高等數(shù)學(xué)(上)(褚寶增陳兆斗主編)北京大學(xué)出版社出版導(dǎo)數(shù)概念

上傳人:仙*** 文檔編號:48077267 上傳時間:2022-01-01 格式:PPT 頁數(shù):27 大小:907.52KB
收藏 版權(quán)申訴 舉報 下載
高等數(shù)學(xué)(上)(褚寶增陳兆斗主編)北京大學(xué)出版社出版導(dǎo)數(shù)概念_第1頁
第1頁 / 共27頁
高等數(shù)學(xué)(上)(褚寶增陳兆斗主編)北京大學(xué)出版社出版導(dǎo)數(shù)概念_第2頁
第2頁 / 共27頁
高等數(shù)學(xué)(上)(褚寶增陳兆斗主編)北京大學(xué)出版社出版導(dǎo)數(shù)概念_第3頁
第3頁 / 共27頁

下載文檔到電腦,查找使用更方便

10 積分

下載資源

還剩頁未讀,繼續(xù)閱讀

資源描述:

《高等數(shù)學(xué)(上)(褚寶增陳兆斗主編)北京大學(xué)出版社出版導(dǎo)數(shù)概念》由會員分享,可在線閱讀,更多相關(guān)《高等數(shù)學(xué)(上)(褚寶增陳兆斗主編)北京大學(xué)出版社出版導(dǎo)數(shù)概念(27頁珍藏版)》請在裝配圖網(wǎng)上搜索。

1、第二章微積分學(xué)的創(chuàng)始人: 德國數(shù)學(xué)家 Leibniz 微分學(xué)導(dǎo)數(shù)導(dǎo)數(shù)描述函數(shù)變化快慢微分微分描述函數(shù)變化程度都是描述物質(zhì)運動的工具 (從微觀上研究函數(shù))導(dǎo)數(shù)與微分導(dǎo)數(shù)思想最早由法國數(shù)學(xué)家 Ferma 在研究極值問題中提出.英國數(shù)學(xué)家 Newton一、引例一、引例二、導(dǎo)數(shù)的定義二、導(dǎo)數(shù)的定義三、導(dǎo)數(shù)的幾何意義三、導(dǎo)數(shù)的幾何意義四、函數(shù)的可導(dǎo)性與連續(xù)性的關(guān)系四、函數(shù)的可導(dǎo)性與連續(xù)性的關(guān)系五、單側(cè)導(dǎo)數(shù)五、單側(cè)導(dǎo)數(shù)第一節(jié)第一節(jié)導(dǎo)數(shù)的概念導(dǎo)數(shù)的概念 第二章 sO一、一、 引例引例1. 變速直線運動的速度變速直線運動的速度設(shè)描述質(zhì)點運動位置的函數(shù)為)(tfs 則 到 的平均速度為0tt v)()(0tft

2、f0tt 而在 時刻的瞬時速度為0t lim0ttv)()(0tftf0tt 221tgs 自由落體運動0t)(0tf)(tft 2. 曲線的切線斜率曲線的切線斜率曲線)(:xfyCNT0 xM在 M 點處的切線x割線 M N 的極限位置 M T(當(dāng) 時)割線 M N 的斜率tan)()(0 xfxf0 xx 切線 MT 的斜率tanktanlim lim0 xxk)()(0 xfxf0 xx xy)(xfy CO兩個問題的共性共性:瞬時速度 lim0ttv)()(0tftf0tt 切線斜率 lim0 xxk)()(0 xfxf0 xx 所求量為函數(shù)增量與自變量增量之比的極限 .類似問題還有:

3、加速度角速度線密度電流強度是速度增量與時間增量之比的極限是轉(zhuǎn)角增量與時間增量之比的極限是質(zhì)量增量與長度增量之比的極限是電量增量與時間增量之比的極限變化率問題NT0 xMxxy)(xfy COsO0t)(0tf)(tft二、導(dǎo)數(shù)的定義二、導(dǎo)數(shù)的定義定義定義1 . 設(shè)函數(shù))(xfy 在點0 x0limxx00)()(xxxfxfxyx0lim)()(0 xfxfy0 xxx存在,)(xf并稱此極限為)(xfy 記作:;0 xxy; )(0 xf ;dd0 xxxy0d)(dxxxxf即0 xxy)(0 xf xyx0limxxfxxfx)()(lim000hxfhxfh)()(lim000則稱函數(shù)

4、若的某鄰域內(nèi)有定義 , 在點0 x處可導(dǎo)可導(dǎo), 在點0 x的導(dǎo)數(shù)導(dǎo)數(shù). 運動質(zhì)點的位置函數(shù))(tfs 在 時刻的瞬時速度0t lim0ttv)()(0tftf0tt 曲線)(:xfyC在 M 點處的切線斜率 lim0 xxk)()(0 xfxf0 xx )(0tf )(0 xf sO0t)(0tf)(tftNT0 xMxxy)(xfy CO0limxx00)()(xxxfxfxyx0lim)()(0 xfxfy0 xxx不存在, 就說函數(shù)在點 不可導(dǎo). 0 x若0lim,xyx 也稱)(xf在0 x若函數(shù)在開區(qū)間 I 內(nèi)每點都可導(dǎo),此時導(dǎo)數(shù)值構(gòu)成的新函數(shù)稱為導(dǎo)函數(shù).記作:;y;)(xf ;dd

5、xy.d)(dxxf注意注意:)(0 xf 0)(xxxfxxfd)(d0就稱函數(shù)在 I 內(nèi)可導(dǎo). 的導(dǎo)數(shù)為無窮大 .若極限例例1. 求函數(shù)Cxf)(C 為常數(shù)) 的導(dǎo)數(shù). 解解:yxCCx0lim0即0)(C例例2. 求函數(shù))()(Nnxxfn.處的導(dǎo)數(shù)在ax 解解:axafxf)()(ax lim)(af axaxnnaxlim(limax1nx2nxa32nxa)1na1nanxxfxxf)()(0limx說明:說明:對一般冪函數(shù)xy ( 為常數(shù)) 1)(xx例如,例如,)(x)(21 x2121 xx21x1)(1x11x21x)1(xx)(43x4743x(以后將證明)hxhxhsi

6、n)sin(lim0例例3. 求函數(shù)xxfsin)(的導(dǎo)數(shù). 解解:,xh令則)(xf hxfhxf)()(0limh0limh)2cos(2hx2sinh)2cos(lim0hxh22sinhhxcos即xxcos)(sin類似可證得xxsin)(cosh)1(lnxh例例4. 求函數(shù)xxfln)(的導(dǎo)數(shù). 解解: )(xf hxfhxf)()(0limhhxhxhln)ln(lim0hh1lim0)1(lnxh即xx1)(ln0limhh1x1xx10limh)1(lnxhhxelnx1x1則令,0hxt原式htfhtfh2)()2(lim0)(lim0tfh)(0 xf 是否可按下述方法

7、作:例例5. 證明函數(shù)xxf)(在 x = 0 不可導(dǎo). 證證:hfhf)0()0(hh0h,10h,1hfhfh)0()0(lim0不存在 , .0不可導(dǎo)在即xx例例6. 設(shè))(0 xf 存在, 求極限.2)()(lim000hhxfhxfh解解: 原式0limhhhxf2)(0)(0 xfhhxf2)( 0)(0 xf)(210 xf )(210 xf )(0 xf )( 2 )(0hhxf)(0 xf三、三、 導(dǎo)數(shù)的幾何意義導(dǎo)數(shù)的幾何意義曲線)(xfy 在點),(00yx的切線斜率為)(tan0 xf 若,0)(0 xf曲線過上升;若,0)(0 xf曲線過下降;xyO0 x),(00yx

8、若,0)(0 xf切線與 x 軸平行,稱為駐點駐點;),(00yx),(00yx0 x若,)(0 xf切線與 x 軸垂直 .曲線在點處的),(00yx切線方程切線方程:)(000 xxxfyy法線方程法線方程:)()(1000 xxxfyy)0)(0 xf,)(0時 xfxyO)(xfy CT0 xMxy0 xOxyO1111例例7. 問曲線3xy 哪一點有鉛直切線 ? 哪一點處的切線與直線131xy平行 ? 寫出其切線方程.解解:)(3xy3231x,13132x,0 xy0 x令,3113132x得,1x對應(yīng),1y則在點(1,1) , (1,1) 處與直線131xy平行的切線方程分別為),

9、1(131xy) 1(131xy即023 yx故在原點 (0 , 0) 有鉛直切線處可導(dǎo)在點xxf)(四、四、 函數(shù)的可導(dǎo)性與連續(xù)性的關(guān)系函數(shù)的可導(dǎo)性與連續(xù)性的關(guān)系定理定理1.處連續(xù)在點xxf)(證證: 設(shè))(xfy 在點 x 處可導(dǎo),)(lim0 xfxyx存在 , 因此必有,)(xfxy其中0lim0 x故xxxfy)(0 x0所以函數(shù))(xfy 在點 x 連續(xù) .注意注意: 函數(shù)在點 x 連續(xù),但在該點連續(xù),但在該點未必可導(dǎo)未必可導(dǎo).反例反例:xy xy 在 x = 0 處連續(xù) , 但不可導(dǎo).即xyO在點0 x的某個右右 鄰域內(nèi)五、五、 單側(cè)導(dǎo)數(shù)單側(cè)導(dǎo)數(shù))(xfy 若極限xxfxxfxy

10、xx)()(limlim0000則稱此極限值為)(xf在 處的右右 導(dǎo)數(shù)導(dǎo)數(shù),0 x記作)(0 xf即)(0 xfxxfxxfx)()(lim000(左)(左左)0( x)0( x)(0 xf0 x例如例如,xxf)(在 x = 0 處有,1)0(f1)0(f定義定義2 . 設(shè)函數(shù)有定義,存在,xyOxy 定理定理2. 函數(shù)在點0 x)(xfy ,)()(00存在與xfxf且)(0 xf. )(0 xf)(0 xf 存在)(0 xf)(0 xf簡寫為在點處右右 導(dǎo)數(shù)存在0 x定理定理3. 函數(shù))(xf)(xf在點0 x必 右右 連續(xù).(左左)(左左)若函數(shù))(xf)(af)(bf與都存在 ,

11、則稱)(xf顯然:)(xf在閉區(qū)間 a , b 上可導(dǎo),)(baCxf在開區(qū)間 內(nèi)可導(dǎo),),(ba在閉區(qū)間 上可導(dǎo).,ba可導(dǎo)的充分必要條件是且內(nèi)容小結(jié)內(nèi)容小結(jié)1. 導(dǎo)數(shù)的實質(zhì):3. 導(dǎo)數(shù)的幾何意義:4. 可導(dǎo)必連續(xù), 但連續(xù)不一定可導(dǎo);5. 已學(xué)求導(dǎo)公式 :6. 判斷可導(dǎo)性不連續(xù), 一定不可導(dǎo).直接用導(dǎo)數(shù)定義;看左右導(dǎo)數(shù)是否存在且相等. )(C )(x )(sin x )(cosxaxf)(02. axfxf)()(00 )(lnx;0;1x;cosx;sin xx1增量比的極限;切線的斜率;思考與練習(xí)思考與練習(xí)1. 函數(shù) 在某點 處的導(dǎo)數(shù))(xf0 x)(0 xf )(xf 區(qū)別:)(xf

12、 是函數(shù) ,)(0 xf 是數(shù)值;聯(lián)系:0)(xxxf)(0 xf 注意注意:有什么區(qū)別與聯(lián)系 ? )()(00 xfxf?與導(dǎo)函數(shù)2. 設(shè))(0 xf 存在 , 則._)()(lim000hxfhxfh3. 已知,)0(,0)0(0kff則._)(lim0 xxfx)(0 xf 0k4. 若),(x時, 恒有,)(2xxf問)(xf是否在0 x可導(dǎo)?解解:由題設(shè)0)0(f0)0()(xfxfx0由夾逼準(zhǔn)則0)0()(lim0 xfxfx0故)(xf在0 x可導(dǎo), 且0)0( f5. 設(shè)0,0,sin)(xxaxxxf, 問 a 取何值時,)(xf 在),(都存在 , 并求出. )(xf 解解

13、: 顯然該函數(shù)在 x = 0 連續(xù) .)0(f00sinlim0 xxx1)0(f00lim0 xxaxa故1a時,1)0( f此時)(xf 在),(都存在, )(xf0,cosxx0,1x作業(yè)作業(yè) P86 2 , 5 , 6, 7, 11, 16(2) , 18 , 20 第二節(jié) 牛頓牛頓(1642 1727)偉大的英國數(shù)學(xué)家 , 物理學(xué)家, 天文學(xué)家和自然科學(xué)家. 他在數(shù)學(xué)上的卓越貢獻是創(chuàng)立了微積分. 1665年他提出正流數(shù) (微分) 術(shù) , 次年又提出反流數(shù)(積分)術(shù),并于1671年完成流數(shù)術(shù)與無窮級數(shù)一書 (1736年出版). 他還著有自然哲學(xué)的數(shù)學(xué)原理和廣義算術(shù)等 .萊布尼茨萊布尼茨

14、 (1646 1716)德國數(shù)學(xué)家, 哲學(xué)家.他和牛頓同為微積分的創(chuàng)始人 , 他在學(xué)藝雜志上發(fā)表的幾篇有關(guān)微積分學(xué)的論文中,有的早于牛頓, 所用微積分符號也遠(yuǎn)遠(yuǎn)優(yōu)于牛頓 . 他還設(shè)計了作乘法的計算機 , 系統(tǒng)地闡述二進制計數(shù)法 , 并把它與中國的八卦聯(lián)系起來 .備用題備用題 解解: 因為1. 設(shè))(xf 存在, 且, 12)1 () 1 (lim0 xxffx求).1 (f 0(1)(1)1lim2xffxx 所以. 2) 1 ( fxfxfx2) 1 ()1 (lim0)() 1 ()(1 (lim210 xfxfx) 1 (21f )(xf在 0 x處連續(xù), 且xxfx)(lim0存在, 證明:)(xf在0 x處可導(dǎo).證證:因為xxfx)(lim0存在, 則有0)(lim0 xfx又)(xf在0 x處連續(xù),0)0(f所以xxfx)(lim0即)(xf在0 x處可導(dǎo).2. 設(shè)xfxfx)0()(lim0)0(f 故

展開閱讀全文
溫馨提示:
1: 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
2: 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
3.本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
5. 裝配圖網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

相關(guān)資源

更多
正為您匹配相似的精品文檔
關(guān)于我們 - 網(wǎng)站聲明 - 網(wǎng)站地圖 - 資源地圖 - 友情鏈接 - 網(wǎng)站客服 - 聯(lián)系我們

copyright@ 2023-2025  zhuangpeitu.com 裝配圖網(wǎng)版權(quán)所有   聯(lián)系電話:18123376007

備案號:ICP2024067431-1 川公網(wǎng)安備51140202000466號


本站為文檔C2C交易模式,即用戶上傳的文檔直接被用戶下載,本站只是中間服務(wù)平臺,本站所有文檔下載所得的收益歸上傳人(含作者)所有。裝配圖網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對上載內(nèi)容本身不做任何修改或編輯。若文檔所含內(nèi)容侵犯了您的版權(quán)或隱私,請立即通知裝配圖網(wǎng),我們立即給予刪除!