高中數(shù)學(xué)《第二章 數(shù)列》歸納整合課件 新人教A版必修5

上傳人:沈*** 文檔編號(hào):48809298 上傳時(shí)間:2022-01-14 格式:PPT 頁(yè)數(shù):26 大?。?.26MB
收藏 版權(quán)申訴 舉報(bào) 下載
高中數(shù)學(xué)《第二章 數(shù)列》歸納整合課件 新人教A版必修5_第1頁(yè)
第1頁(yè) / 共26頁(yè)
高中數(shù)學(xué)《第二章 數(shù)列》歸納整合課件 新人教A版必修5_第2頁(yè)
第2頁(yè) / 共26頁(yè)
高中數(shù)學(xué)《第二章 數(shù)列》歸納整合課件 新人教A版必修5_第3頁(yè)
第3頁(yè) / 共26頁(yè)

下載文檔到電腦,查找使用更方便

10 積分

下載資源

還剩頁(yè)未讀,繼續(xù)閱讀

資源描述:

《高中數(shù)學(xué)《第二章 數(shù)列》歸納整合課件 新人教A版必修5》由會(huì)員分享,可在線閱讀,更多相關(guān)《高中數(shù)學(xué)《第二章 數(shù)列》歸納整合課件 新人教A版必修5(26頁(yè)珍藏版)》請(qǐng)?jiān)谘b配圖網(wǎng)上搜索。

1、知識(shí)網(wǎng)絡(luò)知識(shí)網(wǎng)絡(luò)本章歸納整合本章歸納整合 數(shù)列的概念及表示方法 (1)定義:按照一定順序排列著的一列數(shù) (2)表示方法:列表法、圖象法、通項(xiàng)公式法和遞推公式法 (3)分類:按項(xiàng)數(shù)有限還是無限分為有窮數(shù)列和無窮數(shù)列;按項(xiàng)與項(xiàng)之間的大小關(guān)系可分為遞增數(shù)列、遞減數(shù)列、擺動(dòng)數(shù)列和常數(shù)列要點(diǎn)歸納要點(diǎn)歸納1 等差數(shù)列、等比數(shù)列性質(zhì)的對(duì)比等差數(shù)列等差數(shù)列等比數(shù)列等比數(shù)列性性質(zhì)質(zhì)設(shè)設(shè)an是等差數(shù)列,若是等差數(shù)列,若stmn,則,則asataman;從等差數(shù)列中抽取等距從等差數(shù)列中抽取等距離的項(xiàng)組成的數(shù)列是一個(gè)離的項(xiàng)組成的數(shù)列是一個(gè)等差數(shù)列;等差數(shù)列;等差數(shù)列中連續(xù)等差數(shù)列中連續(xù)m項(xiàng)的項(xiàng)的和組成的新數(shù)列是等差數(shù)

2、和組成的新數(shù)列是等差數(shù)列,即:列,即:Sm,S2mSm,S3mS2m,是等差數(shù)列是等差數(shù)列設(shè)設(shè)an是等比數(shù)列,若是等比數(shù)列,若stmn,則,則asataman;從等比數(shù)列中抽取等距離從等比數(shù)列中抽取等距離的項(xiàng)組成的數(shù)列是一個(gè)等比的項(xiàng)組成的數(shù)列是一個(gè)等比數(shù)列;數(shù)列;等比數(shù)列中連續(xù)等比數(shù)列中連續(xù)m項(xiàng)的和項(xiàng)的和組成的新數(shù)列是等比數(shù)列,組成的新數(shù)列是等比數(shù)列,即:即:Sm,S2mSm,S3mS2m,是等比數(shù)列是等比數(shù)列(注意:注意:當(dāng)當(dāng)q1且且m為偶數(shù)時(shí),不為偶數(shù)時(shí),不是等比數(shù)列是等比數(shù)列)2 等差數(shù)列、等比數(shù)列的判斷方法 (2)中項(xiàng)公式法:2an1anan2an是等差數(shù)列;an12anan2(an0

3、)an是等比數(shù)列 (3)通項(xiàng)公式法:ananb(a,b是常數(shù))an是等差數(shù)列;ancqn(c,q為非零常數(shù))an是等比數(shù)列 (4)前n項(xiàng)和公式法:Snan2bn(a,b為常數(shù),nN*)an是等差數(shù)列;Snaqna(a,q為常數(shù),且a0,q0,q1,nN*)an是等比數(shù)列3專專題一題一數(shù)列通項(xiàng)公式的求法數(shù)列通項(xiàng)公式的求法 數(shù)列的通項(xiàng)公式是數(shù)列的核心之一,它如同函數(shù)中的解析式一樣,有解析式便可研究函數(shù)的性質(zhì),而有了數(shù)列的通項(xiàng)公式,便可求出數(shù)列中的任何一項(xiàng)及前n項(xiàng)和 常見的數(shù)列通項(xiàng)公式的求法有以下幾種: (1)觀察歸納法求數(shù)列的通項(xiàng)公式 就是觀察數(shù)列的特征,橫向看各項(xiàng)之間的關(guān)系結(jié)構(gòu),縱向看各項(xiàng)與序號(hào)

4、n的內(nèi)在聯(lián)系,結(jié)合常見數(shù)列的通項(xiàng)公式,歸納出所求數(shù)列的通項(xiàng)公式 (2)利用公式法求數(shù)列的通項(xiàng)公式 數(shù)列符合等差數(shù)列或等比數(shù)列的定義,求通項(xiàng)時(shí),只需求出a1與d或a1與q,再代入公式ana1(n1)d或ana1qn1中即可 (3)利用an與Sn的關(guān)系求數(shù)列的通項(xiàng)公式 如果給出的條件是an與Sn的關(guān)系式,可利用 (4)利用累加法、累乘法求數(shù)列的通項(xiàng)公式 形如:已知a1,且an1anf(n)(f(n)是可求和數(shù)列)的形式均可用累加法; (5)構(gòu)造法(利用數(shù)列的遞推公式研究數(shù)列的通項(xiàng)公式) 若由已知條件直接求an較難,可以通過整理變形等,從中構(gòu)造出一個(gè)等差數(shù)列或等比數(shù)列,從而求出通項(xiàng)公式 已知數(shù)列an

5、滿足an1an3n2且a12,求an. 解a2a1312, a3a2322, a4a3332, anan13(n1)2, 以上各項(xiàng)相加,得 ana13123(n1)2(n1)【例例1】【例例2】 已知數(shù)列an滿足an13an2(nN*),a11,求通項(xiàng)公式 解an13an2可變?yōu)閍n113(an1), 令bnan1,則bn13bn且b1a112, bn是以2為首項(xiàng),以3為公比的等比數(shù)列 bn23n1, anbn123n11.【例例3】【例例4】 求數(shù)列的前n項(xiàng)和Sn通常要掌握以下方法: 公式法:直接由等差、等比數(shù)列的求和公式求和,注 意對(duì)等比數(shù)列q1的討論 錯(cuò)位相減法:主要用于一個(gè)等差數(shù)列與一

6、個(gè)等比數(shù)列對(duì)應(yīng)項(xiàng)相乘所得的數(shù)列的求和,即等比數(shù)列求和公式的推導(dǎo)過程的推廣 分組轉(zhuǎn)化法:把數(shù)列的每一項(xiàng)分成兩項(xiàng),使其轉(zhuǎn)化為幾個(gè)等差、等比數(shù)列再求和 裂項(xiàng)相消法:把數(shù)列的通項(xiàng)拆成兩項(xiàng)之差求和,正負(fù)相消剩下首尾若干項(xiàng) 倒序相加法:把數(shù)列正著寫和倒著寫再相加(即等差數(shù)列求和公式的推導(dǎo)過程的推廣)專專題題二二數(shù)列求和數(shù)列求和12345【例例5】【例例6】 求和Snx2x23x3nxn.【例例7】 數(shù)列是高中代數(shù)的重點(diǎn)內(nèi)容之一,也是高考的必考內(nèi)容及重點(diǎn)考查的范圍,它始終處在知識(shí)的交匯點(diǎn)上,如數(shù)列與函數(shù)、方程、不等式等其他知識(shí)交匯進(jìn)行命題它包涵知識(shí)點(diǎn)多、思想豐富、綜合性強(qiáng),已成為近年高考的一大亮點(diǎn) 專專題題

7、三三數(shù)列的交匯問題數(shù)列的交匯問題【例例8】 已知單調(diào)遞增的等比數(shù)列已知單調(diào)遞增的等比數(shù)列an滿足滿足a2a3a428,且,且a32是是a2,a4的等差中項(xiàng)的等差中項(xiàng)(1)求數(shù)列求數(shù)列an的通項(xiàng)公式;的通項(xiàng)公式; Sn12222323n2n, 2Sn122223324(n1)2nn2n1, ,得Sn222232nn2n1 已知數(shù)列an的前n項(xiàng)和Sn2n22n,數(shù)列bn的前 n項(xiàng)和Tn2bn. (1)求數(shù)列an與bn的通項(xiàng)公式; (2)設(shè)cnan2bn,證明:當(dāng)且僅當(dāng)n3時(shí),cn1cn. (1)解a1S14. 對(duì)于n2,有anSnSn12n(n1)2(n1)n4n. 綜上an的通項(xiàng)公式an4n.

8、將n1代入Tn2bn,得b12b1,故T1b11. (求bn)法一對(duì)于n2, 由Tn12bn1,Tn2bn 得bnTnTn1(bnbn1),【例例9】 Tn221n(T12)21n, Tn221n,bnTnTn1(221n)(222n)21n. 綜上,bn的通項(xiàng)公式bn21n. (2)證明法一由cnan2bnn225n, 即cn1cn. 法二由cnan2bnn225n,得 cn1cn24n(n1)22n224n(n1)22 當(dāng)且僅當(dāng)n3時(shí),cn1cn0, 即cn1cn. 數(shù)列是高中代數(shù)的重要內(nèi)容之一,也是高考的考查重點(diǎn),考查的內(nèi)容主要有兩個(gè)方面:第一方面是數(shù)列的基本概念;第二方面是數(shù)列的運(yùn)算,

9、即運(yùn)用通項(xiàng)公式、前n項(xiàng)和公式以及數(shù)列的性質(zhì)求數(shù)列的一些基本量的問題,在這部分內(nèi)容的考查中除了考查基礎(chǔ)知識(shí)以外,重點(diǎn)是考查靈活運(yùn)用知識(shí)解決問題的能力命題趨勢(shì)命題趨勢(shì)1 在最近幾年高考試卷中,探索性題型在數(shù)列中考查較多,解決探索性題型應(yīng)具備較高的數(shù)學(xué)思維能力,即觀察、分析、歸納和猜想問題的能力,研究與分析探索性題型有利于培養(yǎng)創(chuàng)新意識(shí)和創(chuàng)造精神,另一方面,綜合題型在數(shù)列中考查比較多,這主要是因?yàn)榫C合題是數(shù)列與函數(shù)、數(shù)列與不等式、數(shù)列與解析幾何等知識(shí)的交匯點(diǎn),具有較強(qiáng)的考查思維能力的功能可以預(yù)見的是:有關(guān)數(shù)列的綜合題型仍將是熱點(diǎn)和重點(diǎn)之一,應(yīng)用題型在最近幾年試卷中也有所體現(xiàn),所涉及的內(nèi)容很廣泛,要求學(xué)生有寬闊的知識(shí)面,能在相關(guān)知識(shí)背景中處理問題2

展開閱讀全文
溫馨提示:
1: 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
2: 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
3.本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
5. 裝配圖網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

相關(guān)資源

更多
正為您匹配相似的精品文檔
關(guān)于我們 - 網(wǎng)站聲明 - 網(wǎng)站地圖 - 資源地圖 - 友情鏈接 - 網(wǎng)站客服 - 聯(lián)系我們

copyright@ 2023-2025  zhuangpeitu.com 裝配圖網(wǎng)版權(quán)所有   聯(lián)系電話:18123376007

備案號(hào):ICP2024067431號(hào)-1 川公網(wǎng)安備51140202000466號(hào)


本站為文檔C2C交易模式,即用戶上傳的文檔直接被用戶下載,本站只是中間服務(wù)平臺(tái),本站所有文檔下載所得的收益歸上傳人(含作者)所有。裝配圖網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)上載內(nèi)容本身不做任何修改或編輯。若文檔所含內(nèi)容侵犯了您的版權(quán)或隱私,請(qǐng)立即通知裝配圖網(wǎng),我們立即給予刪除!