安徽省長豐縣高中數(shù)學 第三章 導數(shù)及其應用 3.1 變化率與導數(shù) 3.1.1 變化率問題教案 新人教A版選修11

上傳人:仙*** 文檔編號:39186479 上傳時間:2021-11-10 格式:DOC 頁數(shù):5 大小:102KB
收藏 版權(quán)申訴 舉報 下載
安徽省長豐縣高中數(shù)學 第三章 導數(shù)及其應用 3.1 變化率與導數(shù) 3.1.1 變化率問題教案 新人教A版選修11_第1頁
第1頁 / 共5頁
安徽省長豐縣高中數(shù)學 第三章 導數(shù)及其應用 3.1 變化率與導數(shù) 3.1.1 變化率問題教案 新人教A版選修11_第2頁
第2頁 / 共5頁
安徽省長豐縣高中數(shù)學 第三章 導數(shù)及其應用 3.1 變化率與導數(shù) 3.1.1 變化率問題教案 新人教A版選修11_第3頁
第3頁 / 共5頁

下載文檔到電腦,查找使用更方便

10 積分

下載資源

還剩頁未讀,繼續(xù)閱讀

資源描述:

《安徽省長豐縣高中數(shù)學 第三章 導數(shù)及其應用 3.1 變化率與導數(shù) 3.1.1 變化率問題教案 新人教A版選修11》由會員分享,可在線閱讀,更多相關《安徽省長豐縣高中數(shù)學 第三章 導數(shù)及其應用 3.1 變化率與導數(shù) 3.1.1 變化率問題教案 新人教A版選修11(5頁珍藏版)》請在裝配圖網(wǎng)上搜索。

1、 3.1.1變化率問題 項目 內(nèi)容 課題 (共 1 課時) 修改與創(chuàng)新 教學 目標 1.理解平均變化率的概念; 2.了解平均變化率的幾何意義; 3.會求函數(shù)在某點處附近的平均變化率 教學重、 難點 教學重點:平均變化率的概念、函數(shù)在某點處附近的平均變化率; 教學難點:平均變化率的概念. 教學 準備 多媒體課件 教學過程 一、導入新課: 為了描述現(xiàn)實世界中運動、過程等變化著的現(xiàn)象,在數(shù)學中引入了函數(shù),隨著對函數(shù)的研究,產(chǎn)生了微積分,微積分的創(chuàng)立以自然科學中四類問題的處理直接相關: 一、已知物體運動的路程作為時間的函數(shù),求物體

2、在任意時刻的速度與加速度等; 二、求曲線的切線; 三、求已知函數(shù)的最大值與最小值; 四、求長度、面積、體積和重心等。 導數(shù)是微積分的核心概念之一它是研究函數(shù)增減、變化快慢、最大(?。┲档葐栴}最一般、最有效的工具。 導數(shù)研究的問題即變化率問題:研究某個變量相對于另一個變量變化的快慢程度. 二、講授新課: (一)問題提出 問題1氣球膨脹率 我們都吹過氣球回憶一下吹氣球的過程,可以發(fā)現(xiàn),隨著氣球內(nèi)空氣容量的增加,氣球的半徑增加越來越慢.從數(shù)學角度,如何描述這種現(xiàn)象呢? n 氣球的體積V(單位:L)與半徑r(單位:dm)之間的函數(shù)關系是 n 如果將半徑r表示為體積V的函數(shù)

3、,那么 分析: , 1 當V從0增加到1時,氣球半徑增加了 氣球的平均膨脹率為 2 當V從1增加到2時,氣球半徑增加了 t h o 氣球的平均膨脹率為 可以看出,隨著氣球體積逐漸增大,它的平均膨脹率逐漸變小了. 思考:當空氣容量從V1增加到V2時,氣球的平均膨脹率是多少? 問題2 高臺跳水 在高臺跳水運動中,運動員相對于水面的高度h(單位:m)與起跳后的時間t(單位:s)存在函數(shù)關系h(t)= -4. 9t2+6.5t+10.如何用運動員在某些時間段內(nèi)的平均速度粗略地描述其運動狀態(tài)? 思考計算:和的平均速度 在這段時間里,; 在這段時間里, 探究:計算運動

4、員在這段時間里的平均速度,并思考以下問題: ⑴運動員在這段時間內(nèi)使靜止的嗎? ⑵你認為用平均速度描述運動員的運動狀態(tài)有什么問題嗎? 探究過程:如圖是函數(shù)h(t)= -4.9t2+6.5t+10的圖像,結(jié)合圖形可知,, 所以, 雖然運動員在這段時間里的平均速度為,但實際情況是運動員仍然運動,并非靜止,可以說明用平均速度不能精確描述運動員的運動狀態(tài). (二)平均變化率概念: 1.上述問題中的變化率可用式子 表示, 稱為函數(shù)f(x)從x1到x2的平均變化率 2.若設, (這里看作是對于x1的一個“增量”可用x1+代替x2,同樣) 3. 則平均變化率為 思考:觀察函數(shù)f(x)的

5、圖象 x2 △x= x2-x1 平均變化率表示什么? f(x2) y △y =f(x2)-f(x1) f(x1) 直線AB的斜率 x1 x O 三.典例分析 例1.已知函數(shù)f(x)=的圖象上的一點及臨近一點,則 . 解:, ∴ 例2. 求在附近的平均變化率。 解:,所以 所以在附近的平均變化率為 四.課堂練習 1.質(zhì)點運動規(guī)律為,則在時間中相應的平均速度為 . 2.物體按照s(t)=3t2+t+4的規(guī)律作直線運動,求在4s附近的平均變化率. 3.過曲

6、線y=f(x)=x3上兩點P(1,1)和Q (1+Δx,1+Δy)作曲線的割線,求出當Δx=0.1時割線的斜率. 課堂小結(jié): 1.平均變化率的概念 2.函數(shù)在某點處附近的平均變化率 布置作業(yè): P.79 1,2 板書設計 3.1.1變化率問題 問題1 氣球膨脹率 問題2 高臺跳水 平均變化率的概念 表示, 稱為函數(shù)f(x)從x1到x2的平均變化率 設, 則平均變化率為 例1 例2 教學反思 以實例引入平均變化率的概念,利于學生對此概念的理解和掌握。在給出平均變化率概念以后,再結(jié)合實例說明可以取正,也可以取負。 為導數(shù)幾何意義的學習做鋪墊,再畫圖讓學生分析平均變化率的幾何解釋。 我國經(jīng)濟發(fā)展進入新常態(tài),需要轉(zhuǎn)變經(jīng)濟發(fā)展方式,改變粗放式增長模式,不斷優(yōu)化經(jīng)濟結(jié)構(gòu),實現(xiàn)經(jīng)濟健康可持續(xù)發(fā)展進區(qū)域協(xié)調(diào)發(fā)展,推進新型城鎮(zhèn)化,推動城鄉(xiāng)發(fā)展一體化因:我國經(jīng)濟發(fā)展還面臨區(qū)域發(fā)展不平衡、城鎮(zhèn)化水平不高、城鄉(xiāng)發(fā)展不平衡不協(xié)調(diào)等現(xiàn)實挑戰(zhàn)。

展開閱讀全文
溫馨提示:
1: 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
2: 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
3.本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
5. 裝配圖網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

相關資源

更多
正為您匹配相似的精品文檔
關于我們 - 網(wǎng)站聲明 - 網(wǎng)站地圖 - 資源地圖 - 友情鏈接 - 網(wǎng)站客服 - 聯(lián)系我們

copyright@ 2023-2025  zhuangpeitu.com 裝配圖網(wǎng)版權(quán)所有   聯(lián)系電話:18123376007

備案號:ICP2024067431-1 川公網(wǎng)安備51140202000466號


本站為文檔C2C交易模式,即用戶上傳的文檔直接被用戶下載,本站只是中間服務平臺,本站所有文檔下載所得的收益歸上傳人(含作者)所有。裝配圖網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對上載內(nèi)容本身不做任何修改或編輯。若文檔所含內(nèi)容侵犯了您的版權(quán)或隱私,請立即通知裝配圖網(wǎng),我們立即給予刪除!