2019-2020年高考數學一輪復習 不等式選講教案 理 選修4-5.doc
《2019-2020年高考數學一輪復習 不等式選講教案 理 選修4-5.doc》由會員分享,可在線閱讀,更多相關《2019-2020年高考數學一輪復習 不等式選講教案 理 選修4-5.doc(7頁珍藏版)》請在裝配圖網上搜索。
2019-2020年高考數學一輪復習 不等式選講教案 理 選修4-5 【xx年高考會這樣考】 1.考查含絕對值不等式的解法. 2.考查有關不等式的證明. 3.利用不等式的性質求最值. 【復習指導】 本講復習時,緊緊抓住含絕對值不等式的解法,以及利用重要不等式對一些簡單的不等式進行證明.該部分的復習以基礎知識、基本方法為主,不要刻意提高難度,以課本難度為宜,關鍵是理解有關內容本質. 基礎梳理 1.含有絕對值的不等式的解法 (1)|f(x)|>a(a>0)?f(x)>a或f(x)<-a; (2)|f(x)|<a(a>0)?-a<f(x)<a; (3)對形如|x-a|+|x-b|≤c,|x-a|+|x-b|≥c的不等式,可利用絕對值不等式的幾何意義求解. 2.含有絕對值的不等式的性質 |a|-|b|≤|ab|≤|a|+|b|. 3.基本不等式 定理1:設a,b∈R,則a2+b2≥2ab.當且僅當a=b時,等號成立. 定理2:如果a、b為正數,則≥,當且僅當a=b時,等號成立. 定理3:如果a、b、c為正數,則≥,當且僅當a=b=c時,等號成立. 定理4:(一般形式的算術-幾何平均值不等式)如果a1、a2、…、an為n個正數,則≥,當且僅當a1=a2=…=an時,等號成立. 5.不等式的證明方法 證明不等式常用的方法有比較法、綜合法、分析法、反證法、放縮法等. 雙基自測 1.不等式1<|x+1|<3的解集為________. 答案 (-4,-2)∪(0,2) 2.不等式|x-8|-|x-4|>2的解集為________. 解析 令:f(x)=|x-8|-|x-4|= 當x≤4時,f(x)=4>2; 當4<x≤8時,f(x)=-2x+12>2,得x<5, ∴4<x<5; 當x>8時,f(x)=-4>2不成立. 故原不等式的解集為:{x|x<5}. 答案 {x|x<5} 3.已知關于x的不等式|x-1|+|x|≤k無解,則實數k的取值范圍是________. 解析 ∵|x-1|+|x|≥|x-1-x|=1,∴當k<1時,不等式|x-1|+|x|≤k無解,故k<1. 答案 k<1 4.若不等式|3x-b|<4的解集中的整數有且僅有1,2,3,則b的取值范圍為________. 解析 由|3x-b|<4,得<x<, 即解得5<b<7. 答案 (5,7) 5.(xx南京模擬)如果關于x的不等式|x-a|+|x+4|≥1的解集是全體實數,則實數a的取值范圍是________. 解析 在數軸上,結合實數絕對值的幾何意義可知a≤-5或a≥-3. 答案 (-∞,-5]∪[-3,+∞) 考向一 含絕對值不等式的解法 【例1】?設函數f(x)=|2x+1|-|x-4|. (1)解不等式f(x)>2; (2)求函數y=f(x)的最小值. [審題視點] 第(1)問:采用分段函數解不等式;第(2)問:畫出函數f(x)的圖象可求f(x)的最小值. 解 (1)f(x)=|2x+1|-|x-4|= 當x<-時,由f(x)=-x-5>2得,x<-7.∴x<-7; 當-≤x<4時,由f(x)=3x-3>2,得x>, ∴<x<4; 當x≥4時,由f(x)=x+5>2,得x>-3,∴x≥4. 故原不等式的解集為 . (2)畫出f(x)的圖象如圖: ∴f(x)min=-. (1)用零點分段法解絕對值不等式的步驟:①求零點;②劃區(qū)間、去絕對值號;③分別解去掉絕對值的不等式;④取每個結果的并集,注意在分段時不要遺漏區(qū)間的端點值. (2)用圖象法,數形結合可以求解含有絕對值的不等式,使得代數問題幾何化,即通俗易懂,又簡潔直觀,是一種較好的方法. 【訓練1】 設函數f(x)=|x-1|+|x-a|. (1)若a=-1,解不等式f(x)≥3; (2)如果?x∈R,f(x)≥2,求a的取值范圍. 解 (1)當a=-1時,f(x)=|x-1|+|x+1|, f(x)= 作出函數f(x)=|x-1|+|x+1|的圖象. 由圖象可知,不等式的解集為. (2)若a=1,f(x)=2|x-1|,不滿足題設條件; 若a<1,f(x)= f(x)的最小值為1-a. 若a>1,f(x)= f(x)的最小值為a-1. ∴對于?x∈R,f(x)≥2的充要條件是|a-1|≥2, ∴a的取值范圍是(-∞,-1]∪[3,+∞). 考向二 不等式的證明 【例2】?證明下列不等式: (1)設a≥b>0,求證:3a3+2b3≥3a2b+2ab2; (2)a2+4b2+9c2≥2ab+3ac+6bc; (3)a6+8b6+c6≥2a2b2c2. [審題視點] (1)作差比較;(2)綜合法;(3)利用柯西不等式. 證明 (1)3a3+2b3-(3a2b+2ab2)=3a2(a-b)-2b2(a-b) =(a-b)(3a2-2b2). ∵a≥b>0,∴a-b≥0,3a2-2b2>0. ∴(a-b)(3a2-2b2)≥0. ∴3a2+2b3≥3a2b+2ab2. (2)∵a2+4b2≥2=4ab, a2+9c2≥2=6ac, 4b2+9c2≥2=12bc, ∴2a2+8b2+18c2≥4ab+6ac+12bc, ∴a2+4b2+9c2≥2ab+3ac+6bc. (3)a6+8b6+c6≥3 =3a2b2c2=2a2b2c2, ∴a6+8b6+c6≥2a2b2c2. (1)作差法應該是證明不等式的常用方法.作差法證明不等式的一般步驟是:①作差;②分解因式;③與0比較;④結論.關鍵是代數式的變形能力. (2)注意觀察不等式的結構,利用基本不等式或柯西不等式證明. 【訓練2】 (xx遼寧)已知a,b,c均為正數,證明:a2+b2+c2+2≥6,并確定a,b,c為何值時,等號成立. 證明 法一 因為a,b,c均為正數,由基本不等式得,a2+b2+c2≥3(abc),① ++≥3(abc)-, 所以2≥9(abc)-,② 故a2+b2+c2+2≥3(abc)+9(abc)-. 又3(abc)+9(abc)-≥2=6,③ 所以原不等式成立. 當且僅當a=b=c時,①式和②式等號成立. 當且僅當3(abc)=9(abc)-時,③式等號成立. 故當且僅當a=b=c=3時,原不等式等號成立. 法二 因為a,b,c均為正數,由基本不等式得a2+b2≥2ab,b2+c2≥2bc,c2+a2≥2ac.所以a2+b2+c2≥ab+bc+ac.① 同理++≥++,② 故a2+b2+c2+2≥ab+bc+ac+++≥6.③ 所以原不等式成立. 當且僅當a=b=c時,①式和②式等號成立,當且僅當a=b=c,(ab)2=(bc)2=(ac)2=3時,③式等號成立.故當且僅當a=b=c=3時,原不等式等號成立. 考向三 利用基本不等式或柯西不等式求最值 【例3】?已知a,b,c∈R+,且a+b+c=1,求++的最大值. [審題視點] 先將(++)平方后利用基本不等式;還可以利用柯西不等式求解. 解 法一 利用基本不等式 ∵(++)2=(3a+1)+(3b+1)+(3c+1)+2+2+2≤(3a+1)+(3b+1)+(3c+1)+[(3a+1)+(3b+1)]+[(3b+1)+(3c+1)]+[(3a+1)+(3c+1)] =3[(3a+1)+(3b+1)+(3c+1)]=18, ∴++≤3, ∴(++)max=3. 法二 利用柯西不等式 ∵(12+12+12)[()2+()2+()2]≥(1+1+1)2 ∴(++)2≤3[3(a+b+c)+3]. 又∵a+b+c=1,∴(++)2≤18, ∴++≤3. 當且僅當==時,等號成立. ∴(++)max=3. 利用基本不等式或柯西不等式求最值時,首先要觀察式子特點,構造出基本不等式或柯西不等式的結構形式,其次要注意取得最值的條件是否成立. 【訓練3】 已知a+b+c=1,m=a2+b2+c2,求m的最小值. 解 法一 ∵a+b+c=1, ∴a2+b2+c2+2ab+2bc+2ac=1, 又∵a2+b2≥2ab,a2+c2≥2ac,b2+c2≥2bc, ∴2(a2+b2+c2)≥2ab+2ac+2bc, ∴1=a2+b2+c2+2ab+2bc+2ac≤3(a2+b2+c2). ∴a2+b2+c2≥. 當且僅當a=b=c時,取等號,∴mmin=. 法二 利用柯西不等式 ∵(12+12+12)(a2+b2+c2)≥(1a+1b+1c)=a+b+c=1. ∴a2+b2+c2≥,當且僅當a=b=c時,等號成立. ∴mmin= 如何求解含絕對值不等式的綜合問題 從近兩年的新課標高考試題可以看出,高考對《不等式選講》的考查難度要求有所降低,重點考查含絕對值不等式的解法(可能含參)或以函數為背景證明不等式,題型為填空題或解答題. 【示例】? (本題滿分10分)(xx新課標全國)設函數f(x)=|x-a|+3x,其中a>0. (1)當a=1時,求不等式f(x)≥3x+2的解集; (2)若不等式f(x)≤0的解集為{x|x≤-1},求a的值. 第(2)問解不等式|x-a|+3x≤0的解集,結果用a表示,再由{x|x≤-1}求a. [解答示范] (1)當a=1時,f(x)≥3x+2可化為|x-1|≥2. 由此可得x≥3或x≤-1. (3分) 故不等式f(x)≥3x+2的解集為{x|x≥3或x≤-1}.(5分) (2)由f(x)≤0得,|x-a|+3x≤0. 此不等式化為不等式組或 即或(8分) 因為a>0,所以不等式組的解集為. 由題設可得-=-1,故a=2.(10分) 本題綜合考查了含絕對值不等式的解法,屬于中檔題.解含絕對值的不等式主要是通過同解變形去掉絕對值符號轉化為一元一次和一元二次不等式(組)進行求解.含有多個絕對值符號的不等式,一般可用零點分段法求解,對于形如|x-a|+|x-b|>m或|x-a|+|x-b|<m(m為正常數),利用實數絕對值的幾何意義求解較簡便. 【試一試】 (xx遼寧)已知函數f(x)=|x-2|-|x-5|. (1)證明:-3≤f(x)≤3; (2)求不等式f(x)≥x2-8x+15的解集. [嘗試解答] (1)f(x)=|x-2|-|x-5|= 當2<x<5時,-3<2x-7<3.所以-3≤f(x)≤3. (2)由(1)可知,當x≤2時,f(x)≥x2-8x+15的解集為空集;當2<x<5時,f(x)≥x2-8x+15的解集為{x|5-≤x<5}; 當x≥5時,f(x)≥x2-8x+15的解集為{x|5≤x≤6}. 綜上,不等式f(x)≥x2-8x+15的解集為{x|5-≤x≤6}.- 配套講稿:
如PPT文件的首頁顯示word圖標,表示該PPT已包含配套word講稿。雙擊word圖標可打開word文檔。
- 特殊限制:
部分文檔作品中含有的國旗、國徽等圖片,僅作為作品整體效果示例展示,禁止商用。設計者僅對作品中獨創(chuàng)性部分享有著作權。
- 關 鍵 詞:
- 2019-2020年高考數學一輪復習 不等式選講教案 選修4-5 2019 2020 年高 數學 一輪 復習 不等式 教案 選修
裝配圖網所有資源均是用戶自行上傳分享,僅供網友學習交流,未經上傳用戶書面授權,請勿作他用。
鏈接地址:http://m.zhongcaozhi.com.cn/p-2731493.html