《天津市梅江中學(xué)九年級(jí)數(shù)學(xué)下冊(cè) 27.2.1 相似三角形的判定課件2 (新版)新人教版》由會(huì)員分享,可在線閱讀,更多相關(guān)《天津市梅江中學(xué)九年級(jí)數(shù)學(xué)下冊(cè) 27.2.1 相似三角形的判定課件2 (新版)新人教版(19頁珍藏版)》請(qǐng)?jiān)谘b配圖網(wǎng)上搜索。
1、 27.2.1相似三角形的判定相似三角形的判定(第(第2課時(shí))課時(shí))1.定義法定義法:兩三角形兩三角形對(duì)應(yīng)角相等,對(duì)應(yīng)邊的比相等的對(duì)應(yīng)角相等,對(duì)應(yīng)邊的比相等的 兩個(gè)三角形相似兩個(gè)三角形相似一、如何判斷兩三角形是否相似一、如何判斷兩三角形是否相似? ? DEBC ADE ABC DEABCABCDE2.平行法平行法:平行于三角形一邊的直線和其他兩邊平行于三角形一邊的直線和其他兩邊(或兩或兩 邊的延長線)相交,所構(gòu)成的三角形與原邊的延長線)相交,所構(gòu)成的三角形與原 三角形相似。三角形相似。A型型X型型猜想?猜想? 有沒有其他簡單的辦法判斷兩個(gè)三角有沒有其他簡單的辦法判斷兩個(gè)三角形相似呢?形相似呢?
2、二、二、 三角形全等有哪幾種簡單的判三角形全等有哪幾種簡單的判 定方法呢?定方法呢?SSS、SAS 、ASA(AAS)、HLABCCBA 三組對(duì)應(yīng)三組對(duì)應(yīng)邊的比相等邊的比相等ACCABCCBABBA 是否有是否有 ?CBAABC探究探究2 任意畫一個(gè)三角形,再畫一個(gè)任意畫一個(gè)三角形,再畫一個(gè)三角形,使它的各邊長都是原來三三角形,使它的各邊長都是原來三角形各邊長的角形各邊長的k倍,度量這兩個(gè)三倍,度量這兩個(gè)三角形的對(duì)應(yīng)角,它們相等嗎?這兩角形的對(duì)應(yīng)角,它們相等嗎?這兩個(gè)三角形相似嗎?與同桌交流一下,個(gè)三角形相似嗎?與同桌交流一下,看看是否有同樣的結(jié)論。看看是否有同樣的結(jié)論。中,和已知:在CBAA
3、BC,CAACCBBCBAABABCCBA求證求證: : ABC ABCDECAEACBDEBADA 又又CAACCAEAABDACAACCBBCBAAB,同理同理 BCDE ,可得,可得交于點(diǎn)交于點(diǎn)交交再做再做,過點(diǎn),過點(diǎn)上)截取上)截取(或它的延長線(或它的延長線證明:在線段證明:在線段ECACBDEDABDABA DEACBAABCDEA ABCCBAACEACBAABCCBAABCkACCABCCBABBA(SSS)判定定理:)判定定理:如果兩個(gè)三角形的三組對(duì)如果兩個(gè)三角形的三組對(duì)應(yīng)邊的比相等應(yīng)邊的比相等,那么這兩個(gè)三角形相似那么這兩個(gè)三角形相似.簡單地說簡單地說:三組對(duì)應(yīng)邊比相等的兩
4、三角形相似三組對(duì)應(yīng)邊比相等的兩三角形相似. ABCCBA ABC例例1 1:CAACCBBCBAAB.12,10, 6, 6, 5, 3CACBBAACBCABCBAABC否相似,并說明理由。是和根據(jù)下列條件,判斷21126,21105,2163CAACCBBCBAABABCCBA解:解: 類似于判定三角形全等的類似于判定三角形全等的SAS方法,我們能不能通過兩邊方法,我們能不能通過兩邊及其夾角來判定兩個(gè)三角形相似呢?及其夾角來判定兩個(gè)三角形相似呢?猜想?猜想?的嗎?這兩個(gè)三角形還是相似若:.14,10, 6, 6, 5, 3CACBBAACBCAB改變改變k和和A的值的大小的值的大小,是否有
5、同樣的結(jié)論?是否有同樣的結(jié)論?和利用刻度尺和量角器畫 ABC探究探究3相等呢?嗎?另外兩組角是否會(huì)于的長,它們的比值等和應(yīng)邊值,量出它們第三組對(duì)等于給定的都和使kCBBCkCAACBAABAACBA, , 事實(shí)上事實(shí)上我們經(jīng)過探究發(fā)現(xiàn)有兩邊我們經(jīng)過探究發(fā)現(xiàn)有兩邊及其夾角判定兩個(gè)三角形相似的結(jié)論及其夾角判定兩個(gè)三角形相似的結(jié)論 如果兩個(gè)三角形的兩組對(duì)應(yīng)如果兩個(gè)三角形的兩組對(duì)應(yīng)邊的比相等,并且相應(yīng)的夾角相邊的比相等,并且相應(yīng)的夾角相等,那么這兩個(gè)三角形相似。等,那么這兩個(gè)三角形相似。(SAS)中,和已知:在CBAABC,AACAACBAABABCCBA求證求證: : ABC ABCDECAEABA
6、DA又又DEDABDABA再做,過點(diǎn)上)截?。ɑ蛩难娱L線證明:在線段CAACCAEAABDACAACBAAB,,可得交于點(diǎn)交ECACBDEACBAABCDEA ABCCBAACEACBAABCCBA.AA又(SAS)判定定理:判定定理:如果兩個(gè)三角形的兩組如果兩個(gè)三角形的兩組 對(duì)應(yīng)邊的比相等,并且相應(yīng)的夾角相對(duì)應(yīng)邊的比相等,并且相應(yīng)的夾角相 等,那么這兩個(gè)三角形相似。等,那么這兩個(gè)三角形相似。ABC,CAABBAAAACBC AABCCBA解解 AB/AB=7/3 AC/AC=14/6=7/3 AB/AB= AC/AC 又又 A A60 ABCABC AB=7, AC=14, A60 AB3
7、 3,AC6, A 60 AB=7, AC=14, A60 AB6,AC3 3, A 60例例2:根據(jù)下列條件,判斷:根據(jù)下列條件,判斷ABC和和ABC 是否相似,并說明理由。是否相似,并說明理由。例例3. 右圖中右圖中的兩個(gè)三角的兩個(gè)三角形相似嗎?形相似嗎?理由是什么?理由是什么?練習(xí):練習(xí):. 5, 4, 3,10, 8, 6) 1 (CACBBAACBCABCBAABC否相似,并說明理由。是和根據(jù)下列條件,判斷1.40. 6, 440,10,20)2(ACABAAACAB2.圖中兩個(gè)三角形是否相似?圖中兩個(gè)三角形是否相似?63105CABEE2693414相似相似不相似不相似相似相似不相
8、似不相似要制作兩個(gè)形狀相同的三角形框架,其中一要制作兩個(gè)形狀相同的三角形框架,其中一 個(gè)三角形框架的三邊長分別為個(gè)三角形框架的三邊長分別為4,6,8。另。另一個(gè)三角形框架的一邊長為一個(gè)三角形框架的一邊長為2,它的別外兩,它的別外兩條邊長應(yīng)當(dāng)是多少?你有幾種答案?條邊長應(yīng)當(dāng)是多少?你有幾種答案?3.提示:提示:三種選法,分別使另一個(gè)三角形的長三種選法,分別使另一個(gè)三角形的長 為為2的邊與長為的邊與長為4,6,8的邊對(duì)應(yīng)。的邊對(duì)應(yīng)。2:4=x:6=y:8x:4=2:6=y:8x:4=y:6=2:8相似三角形的判定方法有幾種?相似三角形的判定方法有幾種?小結(jié):小結(jié):1、定義判定法、定義判定法3、邊邊邊判定法(、邊邊邊判定法(SSS)4、邊角邊判定法(、邊角邊判定法(SAS)2、平行判定法、平行判定法比較復(fù)雜,煩瑣比較復(fù)雜,煩瑣只能在特定的圖形里面使用只能在特定的圖形里面使用作業(yè):作業(yè):P54頁頁 習(xí)題習(xí)題27.2 第第2題(題(1,2),第),第3題題.