湖南省新田一中高中數(shù)學 2.1.1 指數(shù)與指數(shù)冪的運算課件 新人教A版必修1

上傳人:沈*** 文檔編號:50017954 上傳時間:2022-01-19 格式:PPT 頁數(shù):12 大?。?76KB
收藏 版權(quán)申訴 舉報 下載
湖南省新田一中高中數(shù)學 2.1.1 指數(shù)與指數(shù)冪的運算課件 新人教A版必修1_第1頁
第1頁 / 共12頁
湖南省新田一中高中數(shù)學 2.1.1 指數(shù)與指數(shù)冪的運算課件 新人教A版必修1_第2頁
第2頁 / 共12頁
湖南省新田一中高中數(shù)學 2.1.1 指數(shù)與指數(shù)冪的運算課件 新人教A版必修1_第3頁
第3頁 / 共12頁

下載文檔到電腦,查找使用更方便

10 積分

下載資源

還剩頁未讀,繼續(xù)閱讀

資源描述:

《湖南省新田一中高中數(shù)學 2.1.1 指數(shù)與指數(shù)冪的運算課件 新人教A版必修1》由會員分享,可在線閱讀,更多相關(guān)《湖南省新田一中高中數(shù)學 2.1.1 指數(shù)與指數(shù)冪的運算課件 新人教A版必修1(12頁珍藏版)》請在裝配圖網(wǎng)上搜索。

1、一、整數(shù)指數(shù)冪的運算性質(zhì)一、整數(shù)指數(shù)冪的運算性質(zhì)二、根式的概念二、根式的概念 如果一個數(shù)的如果一個數(shù)的 n 次方等于次方等于 a( (n1 且且 nN*) ), 那么這個數(shù)叫那么這個數(shù)叫做做 a 的的 n 次方根次方根. 即即: 若若 xn=a, 則則 x 叫做叫做 a 的的 n 次方根次方根, 其中其中 n1且且 nN*. 式子式子 a 叫做根式叫做根式, 這里這里 n 叫做叫做根指數(shù)根指數(shù), a 叫做叫做被開方被開方數(shù)數(shù). n(1)aman=am+n (m, nZ); (2)aman=am- -n (a 0, m, nZ); (3)(am)n=amn (m, nZ); (4)(ab)n=a

2、nbn (nZ). 三、根式的三、根式的性質(zhì)性質(zhì)5.負數(shù)沒有偶次方根負數(shù)沒有偶次方根.6.零的任何次方根都是零零的任何次方根都是零. 1.當當 n 為奇數(shù)時為奇數(shù)時, 正數(shù)的正數(shù)的 n 次方根是一個正數(shù)次方根是一個正數(shù), 負數(shù)的負數(shù)的 n 次次方根是一個負數(shù)方根是一個負數(shù), a 的的 n 次方根用符號次方根用符號 a 表示表示.n 2.當當 n 為偶數(shù)時為偶數(shù)時, 正數(shù)的正數(shù)的 n 次方根有兩個次方根有兩個, 它們互為相反數(shù)它們互為相反數(shù), 這時這時, 正數(shù)的正的正數(shù)的正的 n 次方根用符號次方根用符號 a 表示表示, 負的負的 n 次方根用符次方根用符號號 - - a 表示表示. 正負兩個正

3、負兩個 n 次方根可以合寫為次方根可以合寫為 a (a0).nnn3.( a )n=a. n4.當當 n 為奇數(shù)時為奇數(shù)時, an =a; n當當 n 為偶數(shù)時為偶數(shù)時, an =|a|= na (a0), - -a (a0, 且且a 1)叫做叫做指數(shù)函數(shù)指數(shù)函數(shù), 其中其中 x 是自變量是自變量, 函函數(shù)的定義域是數(shù)的定義域是 R.六、指數(shù)函數(shù)六、指數(shù)函數(shù)a = am , a- - = (a0, m, nN*, 且且 n1).nmnnmnma1(1)aras=ar+s (a0, r, sQ); (2)aras=ar- -s (a0, r, sQ); (3)(ar)s=ars (a0, r,

4、sQ); (4)(ab)r=arbr (a0, b0, rQ). 圖圖象象性性質(zhì)質(zhì)yox(0, 1)y=1 y=ax (a1)a1yox(0, 1)y=1 y=ax (0a1) 0a0, a 1) 圖象經(jīng)過第二、三、四象限圖象經(jīng)過第二、三、四象限, 則一定則一定有有( ) A. 0a0 B. a1, b0 C. 0a1, b1, b0 2.若若 0a1, bab B. bac C. abc D. acb 12 4.若若 0ab(1- -a)b B. (1+a)a(1+b)b C. (1- -a)b(1- -a) D. (1- -a)a(1- -b)bb12bCADDC 5.設(shè)設(shè) a=60.7,

5、 b=0.76, c=log0.76, 則則( ) A. cab B. bac C. abc D. acb 典型例題典型例題1.化簡下列各式化簡下列各式:(1) (1- -a) ;(a- -1)3 14 (2) xy2 xy- -1 xy ;34=- - a- -1 . =xy. 解解: (1)原式原式=(1- -a)(a- -1)- - 43=- -(a- -1)(a- -1)- - 43=- -(a- -1) 41(2)原式原式=xy2(xy- -1) (xy) 213121=(xy2x y- - ) x y 3121212121=(x y ) x y 2323312121=x y x y

6、 21212121(3) (1- -a)(a- -1)- -2(- -a) . 2121a- -11), 求求 的值的值.a1x- - x2- -1 x2- -1 解解: 以以 x+ x2- -1、 x- - x2- -1 為根構(gòu)造方程為根構(gòu)造方程: t2- -2xt+1=0, 即即: t2- -( a + )t+ a =0, a1a1a1t= a 或或 . x+ x2- -1 x- - x2- -1 , a1,x- - x2- -1 = . x+ x2- -1 = a , a1 x2- -1 = ( a - - ), 12a1原式原式=( a - - ) 12a1a1= (a- -1). 1

7、2解法二解法二: 將已知式整理得將已知式整理得: ( a )2- -2x a +1=0 或或 ( )2- -2x( )+1=0. a1a1 a , a1 a =x+ x2- -1 , =x- - x2- -1 , a1以下同上以下同上. 6.已知函數(shù)已知函數(shù) f(x)=3x 且且 f- -1(18)=a+2, g(x)=3ax- -4x 的定義域為的定義域為 0, 1. (1)求求 g(x) 的的解析式解析式; (2)求求 g(x) 的單調(diào)區(qū)間的單調(diào)區(qū)間, 確定其增減性并用定義證明確定其增減性并用定義證明; (3)求求 g(x) 的值域的值域.f(a+2)=3a+2=18. 解解: (1)f(

8、x)=3x 且且 f- -1(18)=a+2, 3a=2. g(x)=(3a)x- -4x=2x- -4x. 即即 g(x)=2x- -4x. (2)令令 t=2x, 則則函數(shù)函數(shù) g(x) 由由 y=t- -t2 及及 t=2x 復合而得復合而得. 由已知由已知 x 0, 1, 則則 t 1, 2, t=2x 在在 0, 1 上單調(diào)遞增上單調(diào)遞增, y=t- -t2 在在 1, 2 上單調(diào)遞減上單調(diào)遞減, g(x) 在在 0, 1 上單調(diào)遞減上單調(diào)遞減, 證明如下證明如下: g(x) 的定義域區(qū)間的定義域區(qū)間 0, 1 為函數(shù)的單調(diào)遞減區(qū)間為函數(shù)的單調(diào)遞減區(qū)間. 對于任意的對于任意的 x1,

9、 x2 0, 1, 且且 x1x2, g(x1)- -g(x2) 0 x1x21, 2x1- -2x20 且且 1- -2x1- -2x2g(x2). 故函數(shù)故函數(shù) g(x) 在在 0, 1 上單調(diào)遞減上單調(diào)遞減. =(2x1- -4x1)- -(2x2- -4x2) =(2x1- -2x2)- -(2x1- -2x2)(2x1+2x2) =(2x1- -2x2)(1- -2x1- -2x2) =(2x1- -2x2)(1- -2x1- -2x2)0. x 0, 1 時有時有: 解解: (3)g(x) 在在 0, 1 上單調(diào)遞減上單調(diào)遞減, g(1)g(x)g(0). g(1)=21- -41

10、=- -2, g(0)=20- -40=0, - -2g(x)0 . 故故函數(shù)函數(shù) g(x) 的值域為的值域為 - -2, 0. 6.已知函數(shù)已知函數(shù) f(x)=3x 且且 f- -1(18)=a+2, g(x)=3ax- -4x 的定義域為的定義域為 0, 1. (1)求求 g(x) 的解析式的解析式; (2)求求 g(x) 的單調(diào)區(qū)間的單調(diào)區(qū)間, 確定其增減確定其增減性并用定義證明性并用定義證明; (3)求求 g(x) 的值域的值域. 7.設(shè)設(shè) a0, f(x)= - - 是是 R 上的奇函數(shù)上的奇函數(shù). (1)求求 a 的值的值; (2)試判試判斷斷 f(x) 的反函數(shù)的反函數(shù) f- -

11、1(x) 的奇偶性與單調(diào)性的奇偶性與單調(diào)性.aexaex解解: (1) f(x) 是是 R 上的奇函數(shù)上的奇函數(shù), f(0)=0, 即即- -a=0. 1aa2=1. a0, a=1. (2)由由 (1) 知知 f(x)=ex- -e- -x, x R, f(x) R. f(x) 是奇函數(shù)是奇函數(shù), f(x) 的反函數(shù)的反函數(shù) f- -1(x) 也是奇函數(shù)也是奇函數(shù). y=e- -x 是是 R 上的減函數(shù)上的減函數(shù), y=- -e- -x 是是 R 上的增函數(shù)上的增函數(shù). 又又 y=ex 是是 R 上的增函數(shù)上的增函數(shù), y=ex - -e- -x 是是 R 上的增函數(shù)上的增函數(shù). f(x) 的反函數(shù)的反函數(shù) f- -1(x) 也是也是 R 上的增函數(shù)上的增函數(shù). 綜上所述綜上所述, f- -1(x) 是奇函數(shù)是奇函數(shù), 且是且是 R 上的增函數(shù)上的增函數(shù).此時此時, f(x)=ex-e- -x是是 R 上的奇函數(shù)上的奇函數(shù). a=1 即為所求即為所求.

展開閱讀全文
溫馨提示:
1: 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
2: 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
3.本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
5. 裝配圖網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

相關(guān)資源

更多
正為您匹配相似的精品文檔
關(guān)于我們 - 網(wǎng)站聲明 - 網(wǎng)站地圖 - 資源地圖 - 友情鏈接 - 網(wǎng)站客服 - 聯(lián)系我們

copyright@ 2023-2025  zhuangpeitu.com 裝配圖網(wǎng)版權(quán)所有   聯(lián)系電話:18123376007

備案號:ICP2024067431-1 川公網(wǎng)安備51140202000466號


本站為文檔C2C交易模式,即用戶上傳的文檔直接被用戶下載,本站只是中間服務平臺,本站所有文檔下載所得的收益歸上傳人(含作者)所有。裝配圖網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對上載內(nèi)容本身不做任何修改或編輯。若文檔所含內(nèi)容侵犯了您的版權(quán)或隱私,請立即通知裝配圖網(wǎng),我們立即給予刪除!