國(guó)焊接研究所,發(fā)售和管理中國(guó)地區(qū)(包括香港、澳門(mén)和臺(tái)灣)的攪拌摩擦焊技術(shù)專利許可,從此為攪拌摩擦焊技術(shù)在中國(guó)地區(qū)的發(fā)展、推廣和工業(yè)化應(yīng)用打開(kāi)了大門(mén)[6]。
采用攪拌摩擦焊焊接的鋁合金材壁機(jī)
圖(1)
圖(2)攪拌摩擦加工技術(shù)的發(fā)展
自攪拌摩擦焊進(jìn)入國(guó)內(nèi)后,較快的運(yùn)用于我國(guó)工業(yè)上的許多領(lǐng)域(船舶制造行業(yè)、航天制造工業(yè)、軌道交通行業(yè)等)。
攪拌摩擦焊在國(guó)內(nèi)的應(yīng)用現(xiàn)狀,主要通過(guò)船舶制造行業(yè)、航天制造工業(yè)兩方面來(lái)介紹。首先在船舶制造行業(yè),2006年4月,我國(guó)設(shè)計(jì)制造了國(guó)內(nèi)第一臺(tái)用于大型船用型材料拼焊的攪拌摩擦焊設(shè)備,此后,中國(guó)攪拌摩擦焊中心大力發(fā)展鋁合金型材壁板的攪拌摩擦焊制造。其次,攪拌摩擦焊在航天制造工業(yè)也發(fā)揮著重大的作用。目前,國(guó)內(nèi)對(duì)于2000系列、7000系列以及鋁鋰合金的材料制成的太空交通運(yùn)載工具都優(yōu)先采用攪拌摩擦焊。中國(guó)攪拌摩擦焊中心于‘十五’期間重點(diǎn)對(duì)航天運(yùn)載火箭攪拌摩擦焊開(kāi)展了系統(tǒng)的科研攻關(guān),國(guó)內(nèi)的航天制造工業(yè)企業(yè)也積極采用了攪拌摩擦焊技術(shù)。 除卻上述的兩個(gè)領(lǐng)域外,攪拌摩擦焊在國(guó)內(nèi)還廣泛應(yīng)用于汽車(chē)制造業(yè)、軌道交通行業(yè)、電子電力能源行業(yè)[7]。
上圖(2)為攪拌摩擦焊在國(guó)內(nèi)的發(fā)展趨勢(shì)。隨著攪拌摩擦焊研究、技術(shù)開(kāi)發(fā)與應(yīng)用推廣的不斷深入,基于攪拌摩擦的基本原理形成了材料鏈接、材料改姓、材料成行等多種材料加工方法。
總之,在中國(guó),攪拌摩擦焊的研究、開(kāi)發(fā)和推廣應(yīng)用才剛剛起步,在市場(chǎng)化的環(huán)境下,通過(guò)引進(jìn)、消化、吸收和技術(shù)創(chuàng)新,攪拌摩擦得到了快速發(fā)展,尤其在航空、航天等領(lǐng)域、在國(guó)家政策和項(xiàng)目的支持下,攪拌摩擦焊必將在我國(guó)其他工業(yè)領(lǐng)域得到較快的推廣。
2.3攪拌摩擦焊縫中雙攪拌軸攪拌摩擦焊目前的應(yīng)用情況和前景
(1) 雙攪拌軸摩擦焊的工作原理
在提及雙攪拌軸摩擦焊縫技術(shù)的工作原理前,我們先講講攪拌摩擦焊的工作原理:攪拌摩擦焊過(guò)程中,一個(gè)柱形帶特殊軸肩和針凸的攪拌頭旋轉(zhuǎn)著緩慢插入被焊接工件,攪拌頭和被焊接材料之間的摩擦剪切阻力產(chǎn)生了摩擦熱,使攪拌頭鄰近區(qū)域的材料熱塑化(焊接溫度一般不會(huì)達(dá)到和超過(guò)被焊接材料的熔點(diǎn)),當(dāng)攪拌頭旋轉(zhuǎn)著向前移動(dòng)時(shí),熱塑化的金屬材料從攪拌頭的前沿向后沿轉(zhuǎn)移,并且在攪拌頭軸肩與工件表層摩擦產(chǎn)熱和鍛壓共同作用下,形成致密固相連接接頭。
相對(duì)于攪拌摩擦焊的工作原理,雙攪拌摩擦焊縫為采用兩個(gè)轉(zhuǎn)動(dòng)相反的攪拌頭同時(shí)進(jìn)行焊接,由于兩個(gè)攪拌頭轉(zhuǎn)動(dòng)方向相反,產(chǎn)生的工作扭矩因相互抵消而減弱,焊接過(guò)程中采用較小的側(cè)向裝夾力就能實(shí)現(xiàn)可靠的連接。在雙攪拌頭復(fù)雜的機(jī)械力和摩擦熱的作用下,塑性金屬的流動(dòng)、焊接溫度場(chǎng)、應(yīng)力應(yīng)變場(chǎng)都將受到影響,這會(huì)對(duì)焊件性能產(chǎn)生很大的影響[8]。
雖然兩者看起來(lái)是十分的相似,無(wú)非是多了一個(gè)攪拌軸,但是雙攪拌軸摩擦焊相對(duì)于攪拌摩擦焊有以下優(yōu)點(diǎn):(a)可以得到比攪拌摩擦焊更寬的焊縫區(qū)域;(b)焊接質(zhì)量更高;(c)兩個(gè)攪拌頭同時(shí)焊接可以產(chǎn)生更多的熱量,該方法可以運(yùn)用于鋼及其他高溫合金攪拌摩擦焊中;(d)可以確保在較小的扭矩下實(shí)現(xiàn)材料的可靠連接,(e)生產(chǎn)效率更高。
目前雙攪拌軸摩擦焊有以下幾種:平行并列式雙頭(Parallel Twin-stir)攪拌摩擦焊、前后交錯(cuò)排列式雙頭(Staggered Twin-stir)攪拌摩擦焊、前后一字排列式雙頭(Tandem Twin-stir)攪拌摩擦焊。
(2)雙攪拌軸摩擦焊取得得成就
TWI采用雙攪拌軸進(jìn)行了雙頭攪拌摩擦焊焊接,試驗(yàn)中得出了在6mm厚的6082-T6鋁合金一字排列式雙頭攪拌摩擦焊搭接接頭中,無(wú)論前進(jìn)側(cè)還是后退側(cè)的焊縫區(qū)域殘留氧化物均有所減少,前后交錯(cuò)排列式雙頭攪拌摩擦焊3mm厚的5083-H111鋁合金搭接接頭的金相分析表明,焊接區(qū)域尺寸可達(dá)板厚度的4.3倍。
在一系列的試驗(yàn)后,事實(shí)證明了雙攪拌軸摩擦焊的優(yōu)點(diǎn)遠(yuǎn)遠(yuǎn)大于其不足之處。多頭系統(tǒng)可以確保在較小的扭矩下實(shí)現(xiàn)材料的可靠連接。采用 前后交錯(cuò)排列式雙頭攪拌摩擦焊工藝,用于材料加工和搭接焊具有獨(dú)特優(yōu)勢(shì),而且可以在更大的對(duì)接間隙下實(shí)現(xiàn)對(duì)接接頭的可靠連接。
由此,在接下來(lái)的幾年內(nèi),雙攪拌軸摩擦焊縫技術(shù)將會(huì)得到越來(lái)越廣泛的應(yīng)用于各個(gè)領(lǐng)域。
3 研究的基本內(nèi)容與擬解決的主要問(wèn)題
3.1 基本內(nèi)容
在接下來(lái)的時(shí)間里,我將會(huì)通過(guò)ProE、CAD等軟件畫(huà)出雙攪拌軸攪拌摩擦焊中的雙攪拌軸部分的二維圖和三維模型并結(jié)合ProE的仿真功能初步的做出其工作原理的仿真。其中涉及到的工作包括以下幾個(gè)方面。
1) 掌握雙攪拌軸的工藝要求;
2) 建立機(jī)構(gòu)運(yùn)動(dòng)的數(shù)學(xué)模型;
3) 確定合理的參數(shù),得到機(jī)構(gòu)的大致輪廓;
4) 根據(jù)獲得的參數(shù)在ProE中設(shè)計(jì)機(jī)構(gòu)的結(jié)構(gòu),包括零部件和裝配體,對(duì)關(guān)鍵的攪拌軸運(yùn)動(dòng)部分進(jìn)行有限元分析,并在ProE中進(jìn)行仿真;
5) 設(shè)計(jì)完整體裝配后,進(jìn)行二維加工圖紙繪制。
圖(3)為一個(gè)電機(jī)帶動(dòng)的雙攪拌軸的三維裝配圖
3.2 擬解決的主要問(wèn)題
攪拌摩擦焊在國(guó)內(nèi)外都已經(jīng)被工業(yè)化的應(yīng)用于航天航空、汽車(chē)制造等工業(yè)領(lǐng)域,因此單軸的攪拌摩擦焊設(shè)備在這些工業(yè)領(lǐng)域已經(jīng)隨處可見(jiàn)。但是,雙攪拌摩擦焊設(shè)備在國(guó)內(nèi)還是比較少見(jiàn),也還沒(méi)有被大范圍的使用,因此,我的主要待解決的問(wèn)題就是設(shè)計(jì)出一個(gè)傳動(dòng)系統(tǒng)可以由一個(gè)電機(jī)來(lái)同時(shí)帶動(dòng)兩個(gè)攪拌軸和如何將該機(jī)構(gòu)于攪拌摩擦設(shè)備相配套使用。
4 研究方案、可行性分析及預(yù)期研究成果
本課題以雙攪拌軸攪拌摩擦焊機(jī)為對(duì)象,根據(jù)工藝要求,以雙攪拌軸為分析的主體,在分析符合的參數(shù)后,確定雙攪拌軸的內(nèi)部機(jī)構(gòu)和參數(shù)。從而,進(jìn)一步的確定雙攪拌軸的工作過(guò)程。
4.1 研究方案
雙攪拌軸的內(nèi)部機(jī)構(gòu)的三維效果如圖(3)所示,一個(gè)電機(jī)通過(guò)齒輪傳動(dòng)帶動(dòng)左右兩個(gè)攪拌軸一起轉(zhuǎn)動(dòng),兩個(gè)攪拌軸由于通過(guò)齒輪傳動(dòng),朝相反的方向轉(zhuǎn)動(dòng)。進(jìn)而使得這兩個(gè)攪拌軸可以同步加工,可以大大提高生產(chǎn)效率。當(dāng)然這樣的機(jī)構(gòu)也可以成直線排列,用于提高焊接質(zhì)量。
4.2 可行性分析
該機(jī)構(gòu)主要是通過(guò)齒輪傳動(dòng)將兩個(gè)攪拌軸聯(lián)系在一起,有一個(gè)電機(jī)帶動(dòng)同步轉(zhuǎn)動(dòng)。因此,從工藝的角度看,這樣的機(jī)構(gòu)比較簡(jiǎn)單,容易實(shí)現(xiàn)。而且,這樣的機(jī)構(gòu)在其他的領(lǐng)域也被廣泛的應(yīng)用,它只是運(yùn)用了齒輪的傳動(dòng)。目前TWI已經(jīng)發(fā)明了直線排列的雙攪拌軸。
4.3 預(yù)期研究成果
本課題主要研究的是雙攪拌軸的內(nèi)部結(jié)構(gòu)設(shè)計(jì),只要掌握機(jī)構(gòu)設(shè)計(jì)的一般流程,完成的機(jī)構(gòu)的設(shè)計(jì)計(jì)算(該機(jī)構(gòu)有一定的通用性),確定零件的參數(shù),繪制機(jī)構(gòu)圖紙。最終研制一種可以完成攪拌摩擦焊過(guò)程的部件。
5 研究工作計(jì)劃(進(jìn)度安排)
起止時(shí)間
內(nèi)容
2012年11月上旬
下達(dá)畢業(yè)論文任務(wù)
2012年11月20日
完成中外文資料收集
2012年12月12日
完成外文翻譯、文獻(xiàn)綜述
2012年12月31日
完成開(kāi)題報(bào)告
2013年1月15日
完成開(kāi)題答辯
2013年2月中旬
應(yīng)用proe進(jìn)行可行性分析
2013年2月下旬
初步運(yùn)用proe仿真
2013年3月中旬
完成二維工程圖紙的設(shè)計(jì)
2013年3月下旬
完成三維零部件設(shè)計(jì)并裝配,努力實(shí)現(xiàn)仿真
2013年4月15日
完成論文初稿
2013年4月30日
完成實(shí)習(xí)報(bào)告
2013年5月上旬
部分論文提前答辯
2013年5月中旬
完成論文定稿
2013年5月下旬
完成論文答辯
2013年6月(離校前)
論文修改(優(yōu)秀論文壓縮為規(guī)定字?jǐn)?shù)),交紙質(zhì)和電子稿
參考文獻(xiàn)
[1] 中國(guó)機(jī)床商務(wù)網(wǎng) http://www.jic35.cn/Tech_news/Detail/3970.html
[2]鄢東洋.史清宇.吳愛(ài)萍.Juerqen Silvanus 攪拌摩擦焊應(yīng)力變形有限元模擬的研究進(jìn)展[期刊論文]-焊接 2009(1)
[3]李光.李從卿.欒國(guó)紅.董春林薄壁鋁合金攪拌摩擦焊焊接應(yīng)力變形與控制[期刊論文]-焊接 2009(1)
[4]張友壽.何建軍.謝志強(qiáng).蔣蔚翔攪拌摩擦焊接技術(shù)基礎(chǔ)及其工程應(yīng)用[期刊論文]-材料導(dǎo)報(bào) 2008(1)
[5]董春林 欒國(guó)紅 攪拌摩擦焊在中國(guó)應(yīng)用發(fā)展現(xiàn)狀概述-北京航空制造工程研究所
[6]欒國(guó)紅;柴鵬;孫成斌鈦合金的攪拌摩擦焊探索[期刊論文]-焊接學(xué)報(bào) 2005(11)
[7]柯黎明 攪拌摩擦焊工藝及其應(yīng)用[期刊論文]-工藝與新技術(shù) 2000(02)
[8]關(guān)橋輕金屬材料結(jié)構(gòu)制造中的攪拌摩擦焊技術(shù)與焊接變形控制[期刊論文]-航空科學(xué)技術(shù) 2005(04)
[9]J. J. Vagi, R. P. Meister, and M. D. Randall, DMIC Report 244, Defense Metals Information Center, Battelle Memorial Institute, August 1968.
[10]Terry Khaled, Ph.D. USA AN OUTSIDER LOOKS AT FRICTION STIR WELDING
[11]R.S. Mishraa,*, Z.Y. Mab USA FIRCTION STIR WELDING AND PROCESSING
[12] Hassan Kh A A , Norman A F. Stability of nugget zone grain structures in high strength Al alloy friction stir welds during solution treatment. Acta Materialia , 2003 , 51 (8) : 1 923~1 936
浙 江 理 工 大 學(xué) 本 科 畢 業(yè) 設(shè) 計(jì) ( 論 文 ) 題 目 雙攪拌軸攪拌摩擦焊機(jī)設(shè)計(jì) 學(xué) 院 機(jī)械與自動(dòng)控制學(xué)院 專業(yè)班級(jí) 09 機(jī)械設(shè)計(jì)制造及其自動(dòng)化(4)班 姓 名 陳偉杰 學(xué) 號(hào) B09300405 指導(dǎo)教師 李紅軍 系 主 任 胡明 學(xué)院院長(zhǎng) 胡旭東 二〇一三年五月十二日 浙 江 理 工 大 學(xué) 機(jī)械與自動(dòng)控制學(xué)院 畢業(yè)設(shè)計(jì)誠(chéng)信說(shuō)明 我謹(jǐn)在此保證:本人所做的畢業(yè)設(shè)計(jì),凡引用他人的研究成果 均已在參考文獻(xiàn)或注釋中列出。設(shè)計(jì)說(shuō)明書(shū)與圖紙均由本人獨(dú)立完 成,沒(méi)有抄襲、剽竊他人已經(jīng)發(fā)表或未發(fā)表的研究成果行為。如出 現(xiàn)以上違反知識(shí)產(chǎn)權(quán)的情況,本人愿意承擔(dān)相應(yīng)的責(zé)任。 聲明人(簽名): 2013 年 5 月 12 日 2 摘 要 攪拌摩擦焊技術(shù)是 90 年代發(fā)展起來(lái)的、自發(fā)明到工業(yè)應(yīng)用時(shí)間跨度最短和 發(fā)展最快的一項(xiàng)新型固相連接新技術(shù),公認(rèn)為是最有前途和最適合航空材料以 及結(jié)構(gòu)件制造的工藝方法之一。攪拌摩擦焊(FSW)是一個(gè)相對(duì)較新的固態(tài)焊接 過(guò)程。這種連接技術(shù)具有節(jié)能,高效,環(huán)保,用途廣泛的特點(diǎn)。特別是,它可 以用于高強(qiáng)度航天鋁合金和其他金屬的合金,這些合金是很難通過(guò)常規(guī)焊接熔 焊。 FSW 被認(rèn)為是金屬連接在十年的發(fā)展中最有標(biāo)志性的成果。 [6] 本文設(shè)計(jì)出的雙攪拌軸摩擦焊焊機(jī),總功率約 3 千瓦,適合于普通厚度的 鋁及其合金的工藝試驗(yàn)試件的焊接,攪拌摩擦頭轉(zhuǎn)速約 6000r/min,焊接速度 為 500—600mm/min,最大加工焊縫厚度 15mm,焊縫長(zhǎng)度 500mm。文中介紹了攪 拌摩擦焊焊接技術(shù)的基本原理和特點(diǎn),概要地介紹了攪拌摩擦焊的技術(shù)優(yōu)勢(shì)、 研究現(xiàn)狀、工業(yè)應(yīng)用和發(fā)展前景。針對(duì)工藝試驗(yàn)試件攪拌摩擦焊機(jī),主要設(shè)計(jì)、 計(jì)算和校核了設(shè)備各主要部分,均能夠滿足試驗(yàn)用焊機(jī)的要求。 本機(jī)器由于采用雙攪拌頭,因此相對(duì)于一般的攪拌摩擦焊焊機(jī)效率更高。 相對(duì)于一般的攪拌摩擦焊焊機(jī),該機(jī)器也非常的經(jīng)濟(jì)和容易操作。 關(guān)鍵詞:雙攪拌軸摩擦焊;固相焊接;鋁合金焊接;焊機(jī)設(shè)計(jì) Abstract Friction stir welding (FSW) was firstly used in the 1990s, which is swiftest in development and is shortest in time from being invented to being applied, it is also treated as one of the technology that have a bright future and the most suitable for aviation and component manufacture.Friction stir welding (FSW) is a relatively new solid-state joining process. This joining technique is energy efficient, environment friendly, and versatile. In particular, it can be used to join high-strength aerospace aluminum alloys and other metallic alloys that are hard to weld by conventional fusion welding. FSW is considered to be the most significant development in metal joining in a decade. This task is to sign a machine used in laboratory. Its power is about three kilowatt, rotation rate approximately is 6000r/min, and welding speed is from 500 to 600mm/min. It can be apply to welding the aluminum and aluminum alloys. In addition, the welding thickness can’t exceed 15mm and length 500mm. In this paper, the basal principle and features of FSW is introduced, and the priority, prospect and application are also expounded. Importantly, main parts of the FSW machine was designed and calculated, the calculation results shows that the FSW machine designed in the paper can accord with the demand of the testing in laboratory. The advantage of this machine is that it is more efficient than the normal FSW machine because it has a twin-stir.Compared with other machine,it is also very cheap and easy-to-use. Key words:Twin-stir Friction welding;Solid phase welding;Aluminum alloys welding;Application prospect;Welding machine design 目 錄 摘 要 Abstract 第 1 章 緒論 ..................................................................................................................1 1.1 攪拌摩擦焊簡(jiǎn)介 ........................................................1 1.2 國(guó)內(nèi)外研究現(xiàn)狀及發(fā)展趨勢(shì) ..............................................2 1.2.1 攪拌摩擦焊技術(shù)發(fā)展歷史及研究成果 .................................................................2 1.2.2 國(guó)內(nèi)攪拌軸摩擦焊技術(shù)發(fā)展發(fā)展應(yīng)用 ................................................................3 1.2.3 攪拌摩擦焊中雙攪拌軸摩擦焊技術(shù)目前的應(yīng)用情況和前景 .............................5 1.3 本次設(shè)計(jì)的內(nèi)容和意義 ..................................................6 第 2 章 雙攪拌軸攪拌摩擦焊機(jī)設(shè)計(jì) ..........................................................................7 2.1 焊機(jī)的總體設(shè)計(jì)以及規(guī)劃 ................................................7 2.2 各部件設(shè)計(jì) ............................................................8 2.2.1 攪拌頭及夾具設(shè)計(jì) ................................................................................................8 2.2.2 攪拌系統(tǒng)功率計(jì)算 ................................................................................................9 2.2.3 攪拌系統(tǒng)傳動(dòng)齒輪設(shè)計(jì) .......................................................................................11 2.2.4 攪拌軸的設(shè)計(jì) .......................................................................................................15 2.2.5 攪拌系統(tǒng) V 帶設(shè)計(jì) ...............................................................................................20 2.2.6X-Y 工作臺(tái)設(shè)計(jì) .....................................................................................................26 2.2.7 傳動(dòng)絲杠設(shè)計(jì) .......................................................................................................27 2.2.8 減速齒輪的設(shè)計(jì) ...................................................................................................30 2.2.9 液壓缸選擇 ...........................................................................................................33 第 3 章 AUTOCAD 與 PRO/E 軟件簡(jiǎn)介 .........................................................................34 3.1 軟件簡(jiǎn)介 .........................................................................................................................34 3.2 三維模型 .........................................................................................................................35 第 4 章 總結(jié)與展望 ....................................................................................................37 參考文獻(xiàn) ...................................................................................................................38 致 謝 ........................................................................................................................39 浙江理工大學(xué)本科畢業(yè)設(shè)計(jì)(論文) 1 第 1 章 緒論 1.1 攪拌摩擦焊簡(jiǎn)介 1991 年.?dāng)嚢枘Σ梁?Friction stir Welding.FSW)由英國(guó)焊接研究所 (The Welding lnstirate-TWl)發(fā)明,這項(xiàng)杰出的焊接技術(shù)一步一步地為世界制 造技術(shù)的進(jìn)步做出了巨大的貢獻(xiàn)。 自 1991 年攪拌摩擦焊(Friction stir Welding.FSW)被發(fā)明到現(xiàn)在,該項(xiàng) 技術(shù)已經(jīng)在國(guó)內(nèi)外的眾多領(lǐng)域出現(xiàn)它的身影。如今,攪拌摩擦焊焊已經(jīng)在諸多 制造領(lǐng)域(船舶、軌道列車(chē)、航天、航空、汽車(chē)、兵器、電子電力等)達(dá)到規(guī) ?;?、工業(yè)化的應(yīng)用水平。如在船舶制造領(lǐng)域,在 1996 年攪拌摩擦焊就在挪威 MARINE 公司成功地應(yīng)用在鋁臺(tái)金快速艦船的甲板、側(cè)板等結(jié)構(gòu)件的流水線制造。 在軌道車(chē)輛制造領(lǐng)域,日本 HITACHI 公司首先于 1997 年將攪拌摩擦焊技術(shù)應(yīng)用 于列車(chē)車(chē)體的快速低成本制造。成功實(shí)現(xiàn)了大壁板鋁合金型材的工業(yè)化制 造.在世界宇航制造領(lǐng)域.?dāng)嚢枘Σ梁敢呀?jīng)成功代替熔焊實(shí)現(xiàn)了大型空間運(yùn)載 工具如運(yùn)載火箭和航天飛機(jī)等的大型高強(qiáng)鋁合金燃料貯箱的制造,波音公司的 DELTA II 型和 Iv 型火箭已經(jīng)全部實(shí)現(xiàn)了攪拌摩擦焊制造 t 并于 1999 年首次成 功發(fā)射升空。2000 年世界汽車(chē)工業(yè),如美國(guó) TOWER 汽車(chē)公司等就利用攪拌摩擦 焊實(shí)現(xiàn)了汽車(chē)懸掛支架、輕合金車(chē)輪、防撞緩沖器、發(fā)動(dòng)機(jī)安裝支架以及鋁合 金車(chē)身的焊接。2002 年 8 月,美國(guó)月蝕航空公司利用 FSW 技術(shù)研制出了全攪拌 摩擦焊輕型商用飛機(jī),并且首次試飛成功 [7]。 至2004年9月,全世界約有130家各個(gè)行業(yè)的公司和大學(xué)、研究機(jī)構(gòu)獲得了 英國(guó)焊接研究所授權(quán)的攪拌摩擦焊非獨(dú)占性專利許可。英國(guó)、美國(guó)、法國(guó)、德 國(guó)、瑞典、日本和中國(guó)等先后獲得了該專利的使用權(quán)。至今為止我國(guó)先后已經(jīng) 有二十多家單位。獲得了該項(xiàng)專利的使用權(quán) [8]。 雙攪拌軸摩擦焊縫技術(shù)作為攪拌摩擦焊技術(shù)的一種,它的最大特點(diǎn)就是可 以提高生產(chǎn)效率。同時(shí),它也可以使得焊縫區(qū)域更大,焊接質(zhì)量更高。目前存 在的雙攪拌軸一般采用兩個(gè)轉(zhuǎn)動(dòng)相反的攪拌頭同時(shí)進(jìn)行焊接。 雙攪拌軸攪拌摩擦焊機(jī)設(shè)計(jì) 2 在不久的將來(lái),攪拌摩擦焊技術(shù)將會(huì)一直以任何一種焊接方法無(wú)法比擬的 速度發(fā)展,在更多的領(lǐng)域發(fā)揮著它的作用。 1.2 國(guó)內(nèi)外研究現(xiàn)狀及發(fā)展趨勢(shì) 1.2.1 攪拌摩擦焊技術(shù)發(fā)展歷史及研究成果 攪拌摩擦焊在其發(fā)明初期主要解決厚度1.2毫米的鋁合金板材焊接問(wèn)題; 1996年,用FSW技術(shù)解決了6~12毫米的鋁、鎂、銅合金的連接.1997年實(shí)現(xiàn)了 12-25毫米厚鋁合金板的攪拌摩擦焊.并且在宇航結(jié)構(gòu)件上得到應(yīng)用。1999年攪 拌摩擦焊可以焊接50毫米厚的銅合金及75毫米厚度的鋁合金零件和產(chǎn)品。2004 年,英國(guó)焊接研究所已經(jīng)能夠單道單面實(shí)現(xiàn)100毫米厚鋁合金板材的攪拌摩擦焊。 迄今,在材料的厚度上,單道焊可以實(shí)現(xiàn)厚度為0.8~100mm鋁合金材料的焊接: 雙道焊可以焊接180mm厚的對(duì)接板材。最近,又開(kāi)發(fā)了可以連接0.4mm鋁板的微 型攪拌摩擦焊技術(shù) [9]。 攪拌摩擦作為一種優(yōu)選焊接技術(shù),已經(jīng)在從技術(shù)研究向高層次的工程化和 工業(yè)化應(yīng)用階段發(fā)展。就拿國(guó)外的例子來(lái)說(shuō):在美國(guó)的宇航制造工業(yè)、北歐的 船舶制造工業(yè)、日本的高速列車(chē)制造等制造領(lǐng)域 [10]??傊?dāng)嚢枘Σ梁敢呀?jīng)廣泛 地涉及到了在船舶制造工業(yè)、航空航天工業(yè)、軌道交通及陸路交通工業(yè)、汽車(chē) 工業(yè)以及兵器、建筑、電力、能源、家電等工業(yè)。 攪拌摩擦在今年來(lái)取得的成就主要可以從以下幾方面來(lái)體現(xiàn): (1)攪拌摩擦焊在船舶制造工業(yè)上的應(yīng)用 目前攪拌摩擦焊在船用鋁合金的焊接方面研究應(yīng)用較多,幾乎可以焊接 所有系列的鋁合金材料,另外,攪拌摩擦焊也可以實(shí)現(xiàn)鋁合金與銅合金、鋁合 金與鎂合金等不同材料的焊接。攪拌摩擦焊與普通摩擦焊相比,因不受軸類(lèi)零 件的限制,可焊接直焊縫、角焊縫。傳統(tǒng)焊接工藝焊接鋁合金時(shí)要求對(duì)表面進(jìn) 行去除氧化膜處理,并要求在48 h內(nèi)進(jìn)行焊接,而攪拌摩擦焊工藝只要在焊前 去除油污即可,并對(duì)裝配要求不高。因此,攪拌摩擦焊是船用鋁合金結(jié)構(gòu)首選 的連接技術(shù)。 浙江理工大學(xué)本科畢業(yè)設(shè)計(jì)(論文) 3 (2)攪拌摩擦焊在航天航空工業(yè)上的應(yīng)用 以英國(guó)焊接研究所、波音、空客以及美國(guó)月蝕公司為代表的攪拌摩擦焊技 術(shù)開(kāi)發(fā)和應(yīng)用的先鋒已經(jīng)取得了豐碩的成果。近期的研究結(jié)果表明攪拌摩擦焊 可以在飛機(jī)機(jī)翼結(jié)構(gòu)、翼盒結(jié)構(gòu)、機(jī)身結(jié)構(gòu)、艙門(mén)結(jié)構(gòu)、裙翼結(jié)構(gòu)、機(jī)艙氣密 隔板以及貨物裝卸結(jié)構(gòu)等方面得到應(yīng)用 [11]。 (3)攪拌摩擦焊在高速列車(chē)鋁合金焊接的應(yīng)用 在攪拌摩擦焊出現(xiàn)后,攪拌摩擦焊由于是一種無(wú)需外加焊接材料的焊接方 法,因此沒(méi)有熔化焊接時(shí)選擇焊接材料的困難,也節(jié)省了焊材費(fèi)用。更重要的 是沒(méi)有熔化焊接凝固時(shí)的一次結(jié)晶過(guò)程,克服了焊接高強(qiáng)鋁合金時(shí)的結(jié)晶裂紋、 氣孔和夾雜傾向,不會(huì)產(chǎn)生焊縫塌陷問(wèn)題,也不會(huì)形成焊縫鑄造組織和低強(qiáng)區(qū)。 因此攪拌摩擦取代了先前的熔化焊,成為焊接高速列車(chē)時(shí)優(yōu)先選擇的焊接方法。 (4)攪拌摩擦焊在其他領(lǐng)域的應(yīng)用 攪拌摩擦焊除了上述3個(gè)領(lǐng)域外,還在軌道交通及陸路交通工業(yè)、汽車(chē)工業(yè) 在兵器、建筑、電力、能源、家電等工業(yè)中的應(yīng)用也越來(lái)越廣泛。而且都取得 了或多或少的成就。 1.2.2 國(guó)內(nèi)攪拌軸摩擦焊技術(shù)發(fā)展發(fā)展應(yīng)用 2002 年,北京航空制造工程研究所與英國(guó)焊接研究所正式簽署攪拌摩擦 焊專利許可協(xié)議,并在技術(shù)合作的基礎(chǔ)上成立了中國(guó)攪拌摩擦焊中心。中國(guó)攪 拌摩擦焊中心的成立標(biāo)志著攪拌摩擦焊技術(shù)正式登陸中國(guó)。中國(guó)攪拌摩擦焊中 心全權(quán)代表英國(guó)焊接研究所,發(fā)售和管理中國(guó)地區(qū)(包括香港、澳門(mén)和臺(tái)灣)的 攪拌摩擦焊技術(shù)專利許可,從此為攪拌摩擦焊技術(shù)在中國(guó)地區(qū)的發(fā)展、推廣和 工業(yè)化應(yīng)用打開(kāi)了大門(mén) [12]。 雙攪拌軸攪拌摩擦焊機(jī)設(shè)計(jì) 4 圖 1-1 采用攪拌摩擦焊焊接的鋁合金材壁機(jī) 圖 1-2 攪拌摩擦加工技術(shù)的發(fā)展 自攪拌摩擦焊進(jìn)入國(guó)內(nèi)后,較快的運(yùn)用于我國(guó)工業(yè)上的許多領(lǐng)域(船 舶制造行業(yè)、航天制造工業(yè)、軌道交通行業(yè)等) 。 攪拌摩擦焊在國(guó)內(nèi)的應(yīng)用現(xiàn)狀,主要通過(guò)船舶制造行業(yè)、航天制造工 業(yè)兩方面來(lái)介紹。首先在船舶制造行業(yè),2006 年 4 月,我國(guó)設(shè)計(jì)制造了國(guó)內(nèi)第 一臺(tái)用于大型船用型材料拼焊的攪拌摩擦焊設(shè)備,此后,中國(guó)攪拌摩擦焊中心 大力發(fā)展鋁合金型材壁板的攪拌摩擦焊制造。其次,攪拌摩擦焊在航天制造工 業(yè)也發(fā)揮著重大的作用。目前,國(guó)內(nèi)對(duì)于 2000 系列、7000 系列以及鋁鋰合金 的材料制成的太空交通運(yùn)載工具都優(yōu)先采用攪拌摩擦焊。中國(guó)攪拌摩擦焊中心 于‘十五’期間重點(diǎn)對(duì)航天運(yùn)載火箭攪拌摩擦焊開(kāi)展了系統(tǒng)的科研攻關(guān),國(guó)內(nèi) 的航天制造工業(yè)企業(yè)也積極采用了攪拌摩擦焊技術(shù)。 除卻上述的兩個(gè)領(lǐng)域外, 攪拌摩擦焊在國(guó)內(nèi)還廣泛應(yīng)用于汽車(chē)制造業(yè)、軌道交通行業(yè)、電子電力能源行 業(yè)。 上圖 1-2 為攪拌摩擦焊在國(guó)內(nèi)的發(fā)展趨勢(shì)。隨著攪拌摩擦焊研究、技 術(shù)開(kāi)發(fā)與應(yīng)用推廣的不斷深入,基于攪拌摩擦的基本原理形成了材料鏈接、材 料改姓、材料成行等多種材料加工方法。 總之,在中國(guó),攪拌摩擦焊的研究、開(kāi)發(fā)和推廣應(yīng)用才剛剛起步,在 市場(chǎng)化的環(huán)境下,通過(guò)引進(jìn)、消化、吸收和技術(shù)創(chuàng)新,攪拌摩擦得到了快速發(fā) 浙江理工大學(xué)本科畢業(yè)設(shè)計(jì)(論文) 5 展,尤其在航空、航天等領(lǐng)域、在國(guó)家政策和項(xiàng)目的支持下,攪拌摩擦焊必將 在我國(guó)其他工業(yè)領(lǐng)域得到較快的推廣。 1.2.3 攪拌摩擦焊中雙攪拌軸摩擦焊技術(shù)目前的應(yīng)用情況和前景 (1)雙攪拌軸摩擦焊技術(shù)的工作原理 在提及雙攪拌軸摩擦焊縫技術(shù)的工作原理前,我們先講講攪拌摩擦焊的 工作原理:攪拌摩擦焊過(guò)程中,一個(gè)柱形帶特殊軸肩和針凸的攪拌頭旋轉(zhuǎn)著緩 慢插入被焊接工件,攪拌頭和被焊接材料之間的摩擦剪切阻力產(chǎn)生了摩擦熱, 使攪拌頭鄰近區(qū)域的材料熱塑化(焊接溫度一般不會(huì)達(dá)到和超過(guò)被焊接材料的熔 點(diǎn)),當(dāng)攪拌頭旋轉(zhuǎn)著向前移動(dòng)時(shí),熱塑化的金屬材料從攪拌頭的前沿向后沿轉(zhuǎn) 移,并且在攪拌頭軸肩與工件表層摩擦產(chǎn)熱和鍛壓共同作用下,形成致密固相 連接 [6]。 相對(duì)于攪拌摩擦焊的工作原理,雙攪拌摩擦焊縫為采用兩個(gè)轉(zhuǎn)動(dòng)相反的 攪拌頭同時(shí)進(jìn)行焊接,由于兩個(gè)攪拌頭轉(zhuǎn)動(dòng)方向相反,產(chǎn)生的工作扭矩因相互 抵消而減弱,焊接過(guò)程中采用較小的側(cè)向裝夾力就能實(shí)現(xiàn)可靠的連接。在雙攪 拌頭復(fù)雜的機(jī)械力和摩擦熱的作用下,塑性金屬的流動(dòng)、焊接溫度場(chǎng)、應(yīng)力應(yīng) 變場(chǎng)都將受到影響,這會(huì)對(duì)焊件性能產(chǎn)生很大的影響。 雖然兩者看起來(lái)是十分的相似,無(wú)非是多了一個(gè)攪拌軸,但是雙攪拌軸 摩擦焊相對(duì)于攪拌摩擦焊有以下優(yōu)點(diǎn):(a)可以得到比攪拌摩擦焊更寬的焊縫 區(qū)域;(b)焊接質(zhì)量更高;(c)兩個(gè)攪拌頭同時(shí)焊接可以產(chǎn)生更多的熱量, 該方法可以運(yùn)用于鋼及其他高溫合金攪拌摩擦焊中;(d)可以確保在較小的扭 矩下實(shí)現(xiàn)材料的可靠連接, (e)生產(chǎn)效率更高。 目前雙攪拌軸摩擦焊有以下幾種:平行并列式雙頭(Parallel Twin-stir) 攪拌摩擦焊、前后交錯(cuò)排列式雙頭(Staggered Twin-stir)攪拌摩擦焊、前后一 字排列式雙頭(Tandem Twin-stir)攪拌摩擦焊。 (2)雙攪拌軸摩擦焊技術(shù)取得得成就 TWI采用雙攪拌軸進(jìn)行了雙頭攪拌摩擦焊焊接,試驗(yàn)中得出了在6mm厚 6082-T6鋁合金一字排列式雙頭攪拌摩擦焊搭接接頭中,無(wú)論前進(jìn)側(cè)還是后退側(cè) 的焊縫區(qū)域殘留氧化物均有所減少,前后交錯(cuò)排列式雙頭攪拌摩擦焊3mm厚 雙攪拌軸攪拌摩擦焊機(jī)設(shè)計(jì) 6 5083-H111鋁合金搭接接頭的金相分析表明,焊接區(qū)域尺寸可達(dá)板厚度的4.3倍。 在一系列的試驗(yàn)后,事實(shí)證明了雙攪拌軸摩擦焊的優(yōu)點(diǎn)遠(yuǎn)遠(yuǎn)大于其不足之 處。多頭系統(tǒng)可以確保在較小的扭矩下實(shí)現(xiàn)材料的可靠連接。采用 前后交錯(cuò)排 列式雙頭攪拌摩擦焊工藝,用于材料加工和搭接焊具有獨(dú)特優(yōu)勢(shì),而且可以在 更大的對(duì)接間隙下實(shí)現(xiàn)對(duì)接接頭的可靠連接 [7]。 由此,在接下來(lái)的幾年內(nèi),雙攪拌軸摩擦焊技術(shù)將會(huì)得到越來(lái)越廣泛的應(yīng) 用于各個(gè)領(lǐng)域。 1.3 本次設(shè)計(jì)的內(nèi)容和意義 通過(guò)對(duì)相關(guān)資料、文獻(xiàn)的查找,獲得相關(guān)資料,了解雙攪拌摩擦焊焊接原 理及相關(guān)工藝,了解其的應(yīng)用范圍,了解雙攪拌摩擦焊在焊接中的優(yōu)勢(shì),了解 雙攪拌軸摩擦焊的研究現(xiàn)狀和在工業(yè)中的應(yīng)用,以及攪拌摩擦焊的發(fā)展前景。 參照已有的雙攪拌軸摩擦焊技術(shù)設(shè)計(jì)相關(guān)資料,設(shè)計(jì)一臺(tái)能焊接焊縫厚度為 15mm,焊縫長(zhǎng)度為 500mm 的雙攪拌軸摩擦焊實(shí)驗(yàn)用焊機(jī)。在寫(xiě)設(shè)計(jì)說(shuō)明書(shū)的過(guò) 程中,要求對(duì)關(guān)鍵部位的設(shè)計(jì)寫(xiě)得比較詳細(xì)、具體,并校核該實(shí)驗(yàn)用焊機(jī)的各 主要部分。 浙江理工大學(xué)本科畢業(yè)設(shè)計(jì)(論文) 7 第 2 章 雙攪拌軸攪拌摩擦焊機(jī)設(shè)計(jì) 本章講述雙攪拌軸攪拌摩擦焊焊機(jī)的重要部分的設(shè)計(jì)計(jì)算過(guò)程。主要包括 以下幾方面:焊機(jī)的總體設(shè)計(jì)、攪拌系統(tǒng)的設(shè)計(jì)(主要講雙攪拌軸的設(shè)計(jì)以及 攪拌系統(tǒng)的傳動(dòng)系統(tǒng)) 、伺服系統(tǒng)的設(shè)計(jì)(主要為工作臺(tái)的設(shè)計(jì)) 。 此攪拌摩擦焊焊機(jī),攪拌摩擦頭轉(zhuǎn)速約 6000r/min,焊接速度 500— 600mm/min,最大加工焊縫厚度 15mm,焊縫長(zhǎng)度 500mm,總功率約 4000 瓦左右。 此機(jī)器主要使用于普通的鋁及其合金,該焊機(jī)由于是雙軸的,可以雙件同 時(shí)加工,大大提高了生產(chǎn)效率。 2.1 焊機(jī)的總體設(shè)計(jì)以及規(guī)劃 此雙攪拌軸摩擦焊縫焊機(jī)由于為雙軸,所以采取雙件生產(chǎn)。為了使得該機(jī) 器更加經(jīng)濟(jì)使用,所以采用一般的 A3 鋼焊接結(jié)構(gòu)。以下是此焊機(jī)的一些整體結(jié) 構(gòu)的規(guī)劃,首先工作臺(tái)平面約離地面高越 1300mm,焊機(jī)總高度約 1750mm(適合 于工作人員的操作)總長(zhǎng)度約 1400mm,工作臺(tái)面長(zhǎng)度約 1000mm,寬度約 800mm,工作臺(tái)上下移動(dòng)約 80mm。機(jī)頭高度約為 200mm,攪拌軸中心距機(jī)體約 500mm。工作臺(tái)箱體總長(zhǎng)約 1000mm,高度約 400mm??紤]到及其的中提美觀,將 伺服系統(tǒng)的傳動(dòng)部分放入工作臺(tái)的箱體內(nèi)。同理,液壓推動(dòng)系統(tǒng)也將放于工作 臺(tái)的箱體內(nèi),便于液壓推動(dòng)過(guò)程中將工作臺(tái)垂直向上推動(dòng)。為了便于該系統(tǒng)的 維修和檢測(cè),在起前方開(kāi)一個(gè)天窗便于維修時(shí)的操作。電氣控制部分將放于及 其的左后下方(此部分不再本次設(shè)計(jì)范圍內(nèi)) 。攪拌系統(tǒng)的電機(jī)放在電機(jī)座上, 然后再將電機(jī)座固定在機(jī)體上,調(diào)整電機(jī)座在機(jī)體上的位置就可以調(diào)整 V 帶輪 中心距。為了方便觀察,在集體后方開(kāi)一個(gè)觀察窗口,便于機(jī)器的維修和檢測(cè)。 工作臺(tái)箱體正面的左方將放置一個(gè)控制臺(tái),操作起來(lái)很方便。以上便是本臺(tái)機(jī) 器的整體布局的規(guī)劃。 雙攪拌軸攪拌摩擦焊機(jī)設(shè)計(jì) 8 2.2 各部件設(shè)計(jì) 2.2.1 攪拌頭及夾具設(shè)計(jì) 攪拌頭是攪拌摩擦焊技術(shù)的關(guān)鍵,由特殊形狀的攪拌焊針和軸肩組成,軸 肩直徑大于攪拌焊針直徑。攪拌焊針用具有良好耐高溫力學(xué)和物理特性的抗摩 損材料制造,并進(jìn)行表面處理。 對(duì)于不同厚度的板所用的攪拌摩擦頭不同,方便攪拌頭的更換,夾持部分 采用螺紋聯(lián)接,夾持部分為 M12,長(zhǎng)度為 L=15mm,焊針直徑 D=3—10mm,焊針 做成特殊的螺旋狀,加大了焊針與工件的接觸面積,同時(shí)也有利于被焊金屬的 攪動(dòng),如圖 2-1 所示。軸肩半徑為焊針直徑的三倍 [17],肩部直徑為 D=9— 30mm,軸肩采用如圖 2-2 所示的圖案,有利于軸肩與塑化材料緊密地結(jié)合在一 起,這樣也提高了軸肩與焊件表面的接觸面積,同時(shí)也提高了焊接時(shí)的閉合性, 從而可以防止塑化的材料在攪拌頭旋轉(zhuǎn)時(shí)噴射出去。各型號(hào)攪拌摩擦頭的參數(shù) 見(jiàn)表 2-1。 圖 2-1 焊針示意圖 圖 2-2 軸肩示意圖 表 2-1 攪拌摩擦頭參數(shù)及焊縫截面積 板厚(mm) 焊針直徑 (mm) 焊針長(zhǎng)度 (mm) 軸肩直徑 d(mm) 角度(度) 焊縫斷面積 mm2 15 8 14 24 8 240 10 6 9 18 6 120 5 5 4.5 15 4 50 3 3 2.8 9 2 18 浙江理工大學(xué)本科畢業(yè)設(shè)計(jì)(論文) 9 攪拌頭夾具用于聯(lián)接攪拌頭和攪拌軸,其具體結(jié)構(gòu)如圖 2-3 所示。 圖 2-3 攪拌頭夾具 2.2.2 攪拌系統(tǒng)功率計(jì)算 查資料得到鋁合金在焊接時(shí)的需要的最高溫升為 600℃,本機(jī)器主要設(shè)計(jì) 成適合于 15mm 一下的,焊縫截面積約為 240mm2,焊速約為 500mm/min,由于熱 傳遞和熱量損失,設(shè)能量利用率約為 50%,則單位時(shí)間內(nèi)焊縫溫升部分體積為: 2x240 x500=240000mm3 (由于本機(jī)器為雙軸,則需要將截面面積加倍) ,能量計(jì) 算公式為 [18] (2-1)??????VTCE 式中:C——比熱容(J/kg K) △T——溫度變化值(℃) V——體積(m 3) ρ——密度(kg/m 3) η——效率 E——能量(J) 查得鋁的各項(xiàng)參數(shù)如下 [23] ρ=2700Kg/m 3,C=904.3J/Kg·K 由式(2-1)單位時(shí)間內(nèi)需要能量為 min/895.7%027102460.99 KJE????? 由于該機(jī)器為雙軸,則功率為: WP.685.?? 選用伺服電機(jī) SM-150-230-20LFB(額定轉(zhuǎn)速 2000r/min,長(zhǎng)度 L=60mm,額 定扭矩 2.3NB) 雙攪拌軸攪拌摩擦焊機(jī)設(shè)計(jì) 10 攪拌摩擦焊焊機(jī)輸入工件的總功率為 [16] (2-2))(4510 22rFnN???? 式中:N——輸入工件總的熱功率(J) n——攪拌摩擦頭的轉(zhuǎn)速(r/min) μ——摩擦系數(shù) F——工件上壓力(N) r0、r 1——焊頭軸肩和焊針的半徑(mm) 因?yàn)閱挝粫r(shí)間內(nèi)輸入工件的能量與總功率相等,在單位時(shí)間內(nèi)則有 (2-3)NE? 查得鋁與鋼的摩擦系數(shù)為 0.17[18] ,由式(2-2) 、 (2-3)得)142(5)287952???Fn?? F=84.7N 則兩個(gè)攪拌頭向前移動(dòng)阻力為 NF4.1???阻 由此可以得出對(duì)于不同板厚的材料在焊接時(shí)的壓力和焊接速度,見(jiàn)表 2- 2。 表 2-2 不同板厚在焊接時(shí)的壓力和焊速 板厚 mm 焊縫截面積 mm2 壓力 N 焊速 mm/min 15 240 84.7 500 10 120 84.7 1000 5 50 60 1500 3 18 60 2000 2.2.3 攪拌系統(tǒng)傳動(dòng)齒輪設(shè)計(jì) 傳遞功率 ,轉(zhuǎn)速 , (為了方便設(shè)計(jì)和選材,把雙KWP9.2?min/60rn? 攪拌頭的傳動(dòng)齒輪設(shè)計(jì)成傳動(dòng)比為 1 的三個(gè)齒輪) ,則齒數(shù)比 。1?齒 1?u 浙江理工大學(xué)本科畢業(yè)設(shè)計(jì)(論文) 11 1.選擇齒輪材料 為了便于制造,采用軟齒面齒輪,查表得,大齒輪采用 45 鋼正火處理, 170~210HBS,小齒輪采用 45 鋼調(diào)質(zhì)處理,217~255HBS。 2.按齒面接觸強(qiáng)度設(shè)計(jì) 一對(duì)鋼制外嚙合齒輪設(shè)計(jì)公式為 (2-4))(1)][67(321 mKTuddH???? (1)計(jì)算小齒輪傳遞的轉(zhuǎn)矩 )(461509.215.9105.966 NnPT ?????? (2)選擇齒輪齒數(shù) ,則實(shí)際傳動(dòng)比為8z齒i 傳動(dòng)比誤差為 0%1?????i (3)轉(zhuǎn)速不高,功率不大,選擇齒輪精度為 8 級(jí) (4)載荷平穩(wěn),對(duì)稱布局,軸的鋼度較大,查表 2-4 取 K=1.5 表 2-4 載荷綜合系數(shù) K 工作機(jī) 均勻平穩(wěn) 輕微振動(dòng) 中等振動(dòng) 結(jié)構(gòu)布局 對(duì)稱 非對(duì)稱 對(duì)稱 非對(duì)稱 對(duì)稱 非對(duì)稱 均勻平穩(wěn) 1.2~1.3 1.2~1.5 1.5~1.6 1.5~1.9 1.8~1.9 1.9~2.2 輕微振動(dòng) 1.3~1.4 1.4~1.7 1.6~1.8 1.7~2 1.9~2.1 2~2.4 原 動(dòng) 機(jī) 中等振動(dòng) 1.5~1.6 1.6~1.9 1.9~2.1 1.9~2.2 2.1~2.3 2.2~2.6 表 2-5 齒寬系數(shù) 齒面硬度 齒輪相對(duì)于軸承的位置 軟齒面 硬齒面 對(duì)稱 0.8~1.4 0.4~0.9 非對(duì)稱布置 0.6~1.2 0.3~0.6 (5)查表 2-5 取齒寬系數(shù) 1?d? 雙攪拌軸攪拌摩擦焊機(jī)設(shè)計(jì) 12 (6)確定許用接觸應(yīng)力 查得 2/380minNH?? 查表 2-6 得 5.1iS 表 2-6 最小安全系數(shù) SHmin和 SHmin 齒輪傳動(dòng)裝置的重要性 SHmin SHmin 一般 1 1 齒輪損壞會(huì)引起嚴(yán)重后果 1.25 1.5 對(duì)于長(zhǎng)期工作的齒輪,[σ H]可按下式計(jì)算 (2-5)min[S?? 由式(2-5)得 2/30425.18][NH (7)計(jì)算齒輪分度圓直徑 由式(2-4)得 md268.3145.)36871(2???? (8)計(jì)算模數(shù) 6.082.3?zdm 查表 2-7 取 m=1.5。 表 2-7 漸開(kāi)線圓柱齒輪標(biāo)準(zhǔn)模數(shù)(GB1357—87) mm 第一系列 0.1 0.12 0.15 0.2 0.25 0.3 0.4 0.5 0.6 0.8 1 1.25 1.5 2 2.5 3 4 5 6 8 10 12 16 20 25 32 40 50 第二系列 0.35 0.7 0.9 1.75 2.25 2.75 3.5 4.5 5.5 7 9 14 18 浙江理工大學(xué)本科畢業(yè)設(shè)計(jì)(論文) 13 (9)計(jì)算齒輪主要尺寸及圓周速度 表 2-8 傳遞動(dòng)力的齒輪精度(Ⅱ公差組)等級(jí)的選擇與應(yīng)用 圓周速度(m/s) 圓柱齒輪 錐齒輪 精度等級(jí) 直齒 斜齒 直齒 斜齒 應(yīng)用 6 級(jí) ≤15 ≤30 ≤12 ≤20 高速重載齒輪傳動(dòng) 7 級(jí) ≤10 ≤15 ≤8 ≤10 高速中載或中速重載的齒輪傳動(dòng) 8 級(jí) ≤6 ≤10 ≤4 ≤7 一般機(jī)械中對(duì)精度無(wú)特殊要求的齒輪 9 級(jí) ≤2 ≤4 ≤1.5 ≤3 低速或?qū)纫蟮偷凝X輪 不妨取分度圓半徑 d=48mm Z=D/m=96/1.5=64 中心距 mzma96)4(25.1)(21 ????? 齒輪寬度 db8? 圓周速度 smnV/07.1460160???? 查表 2-8 可知能用 6 級(jí)精并選用 1 號(hào)二硫化鉬鋰基脂進(jìn)行潤(rùn)滑。 3.校核齒根彎曲強(qiáng)度 校核齒根彎曲強(qiáng)度用以下公式 (2-6)]/][221mNzbYKTFsF???? (1)復(fù)合齒形系數(shù)根據(jù) 由表 2-5 查得2, 0.41?s (2)確定許用應(yīng)力[σ F]。 對(duì)于長(zhǎng)期單面工作的齒輪,其齒根受脈動(dòng)循環(huán)彎曲應(yīng)力,此時(shí) 可按下][F? 式計(jì)算 雙攪拌軸攪拌摩擦焊機(jī)設(shè)計(jì) 14 (2-7)min][FS?? 由圖 1-7 查得 21min/530NF? 查表 2-6 得 ,由式( 2-7)得.i?S??F/3.5.1? (3)式中已知 , , ,5.KmNT?465.1?mb48 (4)校核計(jì)算。 由式(2-6)得 222 /3.5][/01.8645.18 NFF ??????? 校核計(jì)算安全。 4.結(jié)構(gòu)設(shè)計(jì) 齒輪按照表 2-9 進(jìn)行設(shè)計(jì)。初步取 d=30mm,利用軸肩作軸向固定,8X22 的 鍵作周向固定。查表 2-10 得,鍵 t=4.0mm,t 1=3.3mm。n 1取 1mm。 表 2-9 圓柱齒輪結(jié)構(gòu)及尺寸 d6.1?Bl??)5~2(namz?fd).(? naD101?)(5.0d?)(201較 小 時(shí) 可 不 鉆 孔dm?? 浙江理工大學(xué)本科畢業(yè)設(shè)計(jì)(論文) 15 表 2-10 平鍵 軸 d 鍵 bxh 公稱 尺寸 軸 t 轂 t1 6~8 2x2 2 1.2 1 >8~10 3x3 3 1.8 1.4 >10~12 4x4 4 2.5 1.8 >12~17 5x5 5 3.0 2.3 >17~22 6x6 6 3.5 2.8 >22~30 8x7 8 4.0 3.3 >30~38 10 x8 10 5.0 3.3 >38~44 12x8 12 5.0 3.3 >44~50 14x9 14 5.5 3.8 鍵長(zhǎng)系列: 6,8,10,12,14,16,18,20,22,25,28,32,36,40,45,50,56,63,70, 80,90,100,110,125,140,160,180,…… 得: 模數(shù) m=1.5; 分度圓半徑 d=48mm; 齒頂圓直徑 ad=99mm; 齒根圓直徑 f=92.25mm; 齒數(shù) z=64。 2.2.4 攪拌軸的設(shè)計(jì) 1.選擇軸的材料 攪拌摩擦焊機(jī)的功率 P=2.99KW,由于功率不大又無(wú)特殊要求,故攪拌軸可 選用常用的 45 號(hào)鋼并作正火處理。查得 。2/60mNB?? 對(duì)于一般的傳動(dòng)軸,可按下式計(jì)算軸的最直徑 雙攪拌軸攪拌摩擦焊機(jī)設(shè)計(jì) 16 (2-8))(][2.01593336mnPCd????? 查表 2-12 得 C=118-107,由式(2-8)得 )(26.90.183d??? 計(jì)算所得是最小處的軸徑,不妨取 d=20mm,前端留出 M20X20 于攪拌頭的 夾具相連,后端也留出 M20X20,用于做軸向固定。 表 2-11 按轉(zhuǎn)矩計(jì)算軸用的[t]和 C 值 軸的材料 Q235 35,Q275 45 40Cr,35SiMn [t] N/mm2 12-20 20-30 30-40 40-52 C 160-135 135-118 118-107 107-98 2.軸的結(jié)構(gòu)設(shè)計(jì) 圖 2-4 攪拌軸示意圖 d1=20mm,L 1=20mm,此處用于軸的軸向固定選用 M20 螺母(GB6170-86) , 并加彈簧墊片(GB93-87) 。 d2=25mm,L 2=40mm,由于該軸的轉(zhuǎn)速為 6000r/min,30205 圓錐滾子軸承在 脂潤(rùn)滑的情況下極限轉(zhuǎn)速為 7000r/min,符合要求,故選擇 30205 的圓錐滾子軸 承。具體數(shù)據(jù)參考表格 2-12。 浙江理工大學(xué)本科畢業(yè)設(shè)計(jì)(論文) 17 表 2-12 圓錐滾子軸承(GB/T297—1994) 尺寸/mm 極限轉(zhuǎn)速 r/min軸承 代號(hào) d D T B C 脂潤(rùn) 滑 油潤(rùn) 滑 30203 17 40 13.25 12 11 9000 12000 30204 20 47 15.25 14 12 8000 10000 30205 25 52 16.25 15 13 7000 9000 30206 30 62 17.25 16 14 6000 7500 30207 35 72 18.25 17 15 5300 6700 30208 40 80 19.25 18 16 5000 6300 d3=30mm, L3=46mm,用于安裝齒輪,此處開(kāi)一個(gè) 8X32,t=4.0,ti=3.3 的鍵 槽 d4=36mm, L4=6mm,用于齒輪的軸向固定 d5=32mm, L5=72mm d6=25mm,L 6=16mm,用于安裝 30205 軸承 d7=20mm,L 7=20mm,用于安裝攪拌頭夾具 軸的總長(zhǎng)為 220mm 30206 軸承用 1 號(hào)二硫化鉬鋰基脂進(jìn)行潤(rùn)滑,由表 1-13 查得,符合 6000r/min 轉(zhuǎn)速的要求。 3.軸上受力分析 齒輪對(duì)軸的作用力為 ,攪拌摩擦頭對(duì)軸的作用力NFQ02.164.3?? 為 ,軸向力 ,則:NF4.1?阻 a78? 水平面 ??????HRF219阻阻 雙攪拌軸攪拌摩擦焊機(jī)設(shè)計(jì) 18 解得 ????NRH56.27131 垂直面 ???VQF122940 解得 ????NRV3.521 則 ? ???NVH 23.18.256.742211 表 2-13 圓錐滾子軸承的基本額定動(dòng)載荷 C 和基本額定靜載荷 C0 KN 軸承型號(hào) C C0 e Y Y0 X 30204 25.0 18.0 0.35 1.7 1.0 30205 30.0 23.0 0.37 1.6 0.9 30206 39.0 29.5 0.37 1.6 0.9 30207 49.0 37.0 0.37 1.6 0.9 30208 55.0 41.5 0.37 1.6 0.9 30209 59.0 46.0 0.40 1.5 0.8 30210 66.0 53.5 0.42 1.4 0.8 0.40 查表 2-13 得 e=0.37,Y=1.6,X=0.40 表 2-14 角接觸型軸承派生軸向力 S 角接觸球軸承 C 型( α=15 0) AC 型(α=25 0) B 型(α=40 0) 圓錐滾子軸承 S=eR S=0.68R S=1.14R S=R/(2Y) 由表 2-14 得 ?????NYRS07.428.161 浙江理工大學(xué)本科畢業(yè)設(shè)計(jì)(論文) 19 ?????NSFa07.41221? ,軸有沿 方向移動(dòng)的趨勢(shì),軸承 1 被“壓緊” ,軸承 2 被21SFa??2 “放松” ,由平衡條件可得作用在軸承 1 和 1 上的軸向載荷分別為???????NSANFa07.47.24.821 因軸承Ⅰ上的作用力大于軸承Ⅱ上的作用力,故僅對(duì)軸承Ⅰ進(jìn)行壽命計(jì)算, 軸承壽命可由下式進(jìn)行計(jì)算 (2-9))(601hPCnLh?? (2-10)(YAXRK? 表 2-15 動(dòng)載荷系數(shù) KP 載荷性質(zhì) 平穩(wěn)或有輕微沖擊 中等沖擊和振動(dòng) 強(qiáng)烈沖擊和振動(dòng) KP 1.0~1.2 1.2~1.8 1.8~3.0 查表 2-15 得 ,由式(2-10)得2.1?P N36.410).286.1340(???? 查表 1-14 得 C=39.0KN,由式(2-9)得 hLh 453821)6.10(601?? 4.計(jì)算彎矩 水平面彎矩 截面 b: )(4.1598.1mNFMbH ????阻 垂直面彎矩 截面 a: )(.602.6840QaV ? 5.計(jì)算扭矩 雙攪拌軸攪拌摩擦焊機(jī)設(shè)計(jì) 20 表 2-16 軸的許用彎曲應(yīng)力 N/mm 2 材料 σ S [σ +1]b [σ 0]b [σ -1]b 400 130 70 40 500 170 75 45 600 200 95 55 碳素鋼 700 230 110 65 800 270 130 75 合金鋼 1000 330 150 90)(461509.215.9105.966 mNnPT ?????? 又根據(jù) σ B=600N/mm2,查表 2-16 得[σ -1]b=55N/mm2, [σ 0]b=95N/mm2,故8.??)(674158.0NT??? 6.計(jì)算當(dāng)量彎矩 截面 a: )(8.317)(22'' mTMaae ????? 截面 b: )(9.5)(22'' Nbbe ? 7.分別計(jì)算 a 和 b 處的直徑 mMdbaea 27.851.03][1.03' ?????bIeb ..9][.331'? 結(jié)構(gòu)設(shè)計(jì)確定的直徑為 20mm,截面 b 處為螺紋聯(lián)接沒(méi)有削弱,所以,此軸 強(qiáng)度足夠,符合設(shè)計(jì)要求。 2.2.5 攪拌系統(tǒng) V 帶設(shè)計(jì) 帶輪傳遞的功率:p=2.9kw,轉(zhuǎn)速約為 6000r/min,滿足傳動(dòng)比為 i=3, (由 浙江理工大學(xué)本科畢業(yè)設(shè)計(jì)(論文) 21 于電機(jī)的額定轉(zhuǎn)速為 2000r/min) 1.選擇 V 帶型號(hào) 計(jì)算功率 PC由下式確定 (2-11)PKAC? 式中:K A——工作情況系數(shù) P——需要傳遞的名義功率(KW) 查表 2-3 得工作情況系數(shù) ,由式(2-17)計(jì)算得1.?AKWPC9.32? 根據(jù) PC和 n 由圖 1-9 選用 Z 型 V 帶。 2.確定帶輪基準(zhǔn)直徑 dd1、d d2 已知 (2-12)12i?? (2-13)??0120188??ad (2-14)adL4)()(2121??? 圖 2-5 帶傳動(dòng)示意圖 小帶輪直徑 dd1宜選大些,可減小帶的彎曲應(yīng)力,有利于延長(zhǎng)帶的壽命;在 傳遞的轉(zhuǎn)矩一定時(shí),d d1選大一些可降低帶工作時(shí)的圓周力,從而可以減少帶的 根數(shù)。通常小輪直徑 dd1應(yīng)大于或等于最小基準(zhǔn)直徑 dmin。若 dd1過(guò)大,傳動(dòng)的外 雙攪拌軸攪拌摩擦焊機(jī)設(shè)計(jì) 22 廓也將增大。由表 1-18 選擇小輪直徑為 dd1=60mm, 由式(2-12)得mid1806312???? 表 2-17 V 帶輪最小基準(zhǔn)直徑 dmin及基準(zhǔn)直徑系列 mm V 帶輪槽型 Y Z A B C D E dmin 20 50 75 125 200 355 500 基準(zhǔn)直 徑系列 20 22.4 25 28 31.5 35.5 40 45 50 60 63 71 75 80 8590 95 100 106 112 118 125 132 140 150 160 170 180 200 212 224 236 250 265 280 315 355 375 …… 由表 2-17 選擇 dd2=180mm 實(shí)際傳動(dòng)比 36018?i 實(shí)際轉(zhuǎn)速 min/2rn? 傳動(dòng)比偏差 ,小于 5%,符合條件。0?? 3.驗(yàn)算帶速 V0 帶速太高,帶的離心力很大,使帶的離心應(yīng)力增大,并使帶與輪之間的壓 緊力減小,摩擦力隨之減小,從而使傳動(dòng)能力下降;帶速過(guò)低,傳遞相同功率 時(shí)帶所傳遞的圓周力增大,需要增加帶的根數(shù)。一般應(yīng)使帶速 V 在 5—25m/s 范 圍內(nèi)工作,尤以 V=10—20m/s 為宜。帶速由下式確定 (2-15)1062??ndV? 由式(2-15)得 smnd/81061062? 帶速在 5—25m/s 范圍內(nèi),符合要求。 4.確定中心距 a,V 帶基準(zhǔn)長(zhǎng)度 Ld (1)初選中心距 a0。設(shè)計(jì)時(shí)對(duì)中心距有一定的要求,即大于 400mm,根據(jù) 得 ,初選 a0為 450mm,符合取值)(2)(7.0212dd???4860?a 范圍。 浙江理工大學(xué)本科畢業(yè)設(shè)計(jì)(論文) 23 (2)計(jì)算初定的帶長(zhǎng) Ld。 。由式(2-7)得 )(8.4)()(2021210 madadd ?????? (3)基準(zhǔn)帶長(zhǎng) Ld。由表 2-18 選用 Ld=1400mm, KL=1.14 表 2-18 普通 Z 型 V 帶基準(zhǔn)長(zhǎng)度 Ld系列及長(zhǎng)度系數(shù) KL Ld 400 450 500 560 630 710 800 KL 0.87 0.89 0.91 0.94 0.96 0.99 1.00 Ld 900 1000 1120 1250 1400 1600 1800 KL 1.03 1.06 1.08 1.11 1.14 1.16 1.18 (4)實(shí)際中心距 a。實(shí)際中心距由下式確定 (2-16)200dL??? 由式(2-16)得 )(6.5078.1445ma?? 考慮安裝和張緊 V 帶的需要,留出±50mm 作為中心距距調(diào)整量,不妨取 550mm。 5.核算小輪上包角 α 1 由式(2-14)得 001201 127.6488???????ad 6.確定 V 帶根數(shù) z (2-17)LACKP?)(][00??? (2-18)12ibn?? 表 2-19 傳動(dòng)比系數(shù) Ki 傳動(dòng)比 i 1.00-1.04 1.05-1.19 1.20-1.49 1.50-2.95 >2.95 Ki 1.00 1.03 1.08 1.12 1.14 表 2-20 彎曲影響系數(shù) Kb 雙攪拌軸攪拌摩擦焊機(jī)設(shè)計(jì) 24 普通 V 帶 型號(hào) Y Z A B C D E Kb(10-3) 0.06 0.39 1.03 2.65 7.50 26.6 49.8 根據(jù) n1和 n2得 ,查表 1-20 得 Ki=1.14,查表 1-21 得KWP48.0? Kb=0.39x10-3,由式(1-17)得 W28.0)14.(60139.3????? 表 2-21 包角系數(shù) 小輪包 角 α 1 1800 1750 1700 1650 1600 1550 1500 1450 …… Kα 1.00 0.99 0.98 0.96 0.95 0.93 0.92 0.91 …… 查表 2-8 得 Kα =0.93,由式(2-17)得 79.314.960)28.4.0(3????z 選用 Z 型 V 帶 4 根。 7.確定帶的預(yù)拉力 F 預(yù)拉力是保證帶傳動(dòng)正常工作和重要條件。預(yù)拉力不足,極限摩擦力減小, 傳動(dòng)能力下降;預(yù)拉力過(guò)大,又會(huì)使帶的壽命降低,軸和軸承的壓力增大。 表 2-22 普通 V 帶的規(guī)格 型號(hào) Y Z A B C D E 每米帶長(zhǎng)質(zhì)量 q(Kg/m) 0.04 0.06 0.10 0.17 0.30 0.60 0.87 查表 2-22 得 Z 型 V 帶的質(zhì)量為 mKgq/06.? 單根普通 V 帶合適的預(yù)拉力由下式確定 (2-19)20)15.(qvzvPFC??? 由式(2-19)得 N98.5406.)9.2(184.3520 ???? 浙江理工大學(xué)本科畢業(yè)設(shè)計(jì)(論文) 25 8.計(jì)算帶傳動(dòng)作用在軸上的力 (2-20)2sin10?zFQ? 為設(shè)計(jì)安裝帶輪的軸和軸承,必須確定帶傳動(dòng)作用在帶輪軸上的力 FQ。 由式(2-20)得 NFQ 04.327.16sin98.5420??? 9.帶輪結(jié)構(gòu)設(shè)計(jì) (1)大 V 帶輪設(shè)計(jì) 圖 2-6 大帶輪示意圖 大 V 帶輪結(jié)構(gòu)按照?qǐng)D 2-6 進(jìn)行設(shè)計(jì)。用 M6X16 的緊定螺釘與電機(jī)輸出軸作 軸向固定,8X50 的鍵作