高考數(shù)學(xué)一輪復(fù)習(xí) 第七章 立體幾何與空間向量 第7節(jié) 立體幾何中的向量方法 第一課時練習(xí) 理 新人教A版

上傳人:仙*** 文檔編號:38097037 上傳時間:2021-11-05 格式:DOC 頁數(shù):8 大?。?74KB
收藏 版權(quán)申訴 舉報 下載
高考數(shù)學(xué)一輪復(fù)習(xí) 第七章 立體幾何與空間向量 第7節(jié) 立體幾何中的向量方法 第一課時練習(xí) 理 新人教A版_第1頁
第1頁 / 共8頁
高考數(shù)學(xué)一輪復(fù)習(xí) 第七章 立體幾何與空間向量 第7節(jié) 立體幾何中的向量方法 第一課時練習(xí) 理 新人教A版_第2頁
第2頁 / 共8頁
高考數(shù)學(xué)一輪復(fù)習(xí) 第七章 立體幾何與空間向量 第7節(jié) 立體幾何中的向量方法 第一課時練習(xí) 理 新人教A版_第3頁
第3頁 / 共8頁

下載文檔到電腦,查找使用更方便

10 積分

下載資源

還剩頁未讀,繼續(xù)閱讀

資源描述:

《高考數(shù)學(xué)一輪復(fù)習(xí) 第七章 立體幾何與空間向量 第7節(jié) 立體幾何中的向量方法 第一課時練習(xí) 理 新人教A版》由會員分享,可在線閱讀,更多相關(guān)《高考數(shù)學(xué)一輪復(fù)習(xí) 第七章 立體幾何與空間向量 第7節(jié) 立體幾何中的向量方法 第一課時練習(xí) 理 新人教A版(8頁珍藏版)》請在裝配圖網(wǎng)上搜索。

1、 第七章 第7節(jié) 立體幾何中的向量方法 第一課時 [基礎(chǔ)訓(xùn)練組] 1.(導(dǎo)學(xué)號14577704)若直線l的一個方向向量為a=(2,5,7),平面α的一個法向量為u=(1,1,-1),則(  ) A.l∥α或l?α       B.l⊥α C.l?α D.l與α斜交 解析:A [由條件知au=21+51+7(-1)=0,所以a⊥u,故l∥α或l?α.故選A.] 2.(導(dǎo)學(xué)號14577705)若平面α,β的法向量分別為n1=(2,-3,5),n2=(-3,1,-4),則(  ) A.α∥β B.α⊥β C.α,β相交但不垂直 D.以上均不正確 解析:C [∵n1

2、n2=2(-3)+(-3)1+5(-4)≠0,∴n1與n2不垂直,∴α與β相交但不垂直.] 3.(導(dǎo)學(xué)號14577706)設(shè)平面α的法向量為(1,2,-2),平面β的法向量為(-2,-4,k),若α∥β,則k等于(  ) A.2 B.-4 C.4 D.-2 解析:C [因為α∥β,所以==,所以k=4.] 4.(導(dǎo)學(xué)號14577707)如圖所示,在正方體ABCD-A1B1C1D1中,O是底面正方形ABCD的中心,M是D1D的中點(diǎn),N是A1B1的中點(diǎn),則直線NO、AM的位置關(guān)系是(  ) A.平行 B.相交 C.異面垂直 D.異面不垂直 解析:C [建立坐標(biāo)系如圖,設(shè)

3、正方體的棱長為2,則A(2,0,0),M(0,0,1),O(1,1,0),N(2,1,2),=(-1,0,-2),=(-2,0,1),=0,則直線NO、AM的位置關(guān)系是異面垂直.] 5.(導(dǎo)學(xué)號14577708)已知=(1,5,-2),=(3,1,z),若⊥,=(x-1,y,-3),且BP⊥平面ABC,則實(shí)數(shù)x,y,z分別為(  ) A.,-,4 B.,-,4 C.,-2,4 D.4,,-15 解析:B [∵⊥,∴=0,即3+5-2z=0,得z=4. BP⊥平面ABC,∴BP⊥AB,BP⊥BC, 又=(3,1,4),則解得] 6.(導(dǎo)學(xué)號14577709)已知平面α和平

4、面β的法向量分別為a=(1,1,2),b=(x,-2,3),且α⊥β,則x= ________ . 解析:由α⊥β知ab=0,即x+1(-2)+23=0,解得x=-4. 答案:-4 7.(導(dǎo)學(xué)號14577710)在空間直角坐標(biāo)系中,點(diǎn)P(1,,),過點(diǎn)P作平面yOz的垂線PQ,則垂足Q的坐標(biāo)為 ________ . 解析:由題意知,點(diǎn)Q即為點(diǎn)P在平面yOz內(nèi)的射影, 所以垂足Q的坐標(biāo)為(0,,). 答案:(0,,) 8.(導(dǎo)學(xué)號14577711)(2018武漢市調(diào)研)已知平面α內(nèi)的三點(diǎn)A(0,0,1),B(0,1,0),C(1,0,0),平面β的一個法向量n=(-1,-1,-1)

5、,則不重合的兩個平面α與β的位置關(guān)系是 ________ . 解析:設(shè)平面α的法向量為m=(x,y,z), 由m=0,得x0+y-z=0?y=z, 由m=0,得x-z=0?x=z,取x=1, ∴m=(1,1,1),m=-n,∴m∥n,∴α∥β. 答案:α∥β 9.(導(dǎo)學(xué)號14577712)如圖所示,在四棱錐P-ABCD中,PC⊥平面ABCD,PC=2,在四邊形ABCD中,∠B=∠C=90,AB=4,CD=1,點(diǎn)M在PB上,PB=4PM,PB與平面ABCD成30的角.求證: (1)CM∥平面PAD; (2)平面PAB⊥平面PAD. 證明:(1)以C為坐標(biāo)原點(diǎn),CB為x軸,C

6、D為y軸,CP為z軸建立如圖所示的空間直角坐標(biāo)系C-xyz. ∵PC⊥平面ABCD, ∴∠PBC為PB與平面ABCD所成的角, ∴∠PBC=30, ∵PC=2,∴BC=2,PB=4, ∴D(0,1,0),B(2,0,0),A(2,4,0),P(0,0,2), M, ∴=(0,-1,2),=(2,3,0), =. (1)設(shè)n=(x,y,z)為平面PAD的一個法向量, 由即 令y=2,得n=(-,2,1). ∴n=-+20+1=0, ∴n⊥.又CM?平面PAD, ∴CM∥平面PAD. (2)如圖,取AP的中點(diǎn)E,連接BE, 則E(,2,1),=(-,2,1)

7、. ∵PB=AB,∴BE⊥PA. 又∵=(-,2,1)(2,3,0)=0, ∴⊥,∴BE⊥DA. 又PA∩DA=A,∴BE⊥平面PAD. 又∵BE?平面PAB, ∴平面PAB⊥平面PAD. 10.(導(dǎo)學(xué)號14577713)已知正方體ABCD-A1B1C1D1的棱長為3,點(diǎn)E在AA1上,點(diǎn)F在CC1上,且AE=FC1=1. (1)求證:E,B,F(xiàn),D1四點(diǎn)共面; (2)若點(diǎn)G在BC上,BG=,點(diǎn)M在BB1上,GM⊥BF,垂足為H,求證:EM⊥平面BCC1B1. 證明:(1)建立如圖所示的空間直角坐標(biāo)系,則B(0,0,0),E(3,0,1),F(xiàn)(0,3,2),D1(3,3,

8、3), 則=(3,0,1),=(0,3,2),=(3,3,3). 所以=+.故,,共面. 又它們有公共點(diǎn)B,所以E,B,F(xiàn),D1四點(diǎn)共面. (2)設(shè)M(0,0,z0),G, 則=, 而=(0,3,2), 由題設(shè)得=-3+z02=0, 得z0=1.故M(0,0,1), 有=(3,0,0). 又=(0,0,3),=(0,3,0), 所以=0,=0, 從而ME⊥BB1,ME⊥BC.又BB1∩BC=B. 故ME⊥平面BCC1B1. [能力提升組] 11.(導(dǎo)學(xué)號14577714)如圖,在長方體ABCD-A1B1C1D1中,AB=2,AA1=,AD=2,P為C1D1的中

9、點(diǎn),M為BC的中點(diǎn).則AM與PM的位置關(guān)系為(  ) A.平行 B.異面 C.垂直 D.以上都不對 解析:C [以D點(diǎn)為原點(diǎn),分別以DA,DC,DD1所在直線為x,y,z軸,建立如圖所示的空間直角坐標(biāo)系D-xyz,依題意,可得,D(0,0,0),P(0,1,),C(0,2,0),A(2,0,0),M(,2,0). ∴=(,2,0)-(0,1,)=(,1,-),=(,2,0)-(2,0,0)=(-,2,0),∴=(,1,-)(-,2,0)=0,即⊥,∴AM⊥PM.] 12.如圖,正方形ABCD與矩形ACEF所在平面互相垂直,AB=,AF=1,M在EF上且AM∥平面BDE,則

10、M點(diǎn)的坐標(biāo)為(  ) A.(1,1,1) B. C. D. 解析:C [由選項特點(diǎn),設(shè)M(λ,λ,1),又A(,,0),D(,0,0),B(0,,0),E(0,0,1),則=(-,0,1),=(0,-,1),=(λ-,λ-,1). 設(shè)平面BDE的法向量n=(x,y,z),則 即 不妨取z=,則n=(1,1,), 由于AM∥平面BDE,所以⊥n, 即n=0,所以λ-+λ-+=0,解得λ=, 即M點(diǎn)坐標(biāo)為.故選C.] 13.(導(dǎo)學(xué)號14577715)如圖,在正方體ABCD-A1B1C1D1中,棱長為a,M、N分別為A1B和AC上的點(diǎn),A1M=AN=,則MN與平面BB

11、1C1C的位置關(guān)系是 ________ . 解析:∵正方體棱長為a,A1M=AN=, ∴=,=, ∴=++ =++ =(+)++(+) =+. 又∵是平面B1BCC1的法向量, ∴==0, ∴⊥.又∵M(jìn)N?平面B1BCC1,∴MN∥平面B1BCC1. 答案:平行 14.(導(dǎo)學(xué)號14577716)在四棱錐P-ABCD中,PD⊥底面ABCD,底面ABCD為正方形,PD=DC,E,F(xiàn)分別是AB,PB的中點(diǎn). (1)求證:EF⊥CD; (2)在平面PAD內(nèi)是否存在一點(diǎn)G,使GF⊥平面PCB?若存在,求出點(diǎn)G的坐標(biāo);若不存在,請說明理由. 解:(1)證明:如圖,以DA,D

12、C,DP所在直線分別為x軸、y軸、z軸建立空間直角坐標(biāo)系, 設(shè)AD=a,則D(0,0,0),A(a,0,0),B(a,a,0),C(0,a,0),E,P(0,0,a),F(xiàn), =,=(0,a,0). ∵=0,∴⊥,即EF⊥CD. (2)假設(shè)存在滿足條件的點(diǎn)G, 設(shè)G(x,0,z),則=, 若使GF⊥平面PCB, 則由=(a,0,0) =a=0,得x=; 由=(0,-a,a) =+a=0,得z=0. ∴點(diǎn)G的坐標(biāo)為, 即存在滿足條件的點(diǎn)G,且點(diǎn)G為AD的中點(diǎn). 6EDBC3191F2351DD815FF33D4435F3756EDBC3191F2351DD815FF33D4435F3756EDBC3191F2351DD815FF33D4435F3756EDBC3191F2351DD815FF33D4435F3756EDBC3191F2351DD815FF33D4435F3756EDBC3191F2351DD815FF33D4435F375

展開閱讀全文
溫馨提示:
1: 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
2: 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
3.本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
5. 裝配圖網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

相關(guān)資源

更多
正為您匹配相似的精品文檔
關(guān)于我們 - 網(wǎng)站聲明 - 網(wǎng)站地圖 - 資源地圖 - 友情鏈接 - 網(wǎng)站客服 - 聯(lián)系我們

copyright@ 2023-2025  zhuangpeitu.com 裝配圖網(wǎng)版權(quán)所有   聯(lián)系電話:18123376007

備案號:ICP2024067431-1 川公網(wǎng)安備51140202000466號


本站為文檔C2C交易模式,即用戶上傳的文檔直接被用戶下載,本站只是中間服務(wù)平臺,本站所有文檔下載所得的收益歸上傳人(含作者)所有。裝配圖網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對上載內(nèi)容本身不做任何修改或編輯。若文檔所含內(nèi)容侵犯了您的版權(quán)或隱私,請立即通知裝配圖網(wǎng),我們立即給予刪除!