中考數(shù)學(xué)一輪復(fù)習(xí):第1單元 數(shù)與式課件
《中考數(shù)學(xué)一輪復(fù)習(xí):第1單元 數(shù)與式課件》由會員分享,可在線閱讀,更多相關(guān)《中考數(shù)學(xué)一輪復(fù)習(xí):第1單元 數(shù)與式課件(111頁珍藏版)》請在裝配圖網(wǎng)上搜索。
1、 第 1課 時 實 數(shù) 的 有 關(guān) 概 念 考 點(diǎn) 聚 焦 回 歸 教 材歸 類 探 究 中 考 預(yù) 測 第1講實數(shù)的有關(guān)概念 考 點(diǎn) 聚 焦 歸 類 探 究 1 按 定 義 分 類 :考 點(diǎn) 1 實 數(shù) 的 概 念 及 分 類有 理 數(shù) 整 數(shù) 正 整 數(shù)零負(fù) 整 數(shù)正 分 數(shù)負(fù) 分 數(shù)考 點(diǎn) 聚 焦 回 歸 教 材 中 考 預(yù) 測 第1講實數(shù)的有關(guān)概念2 按 正 負(fù) 分 類 :零 正 整 數(shù)正 分 數(shù)負(fù) 整 數(shù)負(fù) 分 數(shù) 考 點(diǎn) 聚 焦 歸 類 探 究 回 歸 教 材 中 考 預(yù) 測 第1講實數(shù)的有關(guān)概念考 點(diǎn) 2 實 數(shù) 的 有 關(guān) 概 念 原 點(diǎn) 正 方 向 單 位 長 度符 號乘 積
2、 考 點(diǎn) 聚 焦 歸 類 探 究 回 歸 教 材 中 考 預(yù) 測 第1講實數(shù)的有關(guān)概念距 離 考 點(diǎn) 聚 焦 歸 類 探 究 回 歸 教 材 中 考 預(yù) 測 第1講實數(shù)的有關(guān)概念考 點(diǎn) 3 非 負(fù) 數(shù) 考 點(diǎn) 聚 焦 歸 類 探 究 回 歸 教 材 中 考 預(yù) 測 第1講實數(shù)的有關(guān)概念探 究 一 實 數(shù) 的 概 念 及 分 類 命 題 角 度 :1 有 理 數(shù) 與 無 理 數(shù) 的 概 念 ;2 實 數(shù) 的 分 類 B 考 點(diǎn) 聚 焦 歸 類 探 究 回 歸 教 材 中 考 預(yù) 測 歸 類 探 究 第1講實數(shù)的有關(guān)概念解 析 無 理 數(shù) 就 是 無 限 不 循 環(huán) 小 數(shù) 。 理 解 無 理 數(shù)
3、 的 概 念 ,一 定 要 同 時 理 解 有 理 數(shù) 的 概 念 , 有 理 數(shù) 是 整 數(shù) 與 分 數(shù) 的 統(tǒng) 稱 ,即 有 限 小 數(shù) 和 無 限 循 環(huán) 小 數(shù) 都 是 有 理 數(shù) , 而 無 限 不 循 環(huán) 小 數(shù)是 無 理 數(shù) 無 理 數(shù) 有 : , 0.1010010001(相 鄰 兩 個 1之間 依 次 多 一 個 0),共 有 2個 。 考 點(diǎn) 聚 焦 歸 類 探 究 回 歸 教 材 中 考 預(yù) 測 第1講實數(shù)的有關(guān)概念探 究 二 實 數(shù) 的 有 關(guān) 概 念命 題 角 度 :1 數(shù) 軸 , 相 反 數(shù) , 倒 數(shù) 等 概 念 ;2 絕 對 值 的 概 念 及 計 算 。例 2
4、 填 空 題 :(1)相 反 數(shù) 等 于 它 本 身 的 數(shù) 是 _;(2)倒 數(shù) 等 于 它 本 身 的 數(shù) 是 _;(3)平 方 等 于 它 本 身 的 數(shù) 是 _;(4)平 方 根 等 于 它 本 身 的 數(shù) 是 _;(5)絕 對 值 等 于 它 本 身 的 數(shù) 是 _ 00或 1非 負(fù) 數(shù)0 1考 點(diǎn) 聚 焦 歸 類 探 究 回 歸 教 材 中 考 預(yù) 測 第1講實數(shù)的有關(guān)概念 對 無 理 數(shù) 的 判 定 , 不 能 只 被 表 面 形 式 迷 惑 ,而 應(yīng) 從 最 后 結(jié) 果 去 判 斷 一 般 來 說 , 用 根 號 表 示的 數(shù) 不 一 定 就 是 無 理 數(shù) , 如 是 有 理
5、 數(shù) ,用 三 角 函 數(shù) 符 號 表 示 的 數(shù) 也 不 一 定 就 是 無 理 數(shù) ,如 sin30 、 tan45 也 不 是 無 理 數(shù) , 一 個 數(shù) 是 不是 無 理 數(shù) 關(guān) 鍵 在 于 不 同 形 式 表 示 的 數(shù) 的 最 終 結(jié) 果是 不 是 無 限 不 循 環(huán) 小 數(shù) 考 點(diǎn) 聚 焦 歸 類 探 究 回 歸 教 材 中 考 預(yù) 測 第1講實數(shù)的有關(guān)概念解 析 解 決 這 類 題 最 好 的 方 法 是 借 助 于 方 程 來 求 解 , 可 避免 出 錯 。 設(shè) 這 個 數(shù) 為 x, 則 :(1) x x, x 0;(2)x(1) x, x2 1, x 1;(3)x2 x,
6、 x2 x 0, x 0或 x 1;(4) x, x2 x, x 0或 x 1(不 合 題 意 , 舍 去 ); (5)|x| x, x 0???點(diǎn) 聚 焦 歸 類 探 究 回 歸 教 材 中 考 預(yù) 測 第1講實數(shù)的有關(guān)概念 (1)求 一 個 數(shù) 的 相 反 數(shù) , 直 接 在 這 個 數(shù) 的 前 面 加 上 負(fù)號 , 有 時 需 要 化 簡 得 出 (2)一 個 負(fù) 數(shù) 的 絕 對 值 等 于 它 的 相 反 數(shù) 反 過 來 , 一個 數(shù) 的 絕 對 值 等 于 它 的 相 反 數(shù) , 則 這 個 數(shù) 是 非 正 數(shù) (3)解 絕 對 值 和 數(shù) 軸 的 有 關(guān) 問 題 時 常 用 到 字
7、 母 表 示 數(shù)的 思 想 、 分 類 討 論 思 想 和 數(shù) 形 結(jié) 合 思 想 考 點(diǎn) 聚 焦 歸 類 探 究 回 歸 教 材 中 考 預(yù) 測 第1講實數(shù)的有關(guān)概念探 究 三 科 學(xué) 記 數(shù) 法 命 題 角 度 :用 科 學(xué) 記 數(shù) 法 表 示 數(shù) 例 3 2013 邵 陽 據(jù) 邵 陽 市 住 房 公 積 金 管 理 會議 透 露 , 今 年 我 市 新 增 住 房 公 積 金 11.2億 元 , 其 中11.2億 元 可 用 科 學(xué) 記 數(shù) 法 表 示 為 ( )A 11.2 10 8元 B 1.12 109元C 0.112 1010元 D 112 107元解 析 1億 108, 11.
8、2億 1.12 109。B考 點(diǎn) 聚 焦 歸 類 探 究 回 歸 教 材 中 考 預(yù) 測 第1講實數(shù)的有關(guān)概念 帶 有 計 數(shù) 單 位 的 數(shù) , 一 般 要 把 計 數(shù) 單 位 化 去 , 再用 科 學(xué) 記 數(shù) 法 表 示 。 考 點(diǎn) 聚 焦 歸 類 探 究 回 歸 教 材 中 考 預(yù) 測 第1講實數(shù)的有關(guān)概念探 究 四 創(chuàng) 新 應(yīng) 用 題 命 題 角 度 :1 探 究 數(shù) 字 規(guī) 律 ;2 探 究 圖 形 與 數(shù) 字 的 變 化 關(guān) 系 例 4 將 連 續(xù) 的 正 整 數(shù) 按 以 下 規(guī) 律 排 列 , 則 位 于 第 7行 第 7列的 數(shù) x是 _ 第 1列 第 2列 第 3列 第 4列
9、 第 5列 第 6列 第 7列 第 1行 1 3 6 10 15 21 28第 2行 2 5 9 14 20 27第 3行 4 8 13 19 26 第 4行 7 12 18 25 第 5行 11 17 24 第 6行 16 23 第 7行 22 x 85考 點(diǎn) 聚 焦 歸 類 探 究 回 歸 教 材 中 考 預(yù) 測 第1講實數(shù)的有關(guān)概念解 析 第 1行 的 第 1列 與 第 2列 差 個 2, 第 2列 與 第 3列 差 個 3, 第 3列 與 第 4列 差 個 4, , 第 6列 與 第 7列 差 個 7;第 2行 的 第 1列 與 第 2列 差 個 3, 第 2列 與 第 3列 差 個
10、4, 第 3列 與 第 4列差 個 5, , 第 5列 與 第 6列 差 個 7;第 3行 的 第 1列 與 第 2列 差 個 4, 第 2列 與 第 3列 差 個 5, 第 3列 與 第 4列差 個 6, 第 4列 與 第 5列 差 個 7;第 7行 的 第 1列 與 第 2列 差 個 8, 是 30; 第 2列 與 第 3列 差 個 9, 是 39; 第 3列 與 第 4列 差 個 10, 是 49; 第 4列 與 第 5列 差 個 11, 是 60; 第 5列與 第 6列 差 個 12, 是 72; 第 6列 與 第 7列 差 個 13, 是 85。考 點(diǎn) 聚 焦 歸 類 探 究 回 歸
11、 教 材 中 考 預(yù) 測 第1講實數(shù)的有關(guān)概念 此 類 實 數(shù) 規(guī) 律 性 的 問 題 的 特 點(diǎn) 是 給 定 一 列 數(shù) 或 等式 或 圖 形 , 要 求 適 當(dāng) 地 進(jìn) 行 計 算 , 必 要 的 觀 察 、 猜 想, 歸 納 , 驗 證 , 利 用 從 特 殊 到 一 般 的 數(shù) 學(xué) 思 想 , 分 析特 點(diǎn) , 與 自 然 數(shù) 結(jié) 合 , 探 索 規(guī) 律 , 總 結(jié) 結(jié) 論 。 考 點(diǎn) 聚 焦 歸 類 探 究 回 歸 教 材 中 考 預(yù) 測 第1講實數(shù)的有關(guān)概念實 數(shù) 的 分 類 回 歸 教 材 考 點(diǎn) 聚 焦 歸 類 探 究 回 歸 教 材 中 考 預(yù) 測 第1講實數(shù)的有關(guān)概念點(diǎn) 析
12、 要 判 斷 一 個 數(shù) 是 不 是 無 理 數(shù) , 關(guān) 鍵 是 理 解 好 無 理 數(shù)的 定 義 , 也 就 是 無 限 不 循 環(huán) 小 數(shù) 才 是 無 理 數(shù) , 對 于 開 方 數(shù) ,則 必 須 是 開 方 開 不 盡 的 數(shù) 。 考 點(diǎn) 聚 焦 歸 類 探 究 回 歸 教 材 中 考 預(yù) 測 第1講實數(shù)的有關(guān)概念B B 考 點(diǎn) 聚 焦 歸 類 探 究 回 歸 教 材 中 考 預(yù) 測 中 考 預(yù) 測 第 2課 時 實 數(shù) 的 運(yùn) 算 與 實 數(shù)的 大 小 比 較 考 點(diǎn) 聚 焦 回 歸 教 材歸 類 探 究 中 考 預(yù) 測 第2講實數(shù)的運(yùn)算與實數(shù)的大小比較考 點(diǎn) 1 實 數(shù) 的 運(yùn) 算
13、內(nèi) 容 提 醒運(yùn)算法則 在 實 數(shù) 范 圍 內(nèi) , 加 、 減 、 乘 、 除 (除 數(shù) 不 為 零 )、 乘 方 都 可 以 進(jìn) 行 ,但 開 方 運(yùn) 算 不 一 定 能 進(jìn) 行 , 正 實數(shù) 和 零 總 能 進(jìn) 行 開 方 運(yùn) 算 , 而 負(fù)實 數(shù) 只 能 開 奇 次 方 , 不 能 開 偶 次方 (1)零 指 數(shù) 、 負(fù) 整 數(shù) 指數(shù) 的 意 義 , 防 止 以 下錯 誤 : 3 2 ; (2)遇 到絕 對 值 一 般 要 先 去 掉絕 對 值 符 號 , 再 進(jìn) 行計 算 ; (3)無 論 何 種 運(yùn)算 , 都 要 注 意 先 定 符號 后 運(yùn) 算運(yùn) 算 性 質(zhì) 有 理 數(shù) 的 一 切
14、 運(yùn) 算 性 質(zhì) 的 運(yùn) 算 律都 適 用 于 實 數(shù) 運(yùn) 算運(yùn)算順序 先 算 乘 方 、 開 方 , 再 算 乘 除 , 最后 算 加 減 , 有 括 號 的 要 先 算 括 號內(nèi) 的 , 若 沒 有 括 號 , 在 同 一 級 運(yùn)算 中 , 要 從 左 至 右 依 次 進(jìn) 行 運(yùn) 算考 點(diǎn) 聚 焦 考 點(diǎn) 聚 焦 歸 類 探 究 回 歸 教 材 中 考 預(yù) 測 第2講實數(shù)的運(yùn)算與實數(shù)的大小比較考 點(diǎn) 2 實 數(shù) 的 大 小 比 較 代 數(shù) 比 較規(guī) 則 正 數(shù) _零 , 負(fù) 數(shù) _零 , 正數(shù) _一 切 負(fù) 數(shù) ; 兩 個 正 數(shù) , 絕對 值 大 的 較 大 ; 兩 個 負(fù) 數(shù) , 絕
15、對 值 大的 反 而 _幾 何 比 較規(guī) 則 在 數(shù) 軸 上 表 示 的 兩 個 實 數(shù) , _的 數(shù) 總 是 大 于 _的 數(shù)大 于 大 于 小 于 小 右 邊 左 邊 考 點(diǎn) 聚 焦 歸 類 探 究 回 歸 教 材 中 考 預(yù) 測 第2講實數(shù)的運(yùn)算與實數(shù)的大小比較考 點(diǎn) 3 比 較 實 數(shù) 大 小 的 常 用 方 法 差 值 比 較 法 設(shè) a, b是 任 意 兩 實 數(shù) , 則 a b0 ab; ab0 a1 ab; a/b 1 a b; a/b 1 a|b| ab; |a| |b| a b; |a|b其 他 方 法 除 此 之 外 , 還 有 平 方 法 、 倒 數(shù) 法 等 方 法 考
16、 點(diǎn) 聚 焦 歸 類 探 究 回 歸 教 材 中 考 預(yù) 測 第2講實數(shù)的運(yùn)算與實數(shù)的大小比較探 究 一 實 數(shù) 的 運(yùn) 算 命 題 角 度 :1 實 數(shù) 的 加 、 減 、 乘 、 除 、 乘 方 、 開 方 運(yùn) 算 ;2 實 數(shù) 的 運(yùn) 算 在 實 際 生 活 中 的 應(yīng) 。 解 原 式 1 1 2 3 1. 歸 類 探 究考 點(diǎn) 聚 焦 歸 類 探 究 回 歸 教 材 中 考 預(yù) 測 第2講實數(shù)的運(yùn)算與實數(shù)的大小比較 考 點(diǎn) 聚 焦 歸 類 探 究 回 歸 教 材 中 考 預(yù) 測 第2講實數(shù)的運(yùn)算與實數(shù)的大小比較命 題 角 度 : 1 利 用 實 數(shù) 的 大 小 比 較 法 則 比 較
17、大 小 ; 2 實 數(shù) 的 大 小 比 較 常 用 方 法 。 類 型 之 二 實 數(shù) 的 大 小 比 較 例 2 實 數(shù) a在 數(shù) 軸 上 的 位 置 如 圖 2 1所 示 , 則 關(guān) 于 a, a, 1的 大 小 關(guān) 系 表 示 正 確 的 是 ( )圖 2 1A a 1 a B a a 1C 1 a a D a a 1 A 考 點(diǎn) 聚 焦 歸 類 探 究 回 歸 教 材 中 考 預(yù) 測 第2講實數(shù)的運(yùn)算與實數(shù)的大小比較解 析 互 為 相 反 數(shù) 的 兩 數(shù) 所 表 示 的 點(diǎn) 關(guān) 于 原 點(diǎn) 對 稱 , 所以 a, a所 表 示 的 點(diǎn) 關(guān) 于 原 點(diǎn) 對 稱 , 故 a 1 a. 考
18、點(diǎn) 聚 焦 歸 類 探 究 回 歸 教 材 中 考 預(yù) 測 第2講實數(shù)的運(yùn)算與實數(shù)的大小比較 兩 個 實 數(shù) 的 大 小 比 較 方 法 有 : (1)正 數(shù) 大 于 零 , 負(fù)數(shù) 小 于 零 ; (2)利 用 數(shù) 軸 ; (3)差 值 比 較 法 ; (4)商 值比 較 法 ; (5)倒 數(shù) 法 ; (6)取 特 殊 值 法 ; (7)計 算 器 比較 法 等 。 考 點(diǎn) 聚 焦 歸 類 探 究 回 歸 教 材 中 考 預(yù) 測 第2講實數(shù)的運(yùn)算與實數(shù)的大小比較命 題 角 度 :1 實 數(shù) 與 數(shù) 軸 上 點(diǎn) 的 一 一 對 應(yīng) 關(guān) 系 ;2 數(shù) 軸 與 相 反 數(shù) 、 倒 數(shù) 、 絕 對 值
19、 等 概 念 結(jié) 合 ;3 數(shù) 軸 與 實 數(shù) 大 小 比 較 、 實 數(shù) 運(yùn) 算 結(jié) 合 ;4 利 用 數(shù) 軸 進(jìn) 行 代 數(shù) 式 的 化 簡 C 類 型 之 三 實 數(shù) 與 數(shù) 軸 考 點(diǎn) 聚 焦 歸 類 探 究 回 歸 教 材 中 考 預(yù) 測 第2講實數(shù)的運(yùn)算與實數(shù)的大小比較解 析 考 點(diǎn) 聚 焦 歸 類 探 究 回 歸 教 材 中 考 預(yù) 測 第2講實數(shù)的運(yùn)算與實數(shù)的大小比較 (1)實 數(shù) 與 數(shù) 軸 上 的 點(diǎn) 一 一 對 應(yīng) ; (2)把 數(shù) 和 點(diǎn) 對應(yīng) 起 來 , 也 就 是 把 “ 數(shù) ” 和 “ 形 ” 結(jié) 合 起 來 , 二 者互 相 補(bǔ) 充 , 相 輔 相 成 , 把
20、很 多 復(fù) 雜 的 問 題 轉(zhuǎn) 化 為 簡單 的 問 題 。 考 點(diǎn) 聚 焦 歸 類 探 究 回 歸 教 材 中 考 預(yù) 測 第2講實數(shù)的運(yùn)算與實數(shù)的大小比較 類 型 之 四 探 索 實 數(shù) 中 的 規(guī) 律 命 題 角 度 :1. 探 究 實 數(shù) 運(yùn) 算 規(guī) 律 ;2. 實 數(shù) 運(yùn) 算 中 閱 讀 理 解 問 題 例 4 觀 察 下 列 等 式 : 考 點(diǎn) 聚 焦 歸 類 探 究 回 歸 教 材 中 考 預(yù) 測 第2講實數(shù)的運(yùn)算與實數(shù)的大小比較請 解 答 下 列 問 題 :(1)按 以 上 規(guī) 律 列 出 第 5個 等 式 : a5 _;(2)用 含 n的 代 數(shù) 式 表 示 第 n個 等 式
21、 : an_ _(n為 正 整 數(shù) );(3)求 a 1 a2 a3 a4 a100的 值 考 點(diǎn) 聚 焦 歸 類 探 究 回 歸 教 材 中 考 預(yù) 測 第2講實數(shù)的運(yùn)算與實數(shù)的大小比較 考 點(diǎn) 聚 焦 歸 類 探 究 回 歸 教 材 中 考 預(yù) 測 第2講實數(shù)的運(yùn)算與實數(shù)的大小比較 關(guān) 于 數(shù) 式 規(guī) 律 性 問 題 的 一 般 解 題 思 路 : (1)先對 給 出 的 特 殊 數(shù) 式 進(jìn) 行 觀 察 、 比 較 ; (2)根 據(jù) 觀 察 、猜 想 歸 納 出 一 般 規(guī) 律 ; (3)用 得 到 的 規(guī) 律 去 解 決 其 他問 題 。 對 數(shù) 式 進(jìn) 行 觀 察 的 角 度 及 方
22、法 : (1)橫 向 觀 察 :看 等 號 左 右 兩 邊 什 么 不 變 , 什 么 在 變 , 以 及 變 化 的 數(shù)字 或 式 子 間 的 關(guān) 系 ; (2)縱 向 觀 察 : 將 連 續(xù) 的 幾 個 式子 上 下 對 齊 , 觀 察 上 下 對 應(yīng) 位 置 的 式 子 什 么 不 變 , 什么 在 變 , 以 及 變 化 的 數(shù) 字 或 式 子 間 的 關(guān) 系 。 考 點(diǎn) 聚 焦 歸 類 探 究 回 歸 教 材 中 考 預(yù) 測 第2講實數(shù)的運(yùn)算與實數(shù)的大小比較實 數(shù) 的 大 小 比 較 有 竅 門 點(diǎn) 析 實 數(shù) 大 小 比 較 的 常 用 方 法 有 根 式 被 開 方 數(shù) 大 小
23、比 較 法 、求 近 似 值 法 、 差 值 法 、 平 方 法 等 。 解 回 歸 教 材考 點(diǎn) 聚 焦 歸 類 探 究 回 歸 教 材 中 考 預(yù) 測 第2講實數(shù)的運(yùn)算與實數(shù)的大小比較A中 考 預(yù) 測 考 點(diǎn) 聚 焦 歸 類 探 究 回 歸 教 材 中 考 預(yù) 測 第 3課 時 整 式 及 因 式 分 解 考 點(diǎn) 聚 焦 回 歸 教 材歸 類 探 究 中 考 預(yù) 測 第3講整式及因式分解考 點(diǎn) 1 整 式 的 概 念 內(nèi) 容 整 式單 項 式 多 項 式定 義 數(shù) 與 字 母 的 _的代 數(shù) 式 叫 做 單 項 式 , 單 獨(dú)的 一 個 數(shù) 或 一 個 字 母 也 是單 項 式 幾 個 單
24、 項 式 的_叫 做 多 項式乘 積 考 點(diǎn) 聚 焦 考 點(diǎn) 聚 焦 歸 類 探 究 回 歸 教 材 中 考 預(yù) 測 和 第3講整式及因式分解內(nèi) 容 整 式單 項 式 多 項 式次 數(shù) 一 個 單 項 式 中 , 所 有 字母 的 指 數(shù) 和 叫 做 這 個 單項 式 的 次 數(shù) 一 個 多 項 式 中 , 次 數(shù) 最高 項 的 次 數(shù) , 叫 做 這 個多 項 式 的 次 數(shù)系 數(shù) 單 項 式 中 的 數(shù) 字 因 數(shù) 叫做 單 項 式 的 系 數(shù)項 多 項 式 中 每 個 單 項 式 叫做 多 項 式 的 項 考 點(diǎn) 聚 焦 歸 類 探 究 回 歸 教 材 中 考 預(yù) 測 第3講整式及因式分
25、解相 同 考 點(diǎn) 2 同 類 項 、 合 并 同 類 項 1 同 類 項 : 所 含 字 母 _, 并 且 相 同 字 母的 指 數(shù) 也 _的 項 叫 做 同 類 項 , 幾 個 常 數(shù) 項 也是 同 類 項 2 合 并 同 類 項 : 把 多 項 式 中 的 同 類 項 合 并 成 一項 叫 做 合 并 同 類 項 , 合 并 同 類 項 后 , 所 得 項 的 系 數(shù)是 合 并 前 各 同 類 項 的 系 數(shù) 的 和 , 且 字 母 部 分 不 變 考 點(diǎn) 聚 焦 歸 類 探 究 回 歸 教 材 中 考 預(yù) 測 相 同 第3講整式及因式分解考 點(diǎn) 3 整 式 的 運(yùn) 算 類 別 法 則整
26、式的 加減 整 式 的 加 減 實 質(zhì) 就 是 _ 一 般 地 , 幾 個 整 式 相 加減 , 如 果 有 括 號 就 先 去 括 號 , 再 合 并 同 類 項冪的運(yùn)算 同 底 數(shù) 冪相 乘 底 數(shù) 不 變 , 指 數(shù) 相 加 . 即 : am an_(m, n都 是 整 數(shù) )冪 的 乘 方 底 數(shù) 不 變 , 指 數(shù) 相 乘 . 即 : (a m)n _(m, n都 是 整 數(shù) )積 的 乘 方 等 于 把 積 的 每 一 個 因 式 分 別 乘 方 , 再 把 所 得 的冪 相 乘 即 : (ab)n _(n為 整 數(shù) )同 底 數(shù) 冪相 除 底 數(shù) 不 變 , 指 數(shù) 相 減 .
27、即 : am an_(a 0, m、 n都 為 整 數(shù) )合 并 同 類 項 am n amn anbn am n 考 點(diǎn) 聚 焦 歸 類 探 究 回 歸 教 材 中 考 預(yù) 測 第3講整式及因式分解整式的乘法 單 項 式 與 單項 式 相 乘 把 它 們 的 系 數(shù) 、 相 同 字 母 分 別 相 乘 , 對 于只 在 一 個 單 項 式 里 含 有 的 字 母 , 則 連 同它 的 指 數(shù) 作 為 積 的 一 個 因 式單 項 式 與 多項 式 相 乘 就 是 用 單 項 式 去 乘 多 項 式 的 每 一 項 , 再 把所 得 的 積 相 加 , 即 m(a b c) ma mb mc多
28、 項 式 與 多項 式 相 乘 先 用 一 個 多 項 式 的 每 一 項 乘 另 一 個 多 項 式的 每 一 項 , 再 把 所 得 的 積 相 加 , 即 (mn)(a b) ma mb na nb 考 點(diǎn) 聚 焦 歸 類 探 究 回 歸 教 材 中 考 預(yù) 測 第3講整式及因式分解整 式的 除法 單 項 式 除 以 單項 式 把 系 數(shù) 與 同 底 數(shù) 冪 分 別 相 除 , 作 為 商的 因 式 , 對 于 只 在 被 除 式 里 含 有 的 字母 , 則 連 同 它 的 指 數(shù) 作 為 商 的 一 個 因式多 項 式 除 以 單項 式 先 把 這 個 多 項 式 的 每 一 項 分
29、 別 除 以 這個 單 項 式 , 然 后 把 所 得 的 商 相 加乘 法公 式 平 方 差 公 式 (a b)(a b) _完 全 平 方 公 式 (a b) 2 _常 用 恒 等 變 換 (1)a2 b2 _(2)(a b)2 (a b)2 4aba2 b2 a2 2ab b2 (a b)2 2ab (a b)2 2ab考 點(diǎn) 聚 焦 歸 類 探 究 回 歸 教 材 中 考 預(yù) 測 第3講整式及因式分解考 點(diǎn) 4 因 式 分 解 的 概 念 整 式 的 積 因 式 分 解 : 把 一 個 多 項 式 化 為 幾 個 _的 形 式 ,像 這 樣 的 式 子 變 形 , 叫 做 多 項 式
30、的 因 式 分 解 注 意 : (1)因 式 分 解 專 指 多 項 式 的 恒 等 變 形 ;(2)因 式 分 解 的 結(jié) 果 必 須 是 幾 個 整 式 的 積 的 形 式 ;(3)因 式 分 解 與 整 式 乘 法 互 為 逆 運(yùn) 算 考 點(diǎn) 聚 焦 歸 類 探 究 回 歸 教 材 中 考 預(yù) 測 第3講整式及因式分解考 點(diǎn) 5 因 式 分 解 的 相 關(guān) 概 念 及 基 本 方 法 公 因 式 定 義 一 個 多 項 式 各 項 都 含 有 的 公 共 的 因 式 ,叫 做 這 個 多 項 式 各 項 的 公 因 式提 取 公因 式 法 定 義 一 般 地 , 如 果 多 項 式 的
31、各 項 都 有 公 因 式, 可 以 把 這 個 公 因 式 提 到 括 號 外 面 , 將多 項 式 寫 成 因 式 的 乘 積 形 式 , 即 ma mb mc _應(yīng) 用 注意 (1)提 公 因 式 時 , 其 公 因 式 應(yīng) 滿 足 : 系 數(shù) 是 各 項 系 數(shù) 的 最 大 公 約 數(shù) ; 字 母取 各 項 相 同 字 母 的 最 低 次 冪 ; (2)公 因式 可 以 是 數(shù) 字 、 字 母 或 多 項 式 ; (3)提取 公 因 式 時 , 若 有 一 項 全 部 提 出 , 括 號 內(nèi) 的 項 應(yīng) 是 “ 1” , 而 不 是 0m(a b c) 考 點(diǎn) 聚 焦 歸 類 探 究
32、回 歸 教 材 中 考 預(yù) 測 第3講整式及因式分解運(yùn) 用 公 式 法 平 方 差 公式 a2 b2 _完 全 平 方公 式 a2 2ab b2 _ a2 2ab b2 _因 式 分 解 的 一 般 步 驟 一 提 (提 取 公 因 式 );二 套 (套 公 式 法 );一 直 分 解 到 不 能 分 解 為 止(a b)(a b) (a b)2 (a b)2 考 點(diǎn) 聚 焦 歸 類 探 究 回 歸 教 材 中 考 預(yù) 測 探 究 一 同 類 項 命 題 角 度 :1 同 類 項 的 概 念 ;2 由 同 類 項 的 概 念 通 過 列 方 程 組 求 解 同 類 項 的 指 數(shù)的 字 母 的
33、 值 歸 類 探 究第3講整式及因式分解 考 點(diǎn) 聚 焦 歸 類 探 究 回 歸 教 材 中 考 預(yù) 測C 解 析 1億 108, 11.2億 1.12 109。 第3講整式及因式分解(1)同 類 項 必 須 符 合 兩 個 條 件 : 第 一 , 所 含 字 母 相 同 ;第 二 , 相 同 字 母 的 指 數(shù) 相 同 兩 者 缺 一 不 可 。(2)根 據(jù) 同 類 項 概 念 相 同 字 母 的 指 數(shù) 相 同 列 方 程(組 )是 解 此 類 題 的 一 般 方 法 。 考 點(diǎn) 聚 焦 歸 類 探 究 回 歸 教 材 中 考 預(yù) 測 第3講整式及因式分解命 題 角 度 : 1 整 式 的
34、 加 、 減 、 乘 、 除 運(yùn) 算 ; 2 乘 法 公 式 探 究 二 整 式 的 運(yùn) 算 D 例 2 下 列 各 式 計 算 正 確 的 是 ( )A (a7)2 a9 B a7a2 a14C 2a 2 3a3 5a5 D (ab)3 a3b3考 點(diǎn) 聚 焦 歸 類 探 究 回 歸 教 材 中 考 預(yù) 測解 析 A 利 用 冪 的 乘 方 運(yùn) 算 法 則 計 算 得 到 結(jié) 果 ; B.利 用同 底 數(shù) 冪 的 乘 法 法 則 計 算 得 到 結(jié) 果 ; C.原 式 不 能 合 并 ; D.利用 積 的 乘 方 運(yùn) 算 法 則 計 算 得 到 結(jié) 果 第3講整式及因式分解 考 點(diǎn) 聚 焦
35、歸 類 探 究 回 歸 教 材 中 考 預(yù) 測 解 第3講整式及因式分解 (1)對 于 整 式 的 加 、 減 、 乘 、 除 、 乘 方 運(yùn) 算 , 要 充分 理 解 其 運(yùn) 算 法 則 , 注 意 運(yùn) 算 順 序 , 正 確 應(yīng) 用 乘 法 公 式以 及 整 體 和 分 類 等 數(shù) 學(xué) 思 想 。 (2)在 應(yīng) 用 乘 法 公 式 時 , 要 充 分 理 解 乘 法 公 式 的 結(jié)構(gòu) 特 點(diǎn) , 分 析 是 否 符 合 乘 法 公 式 的 條 件 。 考 點(diǎn) 聚 焦 歸 類 探 究 回 歸 教 材 中 考 預(yù) 測 第3講整式及因式分解命 題 角 度 :1 因 式 分 解 的 概 念 ;2
36、提 取 公 因 式 法 因 式 分 解 ;3 運(yùn) 用 公 式 法 因 式 分 解 : (1)平 方 差 公 式 ; (2)完 全 平 方公 式 C 探 究 三 因 式 分 解 例 4 把 x 2y 2y2x y3分 解 因 式 正 確 的 是 ( )A y(x2 2xy y2) B x2y y2(2x y)C y(x y)2 D y(x y)2考 點(diǎn) 聚 焦 歸 類 探 究 回 歸 教 材 中 考 預(yù) 測 第3講整式及因式分解 考 點(diǎn) 聚 焦 歸 類 探 究 回 歸 教 材 中 考 預(yù) 測 解 析 首 先 提 取 公 因 式 y, 再 利 用 完 全 平 方 公 式 進(jìn) 行 二 次 分解 即
37、可 x2y 2y2x y3 y(x2 2yx y2) y(x y)2. 第3講整式及因式分解 (1)分 解 因 式 的 步 驟 : 一 提 (提 公 因 式 )、 二 套 (套公 式 )、 三 驗 (檢 驗 是 否 分 解 徹 底 )。 (2)注 意 一 些 常 見 的 恒 等 變 形 : 如 y x (x y),(y x)2 (x y)2。 (3)應(yīng) 用 公 式 法 因 式 分 解 時,要 牢 記 平 方 差 公 式和 完 全 平 方 式 及 其 特 點(diǎn) 。 考 點(diǎn) 聚 焦 歸 類 探 究 回 歸 教 材 中 考 預(yù) 測 第3講整式及因式分解 探 究 四 整 式 運(yùn) 算 與 因 式 分 解
38、的 應(yīng) 用 命 題 角 度 :1 整 式 的 規(guī) 律 性 問 題 ;2 利 用 整 式 驗 證 公 式 或 等 式 ;3 新 定 義 運(yùn) 算 ;4 利 用 因 式 分 解 進(jìn) 行 計 算 與 化 簡 ;5 利 用 幾 何 圖 形 驗 證 因 式 分 解 公 式 例 5 觀 察 下 列 各 式 的 計 算 過 程 :5 5 0 1 100 25,15 15 1 2 100 25,25 25 2 3 100 25,35 35 3 4 100 25, 請 猜 測 , 第 n個 算 式 (n為 正 整 數(shù) )應(yīng) 表 示 為 _ _.考 點(diǎn) 聚 焦 歸 類 探 究 回 歸 教 材 中 考 預(yù) 測10(n
39、 1) 5 100n(n 1) 25或 5(2n 1) 5(2n 1) 100n(n 1) 2510(n 1) 5 第3講整式及因式分解 考 點(diǎn) 聚 焦 歸 類 探 究 回 歸 教 材 中 考 預(yù) 測 解 析 根 據(jù) 數(shù) 字 變 化 規(guī) 律 得 出 個 位 是 5的 數(shù) 字 與 本 身 乘 積 等于 十 位 數(shù) 乘 十 位 數(shù) 字 加 1再 乘 100再 加 25, 即 10(n 1)5 10(n 1) 5 100n(n 1) 25或 5(2n 1) 5(2n 1)100n(n 1) 25. 第3講整式及因式分解 解 決 整 式 的 規(guī) 律 性 問 題 應(yīng) 充 分 發(fā) 揮 數(shù) 形 結(jié) 合 的
40、作 用 ,從 分 析 圖 形 的 結(jié) 構(gòu) 入 手 , 分 析 圖 形 結(jié) 構(gòu) 的 形 成 過 程 ,從 簡 單 到 復(fù) 雜 , 進(jìn) 行 歸 納 猜 想 , 從 而 獲 得 隱 含 的 數(shù) 學(xué)規(guī) 律 , 并 用 代 數(shù) 式 進(jìn) 行 描 述 。 考 點(diǎn) 聚 焦 歸 類 探 究 回 歸 教 材 中 考 預(yù) 測 第3講整式及因式分解完 全 平 方 公 式 大 變 身 回 歸 教 材把 下 列 各 式 分 解 因 式 :(1)3ax2 6axy 3ay2; (2) x2 4y2 4xy. (1)3ax2 6axy 3ay2 3a(x2 2xy y2) 3a(x y) 2;(2) x2 4y2 4xy (
41、x2 4xy 4y2) x2 2x2y (2y)2 (x 2y)2. 解 考 點(diǎn) 聚 焦 歸 類 探 究 回 歸 教 材 中 考 預(yù) 測 第3講整式及因式分解點(diǎn) 析 如 果 三 項 中 有 兩 項 能 寫 成 兩 數(shù) 或 式 的 平 方 , 但 符 號 不是 “ ” 號 時 , 可 以 先 提 取 “ ” 號 , 然 后 再 用 完 全 平 方 公式 分 解 因 式 考 點(diǎn) 聚 焦 歸 類 探 究 回 歸 教 材 中 考 預(yù) 測 第3講整式及因式分解0 第5講數(shù)的開方及根式 考 點(diǎn) 聚 焦 歸 類 探 究 回 歸 教 材 中 考 預(yù) 測 考 點(diǎn) 3 把 分 母 中 的 根 號 化 去 常 用
42、形 式 及方 法 第5講數(shù)的開方及根式 考 點(diǎn) 聚 焦 歸 類 探 究 回 歸 教 材 中 考 預(yù) 測 考 點(diǎn) 4 根 式 的 性 質(zhì) a |a| 第5講數(shù)的開方及根式A 考 點(diǎn) 聚 焦 歸 類 探 究 回 歸 教 材 中 考 預(yù) 測 歸 類 探 究探 究 一 求 平 方 根 、 算 術(shù) 平 方 根 與 立 方 根 命 題 角 度 :1. 平 方 根 、 算 術(shù) 平 方 根 與 立 方 根 的 概 念 ;2. 求 一 個 數(shù) 的 平 方 根 、 算 術(shù) 平 方 根 與 立 方 根 B 第5講數(shù)的開方及根式解 析 (1)16的 平 方 根 是 4; (2)( 2)2的 算 術(shù) 平 方 根 是 2
43、. 考 點(diǎn) 聚 焦 歸 類 探 究 回 歸 教 材 中 考 預(yù) 測 第5講數(shù)的開方及根式 考 點(diǎn) 聚 焦 歸 類 探 究 回 歸 教 材 中 考 預(yù) 測 (1)一 個 正 數(shù) 的 平 方 根 有 兩 個 , 它 們 互 為 相 反數(shù) ; (2)平 方 根 等 于 本 身 的 數(shù) 是 0, 算 術(shù) 平 方 根 等 于本 身 的 數(shù) 是 1和 0, 立 方 根 等 于 本 身 的 數(shù) 是 1、 1和0; (3)一 個 數(shù) 的 立 方 根 與 它 同 號 ; (4)對 一 個 式 子進(jìn) 行 開 方 運(yùn) 算 時 , 要 先 將 式 子 化 簡 再 進(jìn) 行 開 方 運(yùn)算 第5講數(shù)的開方及根式 考 點(diǎn) 聚
44、 焦 歸 類 探 究 回 歸 教 材 中 考 預(yù) 測 探 究 二 根 式 的 有 關(guān) 概 念 D命 題 角 度 :1 二 次 根 式 的 概 念 ;2 最 簡 二 次 根 式 的 概 念 第5講數(shù)的開方及根式解 析 由 題 意 得 x0且 x 10,解 得 x0且 x1, 故 選 D. 考 點(diǎn) 聚 焦 歸 類 探 究 回 歸 教 材 中 考 預(yù) 測 第5講數(shù)的開方及根式 考 點(diǎn) 聚 焦 歸 類 探 究 回 歸 教 材 中 考 預(yù) 測 此 類 有 意 義 的 條 件 問 題 主 要 是 根 據(jù) : 二 次 根 式 的被 開 方 數(shù) 大 于 或 等 于 零 ; 分 式 的 分 母 不 為 零 等
45、列 不 等式 組 , 轉(zhuǎn) 化 為 求 不 等 式 組 的 解 集 第5講數(shù)的開方及根式探 究 三 根 式 的 化 簡 與 計 算 解 析 根 據(jù) 零 指 數(shù) 冪 、 絕 對 值 、 整 數(shù) 指 數(shù) 冪 、 二 次 根 式 的 混 合 運(yùn) 算 , 分 別 進(jìn) 行 計 算 , 再 把 所 得 的 結(jié) 果 合 并 即 可 考 點(diǎn) 聚 焦 歸 類 探 究 回 歸 教 材 中 考 預(yù) 測命 題 角 度 :1. 根 式 的 性 質(zhì) : 兩 個 重 要 公 式 , 積 的 算 術(shù) 平 方 根 , 商的 算 術(shù) 平 方 根 ;2. 根 式 的 加 、 減 、 乘 、 除 運(yùn) 算 第5講數(shù)的開方及根式 考 點(diǎn)
46、聚 焦 歸 類 探 究 回 歸 教 材 中 考 預(yù) 測 解 第5講數(shù)的開方及根式 考 點(diǎn) 聚 焦 歸 類 探 究 回 歸 教 材 中 考 預(yù) 測 利 用 根 式 的 性 質(zhì) , 先 把 每 個 根 式 化 簡 , 然 后 進(jìn) 行 運(yùn)算 ; 在 中 考 中 , 根 式 常 與 零 指 數(shù) 冪 、 負(fù) 整 數(shù) 指 數(shù) 冪 結(jié)合 在 一 起 考 查 第5講數(shù)的開方及根式 考 點(diǎn) 聚 焦 歸 類 探 究 回 歸 教 材 中 考 預(yù) 測 第5講數(shù)的開方及根式 考 點(diǎn) 聚 焦 歸 類 探 究 回 歸 教 材 中 考 預(yù) 測 解 第5講數(shù)的開方及根式 考 點(diǎn) 聚 焦 歸 類 探 究 回 歸 教 材 中 考
47、預(yù) 測 此 類 分 式 與 根 式 綜 合 計 算 與 化 簡 問 題 , 一 般 先 化簡 再 代 入 求 值 ; 最 后 的 結(jié) 果 要 化 為 分 母 不 含 根 號 的 數(shù)或 者 是 最 簡 根 式 第5講數(shù)的開方及根式探 究 四 二 次 根 式 的 大 小 比 較 考 點(diǎn) 聚 焦 歸 類 探 究 回 歸 教 材 中 考 預(yù) 測 命 題 角 度 :1. 根 式 的 大 小 比 較 方 法 ;2. 利 用 計 算 器 進(jìn) 行 根 式 的 大 小 比 較 解 析 第5講數(shù)的開方及根式 考 點(diǎn) 聚 焦 歸 類 探 究 回 歸 教 材 中 考 預(yù) 測 解 第5講數(shù)的開方及根式 考 點(diǎn) 聚 焦
48、歸 類 探 究 回 歸 教 材 中 考 預(yù) 測 比 較 兩 個 根 式 大 小 時 要 注 意 : (1)負(fù) 號 不 能 移 到 根號 內(nèi) ; (2)根 號 外 的 正 因 數(shù) 要 平 方 后 才 能 從 根 號 外 移 到根 號 內(nèi) 第5講數(shù)的開方及根式探 究 五 根 式 的 非 負(fù) 性 考 點(diǎn) 聚 焦 歸 類 探 究 回 歸 教 材 中 考 預(yù) 測 命 題 角 度 :1. 根 式 的 非 負(fù) 性 的 意 義 ;2. 利 用 根 式 的 非 負(fù) 性 進(jìn) 行 化 簡 20 第5講數(shù)的開方及根式 考 點(diǎn) 聚 焦 歸 類 探 究 回 歸 教 材 中 考 預(yù) 測 解 析 根 據(jù) 題 意 得 解 得(
49、1)若 4是 腰 長 , 則 三 角 形 的 三 邊 長 為 4, 4, 8, 不 能 組 成 三 角形 ;(2)若 4是 底 邊 長 , 則 三 角 形 的 三 邊 長 為 : 4, 8, 8, 能 組 成 三角 形 , 周 長 為 4 8 8 20. 第5講數(shù)的開方及根式 考 點(diǎn) 聚 焦 歸 類 探 究 回 歸 教 材 中 考 預(yù) 測 第5講數(shù)的開方及根式回 歸 教 材 考 點(diǎn) 聚 焦 歸 類 探 究 回 歸 教 材 中 考 預(yù) 測 根 式 化 簡 到 最 簡 形 式 第5講數(shù)的開方及根式 考 點(diǎn) 聚 焦 歸 類 探 究 回 歸 教 材 中 考 預(yù) 測 解 第5講數(shù)的開方及根式點(diǎn) 析 根 式 的 化 簡 要 注 意 以 下 幾 點(diǎn) : (1)被 開 方 數(shù) 的 因 數(shù)是 整 數(shù) , 因 式 是 整 式 ; (2)被 開 方 數(shù) 中 不 含 能 開 得 盡 方 的因 數(shù) 或 因 式 考 點(diǎn) 聚 焦 歸 類 探 究 回 歸 教 材 中 考 預(yù) 測 第5講數(shù)的開方及根式 考 點(diǎn) 聚 焦 歸 類 探 究 回 歸 教 材 中 考 預(yù) 測 中 考 預(yù) 測 解
- 溫馨提示:
1: 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
2: 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
3.本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
5. 裝配圖網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 物業(yè)管理制度:常見突發(fā)緊急事件應(yīng)急處置程序和方法
- 某物業(yè)公司冬季除雪工作應(yīng)急預(yù)案范文
- 物業(yè)管理制度:小區(qū)日常巡查工作規(guī)程
- 物業(yè)管理制度:設(shè)備設(shè)施故障應(yīng)急預(yù)案
- 某物業(yè)公司小區(qū)地下停車場管理制度
- 某物業(yè)公司巡查、檢查工作內(nèi)容、方法和要求
- 物業(yè)管理制度:安全防范十大應(yīng)急處理預(yù)案
- 物業(yè)公司巡查、檢查工作內(nèi)容、方法和要求
- 某物業(yè)公司保潔部門領(lǐng)班總結(jié)
- 某公司安全生產(chǎn)舉報獎勵制度
- 物業(yè)管理:火情火災(zāi)應(yīng)急預(yù)案
- 某物業(yè)安保崗位職責(zé)
- 物業(yè)管理制度:節(jié)前工作重點(diǎn)總結(jié)
- 物業(yè)管理:某小區(qū)消防演習(xí)方案
- 某物業(yè)公司客服部工作職責(zé)