高考數(shù)學二輪復習 專題檢測(七)導數(shù)的簡單應用 理(普通生含解析)-人教版高三數(shù)學試題

上傳人:文*** 文檔編號:241357183 上傳時間:2024-06-20 格式:DOC 頁數(shù):8 大小:92KB
收藏 版權申訴 舉報 下載
高考數(shù)學二輪復習 專題檢測(七)導數(shù)的簡單應用 理(普通生含解析)-人教版高三數(shù)學試題_第1頁
第1頁 / 共8頁
高考數(shù)學二輪復習 專題檢測(七)導數(shù)的簡單應用 理(普通生含解析)-人教版高三數(shù)學試題_第2頁
第2頁 / 共8頁
高考數(shù)學二輪復習 專題檢測(七)導數(shù)的簡單應用 理(普通生含解析)-人教版高三數(shù)學試題_第3頁
第3頁 / 共8頁

下載文檔到電腦,查找使用更方便

10 積分

下載資源

還剩頁未讀,繼續(xù)閱讀

資源描述:

《高考數(shù)學二輪復習 專題檢測(七)導數(shù)的簡單應用 理(普通生含解析)-人教版高三數(shù)學試題》由會員分享,可在線閱讀,更多相關《高考數(shù)學二輪復習 專題檢測(七)導數(shù)的簡單應用 理(普通生含解析)-人教版高三數(shù)學試題(8頁珍藏版)》請在裝配圖網(wǎng)上搜索。

1、專題檢測(七) 導數(shù)的簡單應用 A組——“6+3+3”考點落實練 一、選擇題 1.已知函數(shù)f(x)的導函數(shù)f′(x)滿足下列條件: ①f′(x)>0時,x<-1或x>2; ②f′(x)<0時,-1

2、e 解析:選B 由題意知y′=aex+1=2,則a>0,x=-ln a,代入曲線方程得y=1- ln a,所以切線方程為y-(1-ln a)=2(x+ln a),即y=2x+ln a+1=2x+1?a=1. 3.(2019屆高三·廣州高中綜合測試)已知函數(shù)f(x)=x3+ax2+bx+a2在x=1處的極值為10,則數(shù)對(a,b)為(  ) A.(-3,3) B.(-11,4) C.(4,-11) D.(-3,3)或(4,-11) 解析:選C f′(x)=3x2+2ax+b,依題意可得 即消去b可得a2-a-12=0, 解得a=-3或a=4,故或當時, f′(x)

3、=3x2-6x+3=3(x-1)2≥0,這時f(x)無極值,不合題意,舍去,故選C. 4.已知f(x)=x2+ax+3ln x在(1,+∞)上是增函數(shù),則實數(shù)a的取值范圍為(  ) A.(-∞,-2] B. C.[-2,+∞) D.[-5,+∞) 解析:選C 由題意得f′(x)=2x+a+=≥0在(1,+∞)上恒成立?g(x)=2x2+ax+3≥0在(1,+∞)上恒成立?Δ=a2-24≤0或?-2≤a≤2或?a≥-2,故選C. 5.(2018·全國卷Ⅰ)設函數(shù)f(x)=x3+(a-1)x2+ax,若f(x)為奇函數(shù),則曲線y=f(x)在點(0,0)處的切線方程為(  ) A

4、.y=-2x B.y=-x C.y=2x D.y=x 解析:選D 法一:∵f(x)=x3+(a-1)x2+ax, ∴f′(x)=3x2+2(a-1)x+a. 又∵f(x)為奇函數(shù),∴f(-x)=-f(x)恒成立, 即-x3+(a-1)x2-ax=-x3-(a-1)x2-ax恒成立, ∴a=1,∴f′(x)=3x2+1,∴f′(0)=1, ∴曲線y=f(x)在點(0,0)處的切線方程為y=x. 法二:易知f(x)=x3+(a-1)x2+ax=x[x2+(a-1)x+a],因為f(x)為奇函數(shù),所以函數(shù)g(x)=x2+(a-1)x+a為偶函數(shù),所以a-1=0,解得a=1,所

5、以f(x)=x3+x,所以f′(x)=3x2+1,所以f′(0)=1,所以曲線y=f(x)在點(0,0)處的切線方程為y=x.故選D. 6.函數(shù)f(x)(x>0)的導函數(shù)為f′(x),若xf′(x)+f(x)=ex,且f(1)=e,則(  ) A.f(x)的最小值為e B.f(x)的最大值為e C.f(x)的最小值為 D.f(x)的最大值為 解析:選A 設g(x)=xf(x)-ex, 所以g′(x)=f(x)+xf′(x)-ex=0, 所以g(x)=xf(x)-ex為常數(shù)函數(shù). 因為g(1)=1×f(1)-e=0, 所以g(x)=xf(x)-ex=g(1)=0, 所以

6、f(x)=,f′(x)=, 當01時,f′(x)>0, 所以f(x)≥f(1)=e. 二、填空題 7.(2019屆高三·西安八校聯(lián)考)曲線y=2ln x在點(e2,4)處的切線與坐標軸所圍成的三角形的面積為________. 解析:因為y′=,所以曲線y=2ln x在點(e2,4)處的切線斜率為,所以切線方程為y-4=(x-e2),即x-y+2=0.令x=0,則y=2;令y=0,則x=-e2,所以切線與坐標軸所圍成的三角形的面積S=×e2×2=e2. 答案:e2 8.已知函數(shù)f(x)=x2-5x+2ln x,則函數(shù)f(x)的單調遞增區(qū)間是__

7、______. 解析:函數(shù)f(x)=x2-5x+2ln x的定義域是(0,+∞),令f′(x)=2x-5+==>0,解得02,故函數(shù)f(x)的單調遞增區(qū)間是和(2,+∞). 答案:和(2,+∞) 9.若函數(shù)f(x)=x+aln x不是單調函數(shù),則實數(shù)a的取值范圍是________. 解析:由題意知f(x)的定義域為(0,+∞),f′(x)=1+,要使函數(shù)f(x)=x+aln x不是單調函數(shù),則需方程1+=0在(0,+∞)上有解,即x=-a,∴a<0. 答案:(-∞,0) 三、解答題 10.已知f(x)=ex-ax2,曲線y=f(x)在點(1,f(1))處的切線方程為y

8、=bx+1. (1)求a,b的值; (2)求f(x)在[0,1]上的最大值. 解:(1)f′(x)=ex-2ax, 所以f′(1)=e-2a=b,f(1)=e-a=b+1, 解得a=1,b=e-2. (2)由(1)得f(x)=ex-x2, 則f′(x)=ex-2x,令g(x)=ex-2x,x∈[0,1], 則g′(x)=ex-2, 由g′(x)<0,得00,得ln 20, 所以f(x)在[0,1]上單

9、調遞增, 所以f(x)max=f(1)=e-1. 11.(2018·濰坊統(tǒng)一考試)已知函數(shù)f(x)=ax-ln x,F(xiàn)(x)=ex+ax,其中x>0,a<0.若f(x)和F(x)在區(qū)間(0,ln 3)上具有相同的單調性,求實數(shù)a的取值范圍. 解:由題意得f′(x)=a-=,F(xiàn)′(x)=ex+a,x>0, ∵a<0,∴f′(x)<0在(0,+∞)上恒成立,即f(x)在(0,+∞)上單調遞減, 當-1≤a<0時,F(xiàn)′(x)>0,即F(x)在(0,+∞)上單調遞增,不合題意, 當a<-1時,由F′(x)>0,得x>ln(-a); 由F′(x)<0,得0

10、的單調遞減區(qū)間為(0,ln(-a)),單調遞增區(qū)間為(ln(-a),+∞). ∵f(x)和F(x)在區(qū)間(0,ln 3)上具有相同的單調性, ∴l(xiāng)n(-a)≥ln 3,解得a≤-3, 綜上,實數(shù)a的取值范圍是(-∞,-3]. 12.已知函數(shù)f(x)=+ax,x>1. (1)若f(x)在(1,+∞)上單調遞減,求實數(shù)a的取值范圍; (2)若a=2,求函數(shù)f(x)的極小值. 解:(1)f′(x)=+a, 由題意可得f′(x)≤0在(1,+∞)上恒成立, ∴a≤-=2-. ∵x∈(1,+∞), ∴l(xiāng)n x∈(0,+∞), ∴當-=0時,函數(shù)t=2-的最小值為-, ∴a≤-,

11、即實數(shù)a的取值范圍為. (2)當a=2時,f(x)=+2x(x>1), f′(x)=, 令f′(x)=0,得2ln2x+ln x-1=0, 解得ln x=或ln x=-1(舍去),即x=e. 當1e時,f′(x)>0, ∴f(x)的極小值為f(e)=+2e=4e. B組——大題專攻補短練 1.(2019屆高三·益陽、湘潭調研)已知函數(shù)f(x)=ln x-ax2+x,a∈R. (1)當a=0時,求曲線y=f(x)在點(e,f(e))處的切線方程; (2)討論f(x)的單調性. 解:(1)當a=0時,f(x)=ln x+x,f(e)=e+1,

12、f′(x)=+1,f′(e)=1+,∴曲線y=f(x)在點(e,f(e))處的切線方程為y-(e+1)=(x-e),即y=x. (2)f′(x)=-2ax+1=,x>0, ①當a≤0時,顯然f′(x)>0,∴f(x)在(0,+∞)上單調遞增; ②當a>0時,令f′(x)==0,則-2ax2+x+1=0,易知其判別式為正, 設方程的兩根分別為x1,x2(x10. 令f′(x)>0,得x∈(0,x2),令f′(x)<0得x∈(x2,+∞),其中x2=, ∴函數(shù)f(x)在上單調遞增,在上單調遞減. 2.已知函

13、數(shù)f(x)=,其中a>0. (1)求函數(shù)f(x)的單調區(qū)間; (2)若直線x-y-1=0是曲線y=f(x)的切線,求實數(shù)a的值. (3)設g(x)=xln x-x2f(x),求g(x)在區(qū)間[1,e]上的最小值.(其中e為自然對數(shù)的底數(shù)) 解:(1)因為函數(shù)f(x)=, 所以f′(x)==, 由f′(x)>0,得02, 故函數(shù)f(x)的單調遞增區(qū)間為(0,2),單調遞減區(qū)間為(-∞,0)和(2,+∞). (2)設切點為(x0,y0), 由切線斜率k=1=?x=-ax0+2a,① 由x0-y0-1=x0--1=0?(x-a)(x0

14、-1)=0?x0=1,x0=±. 把x0=1代入①得a=1, 把x0=代入①得a=1, 把x0=-代入①無解, 故所求實數(shù)a的值為1. (3)因為g(x)=xln x-x2f(x)=xln x-a(x-1), 所以g′(x)=ln x+1-a,由g′(x)>0,得x>ea-1; 由g′(x)<0,得0

15、 ③當ea-1≥e,即a≥2時,g(x)在區(qū)間[1,e]上單調遞減,其最小值為g(e)=e+a-ae. 故g(x)min= 3.(2019屆高三·南昌調研)設函數(shù)f(x)=ln x-2mx2-n(m,n∈R). (1)討論f(x)的單調性; (2)若f(x)有最大值-ln 2,求m+n的最小值. 解:(1)函數(shù)f(x)的定義域為(0,+∞), f′(x)=-4mx=, 當m≤0時,f′(x)>0,∴f(x)在(0,+∞)上單調遞增; 當m>0時,令f′(x)>0,得0, ∴f(x)在上單調遞增,在上單調遞減. (2)由(1)知,當m≤0

16、時,f(x)在(0,+∞)上單調遞增,無最大值. 當m>0時,f(x)在上單調遞增,在,+∞上單調遞減. ∴f(x)max=f=ln-2m·-n=-ln 2-ln m--n=-ln 2, ∴n=-ln m-,∴m+n=m-ln m-. 令h(x)=x-ln x-(x>0), 則h′(x)=1-=, 由h′(x)<0,得00,得x>, ∴h(x)在上單調遞減,在上單調遞增, ∴h(x)min=h=ln 2, ∴m+n的最小值為ln 2. 4.(2018·泉州調研)設函數(shù)f(x)=ln(x+a)-x. (1)若直線l:y=-x+ln 3-是函數(shù)f(x)的

17、圖象的一條切線,求實數(shù)a的值. (2)當a=0時,關于x的方程f(x)=x2-x+m在區(qū)間[1,3]上有解,求m的取值范圍. 解:(1)∵f(x)=ln(x+a)-x,∴f′(x)=-1, 設切點為P(x0,y0), 則-1=-,∴x0+a=3. 又ln(x0+a)-x0=-x0+ln 3-, ∴l(xiāng)n 3-x0=-x0+ln 3-,∴x0=2,∴a=1. (2)當a=0時,方程f(x)=x2-x+m, 即ln x-x2+x=m. 令h(x)=ln x-x2+x(x>0),則h′(x)=-2x+=-. ∴當x∈[1,3]時,h′(x),h(x)隨x的變化情況如下表: x 1 3 h′(x) + 0 - h(x)  極大值  ln 3-2 ∵h(1)=,h(3)=ln 3-2<,h=ln +, ∴當x∈[1,3]時,h(x)∈, ∴m的取值范圍為.

展開閱讀全文
溫馨提示:
1: 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
2: 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
3.本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
4. 未經(jīng)權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
5. 裝配圖網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

相關資源

更多
正為您匹配相似的精品文檔
關于我們 - 網(wǎng)站聲明 - 網(wǎng)站地圖 - 資源地圖 - 友情鏈接 - 網(wǎng)站客服 - 聯(lián)系我們

copyright@ 2023-2025  zhuangpeitu.com 裝配圖網(wǎng)版權所有   聯(lián)系電話:18123376007

備案號:ICP2024067431-1 川公網(wǎng)安備51140202000466號


本站為文檔C2C交易模式,即用戶上傳的文檔直接被用戶下載,本站只是中間服務平臺,本站所有文檔下載所得的收益歸上傳人(含作者)所有。裝配圖網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對上載內容本身不做任何修改或編輯。若文檔所含內容侵犯了您的版權或隱私,請立即通知裝配圖網(wǎng),我們立即給予刪除!