2019-2020年人教A版高中數(shù)學(xué) 高三一輪(文) 第三章 3-7正弦定理、余弦定理《教案》.doc
《2019-2020年人教A版高中數(shù)學(xué) 高三一輪(文) 第三章 3-7正弦定理、余弦定理《教案》.doc》由會員分享,可在線閱讀,更多相關(guān)《2019-2020年人教A版高中數(shù)學(xué) 高三一輪(文) 第三章 3-7正弦定理、余弦定理《教案》.doc(16頁珍藏版)》請在裝配圖網(wǎng)上搜索。
2019-2020年人教A版高中數(shù)學(xué) 高三一輪(文) 第三章 3-7正弦定理、余弦定理《教案》 1.正弦、余弦定理 在△ABC中,若角A,B,C所對的邊分別是a,b,c,R為△ABC外接圓半徑,則 定理 正弦定理 余弦定理 內(nèi)容 ===2R a2=b2+c2-2bccos A; b2=c2+a2-2cacos B; c2=a2+b2-2abcos C 變形 (1)a=2Rsin A, b=2Rsin B,c=2Rsin C; (2)sin A=,sin B=,sin C=; (3)a∶b∶c=sin A∶sin B∶sin C; (4)asin B=bsin A,bsin C=csin B,asin C=csin A (5)cos A= cos B=; cos C= 2.S△ABC=absin C=bcsin A=acsin B==(a+b+c)r(r是三角形內(nèi)切圓的半徑),并可由此計算R、r. 3.在△ABC中,已知a、b和A時,解的情況如下: A為銳角 A為鈍角或直角 圖形 關(guān)系式 a=bsin A bsin Ab 解的個數(shù) 一解 兩解 一解 一解 【思考辨析】 判斷下面結(jié)論是否正確(請在括號中打“√”或“”) (1)在△ABC中,A>B必有sin A>sin B.( √ ) (2)若滿足條件C=60,AB=,BC=a的△ABC有兩個,那么a的取值范圍是(,2).( √ ) (3)若△ABC中,acos B=bcos A,則△ABC是等腰三角形.( √ ) (4)在△ABC中,tan A=a2,tan B=b2,那么△ABC是等腰三角形.( ) (5)當b2+c2-a2>0時,三角形ABC為銳角三角形;當b2+c2-a2=0時,三角形為直角三角形;當b2+c2-a2<0時,三角形為鈍角三角形.( ) (6)在△ABC中,AB=,AC=1,B=30,則△ABC的面積等于.( ) 1.(xx湖南改編)在銳角△ABC中,角A,B所對的邊長分別為a,b,若2asin B=b,則角A= . 答案 解析 在△ABC中,利用正弦定理得 2sin Asin B=sin B,∴sin A=. 又A為銳角,∴A=. 2.在△ABC中,若sin2A+sin2B- 1.請仔細閱讀文檔,確保文檔完整性,對于不預(yù)覽、不比對內(nèi)容而直接下載帶來的問題本站不予受理。
- 2.下載的文檔,不會出現(xiàn)我們的網(wǎng)址水印。
- 3、該文檔所得收入(下載+內(nèi)容+預(yù)覽)歸上傳者、原創(chuàng)作者;如果您是本文檔原作者,請點此認領(lǐng)!既往收益都歸您。
下載文檔到電腦,查找使用更方便
9.9 積分
下載 |
- 配套講稿:
如PPT文件的首頁顯示word圖標,表示該PPT已包含配套word講稿。雙擊word圖標可打開word文檔。
- 特殊限制:
部分文檔作品中含有的國旗、國徽等圖片,僅作為作品整體效果示例展示,禁止商用。設(shè)計者僅對作品中獨創(chuàng)性部分享有著作權(quán)。
- 關(guān) 鍵 詞:
- 教案 2019-2020年人教A版高中數(shù)學(xué) 高三一輪文 第三章 3-7正弦定理、余弦定理教案 2019 2020 年人教 高中數(shù)學(xué) 一輪 第三 正弦 定理 余弦
鏈接地址:http://m.zhongcaozhi.com.cn/p-6125428.html