4、-1,∴S2 008=-2 008.
答案 C
7.已知a≥0,b≥0,且a+b=2,則( )
A.a(chǎn)b≤B.a(chǎn)b≥
C.a(chǎn)2+b2≤3 D.a(chǎn)2+b2≥2
解析 ∵a≥0,b≥0,且a+b=2,∴4=(a+b)2=a2+b2+2ab≤2(a2+b2),∴a2+b2≥2.
答案 D
8.已知等比數(shù)列{an}中,a2=1,則其前3項的和S3的取值范圍是( )
A.(-∞,-1]
B.(-∞,-1)∪(1,+∞)
C.[3,+∞)
D.(-∞,-1]∪[3,+∞)
解析 ∵等比數(shù)列{an}中,a2=1,∴S3=a1+a2+a3=
a2=1+q+.當公比q>0時,S3
5、=1+q+≥1+2 =3,當公比q<0時,S3=1-≤1-2 =-1,
∴S3∈(-∞,-1]∪[3,+∞).
答案 D
9.(2011·廣東廣州模擬)p=+,q=· (m、n、a、b、c、d均為正數(shù)),則p、q的大小關(guān)系為( )
A.p≥qB.p≤q
C.p>qD.不確定
解析 q= ≥=+=p,故選B.
答案 B
10.設(shè)Sn=1+2+3+…+n,n∈N*,則函數(shù)f(n)=的最大值為( )
A.B.
C.D.
解析 由Sn=得f(n)===≤=,當且僅當n=,即n=8時取等號,即f(n)max=f(8)=.
答案 D
11.(2012·廣東)已知變量x,y滿足
6、約束條件,則z=3x+y的最大值為( )
A.12 B.11
C.3 D.-1
解析 先畫出可行域如圖所示,再將z=3x+y變形為截距式方程y=-3x+z,把l0:y=-3x平移到經(jīng)過點A(3,2)時,截距z有最大值,∴zmax=3×3+2=11.
答案 B
12.(2012·浙江)設(shè)Sn是公差為d(d≠0)的無窮等差數(shù)列{an}的前n項和,則下列命題錯誤的是( )
A.若d<0,則數(shù)列{Sn}有最大項
B.若數(shù)列{Sn}有最大項,則d<0
C.若數(shù)列{Sn}是遞增數(shù)列,則對任意n∈N*,均有Sn>0
D.若對任意n∈N*,均有Sn>0,則數(shù)列{Sn}是遞增數(shù)列
7、
解析 由于Sn=na1+d=n2+n,根據(jù)二次函數(shù)的圖象與性質(zhì)知當d<0時,數(shù)列{Sn}有最大項,即選項A正確;同理選項B也是正確的;而若數(shù)列{Sn}是遞增數(shù)列,那么d>0,但對任意的n∈N*,Sn>0不成立,即選項C錯誤;反之,選項D是正確的.
答案 C
二、填空題:本大題共4小題,每小題4分,共16分,將答案填在題中的橫線上.
13.在公差為d(d≠0)的等差數(shù)列{an}中,若Sn是{an}的前n項和,則數(shù)列S20-S10,S30-S20,S40-S30也成等差數(shù)列,且公差為100d.類比上述結(jié)論,在公比為q(q≠1)的等比數(shù)列{bn}中,若Tn是數(shù)列{bn}的前n項之積,則有__
8、__________________________.
答案 ,,也成等比數(shù)列,且公比為q100
14.(2012·福建)數(shù)列{an}的通項公式an=ncos+1,前n項和為Sn,則S2 012=________.
解析 ∵an=ncos+1,∴當n為奇數(shù)時an=1,當n為偶數(shù)2,6,10,14,…時,an=-n+1;當n為偶數(shù)4,8,12,16,…時,an=n+1,∴數(shù)列{an}的前4項和為:1+(-1)+1+5=6;第5至第8項和為:1+(-5)+1+9=6;…由此可知an+an+1+an+2+an+3=1+(-n-1+1)+1+n+3+1=6(n+3是4的倍數(shù)),即數(shù)列{an}的相
9、鄰四項之和均為6,故S2 012=S4×503=503×6=3 018.
答案 3 018
15.已知數(shù)列{an}為等差數(shù)列,則有等式a1-2a2+a3=0,a1-3a2+3a3-a4=0,a1-4a2+6a3-4a4+a5=0,
(1)若數(shù)列{an}為等比數(shù)列,通過類比,則有等式__________.
(2)通過歸納,試寫出等差數(shù)列{an}的前n+1項a1,a2,…,an,an+1之間的關(guān)系為____________________.
解析 因等差數(shù)列與等比數(shù)列之間的區(qū)別是前者是加法運算,后者是乘法運算,所以類比規(guī)律是由第一級運算轉(zhuǎn)化到高一級運算,從而解出第(1)問;通過觀察發(fā)現(xiàn),
10、已知等式的系數(shù)與二項式系數(shù)相同,解出第(2)問.
答案 (1)a1aa3=1,a1aaa=1,a1aaaa5=1
(2)Ca1-Ca2+Ca3-……+(-1)nCan+1=0
16.(2012·新課標)數(shù)列{an}滿足an+1+(-1)nan=2n-1,則{an}的前60項和為________.
解析 當n=2k-1,k∈N*時,a2k-a2k-1=2(2k-1)-1;當n=2k,k∈N*時,a2k+1+a2k=2(2k)-1;于是a2k+1+a2k-1=2;a2k+a2k-2=8k-8;前一個式子中k=1,3,5,…,29,后一個式子中k=2,4,6,…,30,得a3+a1=2,a5
11、+a3=2,…,a29+a27=2;a4+a2=8×2-8,a8+a6=8×4-8,…,a60+a58=8×30-8,∴S60=15×2+8(2+4+…+30)-8×15=1 830.
答案 1 830
三、解答題:本大題共6小題,共74分.解答應(yīng)寫出文字說明、證明過程或演算步驟.
17.(本小題滿分12分)
已知函數(shù)f(x)滿足ax·f(x)=b+f(x)(a·b≠0),f(1)=2且f(x+2)=-f(2-x)對定義域中任意x都成立.
(1)求函數(shù)f(x)的解析式;
(2)正項數(shù)列{an}的前n項和為Sn,滿足Sn=2,求證:數(shù)列{an}是等差數(shù)列.
解 (1)由ax·f(x
12、)=b+f(x)(a·b≠0),得f(x)(ax-1)=b,若ax-1=0,則b=0,不合題意,故ax-1≠0,
∴f(x)=.
由f(1)=2=,得2a-2=b,①
由f(x+2)=-f(2-x)對定義域中任意x都成立,得=-,由此解得a=,②
把②代入①,可得b=-1,
∴f(x)==(x≠2).
(2)證明:∵f(an)=,Sn=2,
∴Sn=(an+1)2,a1=(a1+1)2,∴a1=1;
當n≥2時,Sn-1=(an-1+1)2,
∴an=Sn-Sn-1=(a-a+2an-2an-1),
∴(an+an-1)(an-an-1-2)=0,
∵an>0,
∴an
13、-an-1-2=0,即an-an-1=2,
∴數(shù)列{an}是等差數(shù)列.
18.(本小題滿分12分)
(2012·廣東)設(shè)數(shù)列{an}的前n項和為Sn,滿足2Sn=an+1-2n+1+1,n∈N*,且a1,a2+5,a3成等差數(shù)列.
(1)求a1的值;
(2)求數(shù)列{an}的通項公式;
(3)證明:對一切正整數(shù)n,有++…+<.
解 (1)當n=1時,2a1=a2-4+1=a2-3,①
當n=2時,2(a1+a2)=a3-8+1=a3-7,②
又a1,a2+5,a3成等差數(shù)列,有a1+a3=2(a2+5),③
由①②③解得a1=1.
(2)∵2Sn=an+1-2n+1+1,
14、當n≥2時,有2Sn-1=an-2n+1,
兩式相減是an+1-3an=2n,
則-·=1,即+2=,又+2=3,
知是以首項為3,公比為的等比數(shù)列,
∴+2=3n-1,
即an=3n-2n,n=1時也合適此式,{an}的通項公式是an=3n-2n.
(3)由(2)得===
<,
∴<1+++…+=1+<.
19.(本小題滿分12分)
(2012·安徽)數(shù)列{xn}滿足x1=0,xn+1=-x+xn+c(n∈N*).
(1)證明:{xn}是遞減數(shù)列的充分必要條件是c<0;
(2)求c的取值范圍,使{xn}是遞增數(shù)列.
解 (1)先證充分性,若c<0,由于xn+1=-x
15、+xn+c≤xn+c0即xn<1-.
由②式和xn≥0還可得,對任意n≥1都有
-xn+1≤(1-)(-xn).③
反復(fù)運用③式,得
-xn≤(1-)n-1(-x1)<(1-)n-1.
xn<1-和-xn<(1-
16、)n-1兩式相加,知2-1<(1-)n-1對任意n≥1成立.
根據(jù)指數(shù)函數(shù)y=(1-)x的性質(zhì),得2-1≤0,c≤,
故00.
即證xn<對任意n≥1成立.
下面用數(shù)學歸納法證明當0
17、>xn,即{xn}是遞增數(shù)列.
由(i)(ii)知,使得數(shù)列{xn}單調(diào)遞增的c的范圍是.
20.(本小題滿分12分)
某商店投入81萬元經(jīng)銷某種北京奧運會特許紀念品,經(jīng)銷時間共60天,為了獲得更多的利潤,商店將每天獲得的利潤投入到次日的經(jīng)營中.市場調(diào)研表明,該商店在經(jīng)銷這一產(chǎn)品期間第n天的利潤an=(單位:萬元,n∈N*).記第n天的利潤率bn=,例如b3=.
(1)求b1,b2的值;
(2)求第n天的利潤率bn;
(3)該商店在經(jīng)銷此紀念品期間,哪一天的利潤率最大?并求該天的利潤率.
解 (1)當n=1時,b1=;當n=2時,b2=.
(2)當1≤n≤20時,a1=a2=a
18、3=…=an-1=an=1.
∴bn===.
當21≤n≤60時,
bn=
==
=,
∴第n天的利潤率
bn=
(3)當1≤n≤20時,bn=是遞減數(shù)列,此時bn的最大值為b1=;
當21≤n≤60時,bn==≤=(當且僅當n=,即n=40時,“=”成立).
又∵>,∴當n=40時,(bn)max=.
∴該商店經(jīng)銷此紀念品期間,第40天的利潤率最大,且該天的利潤率為.
21.(本小題滿分12分)
(2012·山東)在等差數(shù)列{an}中,a3+a4+a5=84,a9=73.
(1)求數(shù)列{an}的通項公式;
(2)對任意m∈N*,將數(shù)列{an}中落入?yún)^(qū)間(9m,9
19、2m)內(nèi)的項的個數(shù)記為bm.求數(shù)列{bm}的前m項和Sm.
解 (1)因為{an}是一個等差數(shù)列,
所以a3+a4+a5=3a4=84,a4=28.
設(shè)數(shù)列{an}的公差為d,
則5d=a9-a4=73-28=45,
故d=9.
由a4=a1+3d得28=a1+3×9,即a1=1.
所以an=a1+(n-1)d=1+9(n-1)=9n-8(n∈N*).
(2)對m∈N*,若9m
20、+…+9m-1)
=-
=.
22.(本小題滿分14分)
(2012·江蘇)已知各項均為正數(shù)的兩個數(shù)列{an}和{bn}滿足:an+1=,n∈N*.
(1)設(shè)bn+1=1+,n∈N*,求證:數(shù)列{2}是等差數(shù)列;
(2)設(shè)bn+1=·,n∈N*,且{an}是等比數(shù)列,求a1和b1的值.
解 (1)由題設(shè)知an+1==
=,
所以=,從而2-2=1(n∈N*),
所以數(shù)列是以1為公差的等差數(shù)列.
(2)因為an>0,bn>0,所以≤a+b<(an+bn)2,從而10知q>0.下證q=1.
若q>1,則a1=logq時,an+1=a1qn>,與(*)矛盾;
若0a2>1,故當n>logq時,an+1=a1qn<1,與(*)矛盾.
綜上,q=1,故an=a1(n∈N*),所以11,于是b1