2019-2020年高中數(shù)學(xué) 任意角的三角函數(shù) 教案 蘇教版必修4.doc
《2019-2020年高中數(shù)學(xué) 任意角的三角函數(shù) 教案 蘇教版必修4.doc》由會員分享,可在線閱讀,更多相關(guān)《2019-2020年高中數(shù)學(xué) 任意角的三角函數(shù) 教案 蘇教版必修4.doc(6頁珍藏版)》請在裝配圖網(wǎng)上搜索。
2019-2020年高中數(shù)學(xué) 任意角的三角函數(shù) 教案 蘇教版必修4 教學(xué)目標(biāo): 理解并掌握任意角三角函數(shù)的定義,理解并掌握各種三角函數(shù)在各象限內(nèi)的符號,理解三角函數(shù)是以實數(shù)為自變量的函數(shù),掌握正弦、余弦、正切函數(shù)的定義域;使學(xué)生通過任意角三角函數(shù)的定義,認(rèn)識銳角三角函數(shù)是任意角三角函數(shù)的一種特例,加深特殊與一般關(guān)系的理解. 教學(xué)重點: 任意角三角函數(shù)的定義,正弦、余弦、正切函數(shù)的定義域. 教學(xué)難點: 正弦、余弦、正切函數(shù)的定義域. 教學(xué)過程: Ⅰ.課題導(dǎo)入 在初中我們學(xué)習(xí)了銳角三角函數(shù),它是以銳角為自變量,邊的比值為函數(shù)值的三角函數(shù),前面我們對角的概念進(jìn)行了擴充,并學(xué)習(xí)了弧度制,知道角的集合與實數(shù)集是一一對應(yīng)的,在這個基礎(chǔ)上,今天我們來研究任意角的三角函數(shù). Ⅱ.講授新課 對于銳角三角函數(shù),我們是在直角三角形中定義的,今天,對于任意角的三角函數(shù),我們利用平面直角坐標(biāo)系來進(jìn)行研究. 設(shè)α是一個頂點在原點,始邊在x軸正半軸上的任意角,α的終邊上任意一點P的坐標(biāo)是(x,y)(非頂點).它與原點的距離是r(r=>0) 注意:(1)以后我們在平面直角坐標(biāo)系內(nèi)研究角的問題,其頂點都在原點,始邊都與x軸的正半軸重合. (2)OP是角α的終邊,至于是轉(zhuǎn)了幾圈,按什么方向旋轉(zhuǎn)的不清楚,也只有這樣,才能說明角α是任意的. (3)角α的終邊只要不落在坐標(biāo)軸上,就只能是象限角. (4)角α的終邊不是不能落在坐標(biāo)軸上,而是說落在坐標(biāo)軸上的情況屬于特殊情形,我們將在研究問題的過程中對其進(jìn)行討論. 那么,(1)比值 叫做α的正弦,記作sinα,即sinα= . (2)比值 叫做α的余弦,記作cosα,即cosα=. (3)比值 叫做α的正切,記作tanα,即tanα= . 以上三種函數(shù)統(tǒng)稱為三角函數(shù). 確定的角α,它的終邊上任意一點P的坐標(biāo)都是變量,它與原點的距離r也是變量,這三個變量的三個比值究竟是確定的還是變化的? 根據(jù)相似三角形的知識,對于終邊不在坐標(biāo)軸上確定的角α,上述三個比值都不會隨P點在α的終邊上的位置的改變而改變.當(dāng)角α的終邊在縱軸上時,即α=kπ+(k∈Z)時,終邊上任意一點P的橫坐標(biāo)x都為0,所以tanα無意義,除此之外,對于確定的角α,上面的三個比值都是唯一確定的實數(shù),這就是說,正弦、余弦、正切都是以角為自變量,以比值為函數(shù)值的函數(shù). 注意:(1)sinα是個整體符號,不能認(rèn)為是“sin”與“α”的積.其余兩個符號也是這樣. (2)定義中只說怎樣的比值叫做α的什么函數(shù),并沒有說α的終邊在什么位置(終邊在坐標(biāo)軸上的除外),即函數(shù)的定義與α的終邊位置無關(guān). (3)比值只與角的大小有關(guān). 我們已經(jīng)給出了任意角三角函數(shù)的定義,請同學(xué)們考慮并比較一下,我們給出的任意角的三角函數(shù)的定義與銳角三角函數(shù)的定義,有什么聯(lián)系與區(qū)別? 正弦函數(shù)值是縱坐標(biāo)比距離,余弦函數(shù)值是橫坐標(biāo)比距離,正切函數(shù)值是縱坐標(biāo)比橫坐標(biāo). 由于角的集合與實數(shù)集R之間是一一對應(yīng)的,所以三角函數(shù)可以看成是以實數(shù)為自變量的函數(shù).我們知道,函數(shù)有三個要素,即定義域、值域、對應(yīng)法則,下面我們就來研究正弦、余弦、正切函數(shù)的定義域,值域問題待后再作研究. 對于正弦函數(shù)sinα=,因為r>0,所以 恒有意義,即α取任意實數(shù),恒有意義,也就是說sinα恒有意義,所以正弦函數(shù)的定義域是R;類似地可寫出余弦函數(shù)的定義域;對于正切函數(shù)tanα=,因為x=0時,無意義,即tanα無意義,又當(dāng)且僅當(dāng)角α的終邊落在縱軸上時,才有x=0,所以當(dāng)α的終邊不在縱軸上時,恒有意義,即tanα恒有意義,所以正切函數(shù)的定義域是α≠kπ+(k∈Z). 為了幾何表示的需要,我們先來看單位圓的概念:以原點為圓心,單位長為半徑的圓稱為單位圓.單位長——如1 cm、1 dm、1m、1 km等等,都是1個單位長,它們的單位雖不同,但長度都是1個單位長.即單位圓的半徑是1(個單位長). 在平面直角坐標(biāo)系內(nèi),作單位圓,設(shè)任意角α的頂點在原點,始邊與x軸的非負(fù)半軸重合,終邊與單位圓相交于點P(x,y),x軸的正半軸與單位圓相交于A(1,0),過P作x軸的垂線,垂足為M;過A作單位圓的切線,這條切線必平行于y軸(垂直于同一條直線的兩直線平行),設(shè)它與角α的終邊或其反向延長線交于點T. 顯然,線段OM的長度為|x|,線段MP的長度為|y|,它們都只能取非負(fù)值. 當(dāng)角α的終邊不在坐標(biāo)軸上時,我們可以把OM、MP都看作帶有方向的線段。 如果x>0,OM與x軸同向,規(guī)定此時OM具有正值x;如果x<0,OM與x軸正向相反(即反向),規(guī)定此時OM具有負(fù)值x,所以不論哪一種情況,都有OM=x. 如果y>0,把MP看作與y軸同向,規(guī)定此時MP具有正值y;如果y<0,把MP看作與y軸反向,規(guī)定此時MP具有負(fù)值y,所以不論哪一種情況,都有MP=y(tǒng),由上面所述,OM、MP都是帶有方向的線段,這種被看作帶有方向的線段叫做有向線段(即規(guī)定了起點和終點),把它們的長度添上正號或負(fù)號,這樣所得的數(shù),叫做有向線段的數(shù)量,記為AB 于是,根據(jù)正弦、余弦函數(shù)的定義,就有 sinα= = =y(tǒng)=MP cosα= ==x=OM 這兩條與單位圓有關(guān)的有向線段MP、OM分別叫做角α的正弦線、余弦線. 類似地,我們把OA、AT也看作有向線段,那么根據(jù)正切函數(shù)的定義和相似三角形的 知識,就有tanα= ==AT 這條與單位圓有關(guān)的有向線段AT,叫做角α的正切線. 注意:(1)當(dāng)角α的終邊在y軸上時,余弦線變成一個點,正切線不存在. (2)當(dāng)角α的終邊在x軸上時,正弦線、正切線都變成點. (3)正弦線、余弦線、正切線都是與單位圓有關(guān)的有向線段,所以作某角的三角函數(shù)線時,一定要先作單位圓. (4)線段有兩個端點,在用字母表示正弦線、余弦線、正切線時,要先寫起點字母,再寫終點字母,不能顛倒;或者說,含原點的線段,以原點為起點,不含原點的線段,以此線段與x軸的公共點為起點. (5)三種有向線段的正負(fù)與坐標(biāo)軸正反方向一致,三種有向線段的數(shù)量與三種三角函數(shù)值相同. 正弦線、余弦線、正切線統(tǒng)稱為三角函數(shù)線. Ⅲ.例題分析 [例1]已知角α的終邊經(jīng)過點P(2,-3)(如圖),求α的三個三角函數(shù)值. 解:∵x=2,y=-3 ∴r== 于是sinα= ==- cosα=== tanα= =- [例2]求下列各角的三個三角函數(shù)值. (1)0 (2)π (3) 解:(1)因為當(dāng)α=0時,x=r,y=0,所以 sin0=0 cos0=1 tan0=0 (2)因為當(dāng)α=π時,x=-r,y=0,所以 sinπ=0 cosπ=-1 tanπ=0 (3)因為當(dāng)α=時,x=0,y=-r,所以 sin=-1 cos=0 tan不存在 Ⅳ.課堂練習(xí) 課本P16練習(xí) 1、2、3. Ⅴ.課時小結(jié) 任意角三角函數(shù)的定義,正弦函數(shù)、余弦函數(shù)、正切函數(shù)的定義域,單位圓的概念,有向線段的定義,正弦線、余弦線、正切線的定義,這三種三角函數(shù)線都是一些特殊的有向線段,其之所以特殊,一是其與坐標(biāo)軸平行(或重合),二是其與單位圓有關(guān),這些線段分別都可以表示相應(yīng)三角函數(shù)的值,所以說它們是三角函數(shù)的一種幾何表示. Ⅵ.課后作業(yè) 課本P23習(xí)題 1、2、3. 任意角的三角函數(shù)(一) 1.sin1、cos1、tan1的大小關(guān)系是 ( ) A.tan1<cos1<sin1 B.sin1<cos1<tan1 C.sin1<tan1<cos1 D.cos1<sin1<tan1 2.已知角α的正弦線和余弦線是方向一正一反、長度相等的有向線段,則α的終邊在( ) A.第一象限角平分線上 B.第二象限角平分線上 C.第二或第四象限角平分線上 D.第一或第三象限角平分線上 3.如果<θ<,那么下列各式中正確的是 ( ) A.cosθ<tanθ<sinθ B.sinθ<cosθ<tanθ C.tanθ<sinθ<cosθ D.cosθ<sinθ<tanθ 4.若點P(-3,y)是角α終邊上一點,且sinα=-,則y的值是________. 5.已知角α終邊上一點P的坐標(biāo)是(4a,3a)(a<0),則sinα=_________,cosα=_________,tanα=_________. 6.如果角α的頂點在坐標(biāo)原點,始邊與x軸的正半軸重合.終邊在函數(shù)y=-3x(x≤0)的圖象上,則sinα=_________,cosα=_________,tanα=_________. 7.已知角θ的終邊上一點P的坐標(biāo)是(x,-2)(x≠0),且cosθ=,求sinθ和tanθ的值. 8.已知角α終邊上有一點P(x,1)(x≠0),且cosα=x,求sinα的值. 9.已知θ是第一象限角,試?yán)萌呛瘮?shù)線證明:sinα+cosα>1. 任意角的三角函數(shù)(一)答案 1.D 2.C 3.D 4.- 5.- - 6. - -3 7.已知角θ的終邊上一點P的坐標(biāo)是(x,-2)(x≠0),且cosθ=,求sinθ和tanθ的值. 分析:r=,又cosθ==,即rx=3x 由于x≠0,∴r=3 ∴x2+4=9 x2=5,x=. 當(dāng)x=時,P點的坐標(biāo)是(,-2). sinθ= ==-,tanθ= ==-. 當(dāng)x=-時,P點的坐標(biāo)是(-,-2) sinθ= ==-,tanθ= ==. 答案:當(dāng)x=時,sinθ=-,tanθ=- 當(dāng)x=-時,sinθ=-,tanθ= 8.已知角α終邊上有一點P(x,1)(x≠0),且cosα=x,求sinα的值. 分析:由任意角的三角函數(shù)的定義 cosα==x,∴r=2 ∴sinα==. 另:用x、1表示出r,即r= 再由cosα=x,求出x. 進(jìn)一步求得sinα也可. 9.已知θ是第一象限角,試?yán)萌呛瘮?shù)線證明:sinα+cosα>1. 提示:作出單位圓以及正弦線、余弦線,利用三角形兩邊和大于第三邊可證得.- 1.請仔細(xì)閱讀文檔,確保文檔完整性,對于不預(yù)覽、不比對內(nèi)容而直接下載帶來的問題本站不予受理。
- 2.下載的文檔,不會出現(xiàn)我們的網(wǎng)址水印。
- 3、該文檔所得收入(下載+內(nèi)容+預(yù)覽)歸上傳者、原創(chuàng)作者;如果您是本文檔原作者,請點此認(rèn)領(lǐng)!既往收益都?xì)w您。
下載文檔到電腦,查找使用更方便
9.9 積分
下載 |
- 配套講稿:
如PPT文件的首頁顯示word圖標(biāo),表示該PPT已包含配套word講稿。雙擊word圖標(biāo)可打開word文檔。
- 特殊限制:
部分文檔作品中含有的國旗、國徽等圖片,僅作為作品整體效果示例展示,禁止商用。設(shè)計者僅對作品中獨創(chuàng)性部分享有著作權(quán)。
- 關(guān) 鍵 詞:
- 2019-2020年高中數(shù)學(xué) 任意角的三角函數(shù) 教案 蘇教版必修4 2019 2020 年高 數(shù)學(xué) 任意 三角函數(shù) 蘇教版 必修
鏈接地址:http://m.zhongcaozhi.com.cn/p-2565780.html