(通用版)2019版高考數(shù)學(xué)二輪復(fù)習(xí) 第一部分 第三層級(jí) 難點(diǎn)自選 專(zhuān)題三“圓錐曲線”壓軸大題的搶分策略講義 理(普通生含解析).doc
《(通用版)2019版高考數(shù)學(xué)二輪復(fù)習(xí) 第一部分 第三層級(jí) 難點(diǎn)自選 專(zhuān)題三“圓錐曲線”壓軸大題的搶分策略講義 理(普通生含解析).doc》由會(huì)員分享,可在線閱讀,更多相關(guān)《(通用版)2019版高考數(shù)學(xué)二輪復(fù)習(xí) 第一部分 第三層級(jí) 難點(diǎn)自選 專(zhuān)題三“圓錐曲線”壓軸大題的搶分策略講義 理(普通生含解析).doc(13頁(yè)珍藏版)》請(qǐng)?jiān)谘b配圖網(wǎng)上搜索。
難點(diǎn)自選專(zhuān)題三 “圓錐曲線”壓軸大題的搶分策略 [全國(guó)卷3年考情分析] 年份 全國(guó)卷Ⅰ 全國(guó)卷Ⅱ 全國(guó)卷Ⅲ 2018 直線的方程、直線與橢圓的位置關(guān)系、證明問(wèn)題T19 直線的方程、直線與拋物線的位置關(guān)系、圓的方程T19 直線與橢圓的位置關(guān)系、等差數(shù)列的證明T20 2017 橢圓的標(biāo)準(zhǔn)方程、直線與橢圓的位置關(guān)系、定點(diǎn)問(wèn)題T20 點(diǎn)的軌跡方程、橢圓方程、向量的數(shù)量積等T20 直線與拋物線的位置關(guān)系、直線的方程、圓的方程T20 2016 軌跡方程求法、直線與橢圓位置關(guān)系及范圍問(wèn)題T20 直線與橢圓的位置關(guān)系、面積問(wèn)題、范圍問(wèn)題T20 證明問(wèn)題、軌跡問(wèn)題、直線與拋物線的位置關(guān)系T20 解析幾何是數(shù)形結(jié)合的典范,是高中數(shù)學(xué)的主要知識(shí)板塊,是高考考查的重點(diǎn)知識(shí)之一,在解答題中一般會(huì)綜合考查直線、圓、圓錐曲線等.試題難度較大,多以壓軸題出現(xiàn). 解答題的熱點(diǎn)題型有: (1)直線與圓錐曲線位置關(guān)系;(2)圓錐曲線中定點(diǎn)、定值、最值及范圍的求解;(3)圓錐曲線中的判斷與證明. 考法策略(一) 依據(jù)關(guān)系來(lái)證明 [典例] (2018全國(guó)卷Ⅰ)設(shè)橢圓C:+y2=1的右焦點(diǎn)為F,過(guò)F的直線l與C交于A,B兩點(diǎn),點(diǎn)M的坐標(biāo)為(2,0). (1)當(dāng)l與x軸垂直時(shí),求直線AM的方程; (2)設(shè)O為坐標(biāo)原點(diǎn),證明:∠OMA=∠OMB. [解] (1)由已知得F(1,0),l的方程為x=1. 則點(diǎn)A的坐標(biāo)為或. 又M(2,0), 所以直線AM的方程為y=-x+或y=x-, 即x+y-2=0或x-y-2=0. (2)證明:當(dāng)l與x軸重合時(shí),∠OMA=∠OMB=0. 當(dāng)l與x軸垂直時(shí),OM為AB的垂直平分線, 所以∠OMA=∠OMB. 當(dāng)l與x軸不重合也不垂直時(shí),設(shè)l的方程為 y=k(x-1)(k≠0),A(x1,y1),B(x2,y2), 則x1<,x2<,直線MA,MB的斜率之和為 kMA+kMB=+. 由y1=kx1-k,y2=kx2-k, 得kMA+kMB=. 將y=k(x-1)代入+y2=1, 得(2k2+1)x2-4k2x+2k2-2=0, 所以x1+x2=,x1x2=. 則2kx1x2-3k(x1+x2)+4k ==0. 從而kMA+kMB=0, 故MA,MB的傾斜角互補(bǔ). 所以∠OMA=∠OMB. 綜上,∠OMA=∠OMB成立. [題后悟通] 幾何證明問(wèn)題的解題策略 (1)圓錐曲線中的證明問(wèn)題,主要有兩類(lèi):一是證明點(diǎn)、直線、曲線等幾何元素中的位置關(guān)系,如:某點(diǎn)在某直線上、某直線經(jīng)過(guò)某個(gè)點(diǎn)、某兩條直線平行或垂直等;二是證明直線與圓錐曲線中的一些數(shù)量關(guān)系(相等或不等). (2)解決證明問(wèn)題時(shí),主要根據(jù)直線、圓錐曲線的性質(zhì)、直線與圓錐曲線的位置關(guān)系等,通過(guò)相關(guān)的性質(zhì)應(yīng)用、代數(shù)式的恒等變形以及必要的數(shù)值計(jì)算等進(jìn)行證明. [應(yīng)用體驗(yàn)] 1.設(shè)橢圓E的方程為+=1(a>b>0),點(diǎn)O為坐標(biāo)原點(diǎn),點(diǎn)A的坐標(biāo)為(a,0),點(diǎn)B的坐標(biāo)為(0,b),點(diǎn)M在線段AB上,滿足|BM|=2|MA|,直線OM的斜率為. (1)求E的離心率e; (2)設(shè)點(diǎn)C的坐標(biāo)為(0,-b),N為線段AC的中點(diǎn),證明:MN⊥AB. 解:(1)由題設(shè)條件知,點(diǎn)M的坐標(biāo)為, 又kOM=,從而=. 進(jìn)而得a=b,c==2b,故e==. (2)證明:由N是AC的中點(diǎn)知,點(diǎn)N的坐標(biāo)為,可得=.又=(-a,b), 從而有=-a2+b2=(5b2-a2). 由(1)可知a2=5b2, 所以=0,故MN⊥AB. 考法策略(二) 巧妙消元證定值 [典例] 已知橢圓C:+=1(a>b>0),過(guò)A(2,0),B(0,1)兩點(diǎn). (1)求橢圓C的方程及離心率; (2)設(shè)P為第三象限內(nèi)一點(diǎn)且在橢圓C上,直線PA與y軸交于點(diǎn)M,直線PB與x軸交于點(diǎn)N,求證:四邊形ABNM的面積為定值. [解] (1)由題意得,a=2,b=1, 所以橢圓C的方程為+y2=1. 又c==,所以離心率e==. (2)證明:設(shè)P(x0,y0)(x0<0,y0<0),則x+4y=4. 又A(2,0),B(0,1), 所以直線PA的方程為y=(x-2). 令x=0,得yM=-, 從而|BM|=1-yM=1+. 直線PB的方程為y=x+1. 令y=0,得xN=-, 從而|AN|=2-xN=2+. 所以四邊形ABNM的面積S=|AN||BM| = = ==2. 從而四邊形ABNM的面積為定值. [題后悟通] 解答圓錐曲線的定值問(wèn)題的策略 (1)從特殊情形開(kāi)始,求出定值,再證明該值與變量無(wú)關(guān); (2)采用推理、計(jì)算、消元得定值.消元的常用方法為整體消元(如本例)、選擇消元、對(duì)稱消元等. [應(yīng)用體驗(yàn)] 2.(2019屆高三湘東五校聯(lián)考)已知橢圓C的中心在原點(diǎn),離心率等于,它的一個(gè)短軸端點(diǎn)恰好是拋物線x2=8y的焦點(diǎn). (1)求橢圓C的方程; (2)如圖,已知P(2,3),Q(2,-3)是橢圓上的兩點(diǎn),A,B是橢圓上位于直線PQ兩側(cè)的動(dòng)點(diǎn).當(dāng)A,B運(yùn)動(dòng)時(shí),滿足∠APQ=∠BPQ,試問(wèn)直線AB的斜率是否為定值?請(qǐng)說(shuō)明理由. 解:(1)由題意知橢圓的焦點(diǎn)在x軸上, 設(shè)橢圓C的方程為+=1(a>b>0), 則b=2. 由=,a2=c2+b2,得a=4, ∴橢圓C的方程為+=1. (2)直線AB的斜率是定值,理由如下: 設(shè)A(x1,y1),B(x2,y2). ∵∠APQ=∠BPQ,∴直線PA,PB的斜率之和為0, 設(shè)直線PA的斜率為k,則直線PB的斜率為-k,直線PA的方程為y-3=k(x-2), 由 得(3+4k2)x2+8k(3-2k)x+4(3-2k)2-48=0, ∴x1+2=, 將k換成-k可得x2+2==, ∴x1+x2=,x1-x2=, ∴kAB== ==, ∴直線AB的斜率為定值. 考法策略(三) 構(gòu)造函數(shù)求最值 [典例] 在Rt△ABC中,∠BAC=90,A(0,2),B(0,-2),S△ABC=.動(dòng)點(diǎn)P的軌跡為曲線E,曲線E過(guò)點(diǎn)C且滿足|PA|+|PB|的值為常數(shù). (1)求曲線E的方程. (2)過(guò)點(diǎn)Q(-2,0)的直線與曲線E總有公共點(diǎn),以點(diǎn)M(0,-3)為圓心的圓M與該直線總相切,求圓M的最大面積. [解] (1)由已知|AB|=4, S△ABC=|AB||AC|=, 所以|AC|=. 因?yàn)閨PA|+|PB|=|CA|+|CB|=6>|AB|=4, 所以曲線E是以點(diǎn)A,B為焦點(diǎn)的橢圓且2a=6,2c=4. 所以a=3,c=2?b=1, 所以曲線E的方程為x2+=1. (2)由題意可設(shè)直線方程為y=k(x+2), 聯(lián)立消去y,得(9+k2)x2+4k2x+4k2-9=0, 則Δ=(4k2)2-4(9+k2)(4k2-9)≥0,解得k2≤3. 因?yàn)橐渣c(diǎn)M(0,-3)為圓心的圓M與該直線總相切, 所以半徑r=. 令r2=f(k)=, 則f′(k)= =. 由f′(k)=0,得k=或k=-, 當(dāng)k=時(shí)符合題意,此時(shí)可得r==. 即所求圓的面積的最大值是13π. [題后悟通] 最值問(wèn)題的2種基本解法 幾何法 根據(jù)已知的幾何量之間的相互關(guān)系、平面幾何和解析幾何知識(shí)加以解決的(如拋物線上的點(diǎn)到某個(gè)定點(diǎn)和焦點(diǎn)的距離之和、光線反射問(wèn)題等在選擇題、填空題中經(jīng)??疾? 代數(shù)法 建立求解目標(biāo)關(guān)于某個(gè)(或兩個(gè))變量的函數(shù),通過(guò)求解函數(shù)的最值解決的(普通方法、基本不等式方法、導(dǎo)數(shù)方法(如本例)等) [應(yīng)用體驗(yàn)] 3.(2018合肥一檢)在平面直角坐標(biāo)系中,圓O交x軸于點(diǎn)F1,F(xiàn)2,交y軸于點(diǎn)B1,B2.以B1,B2為頂點(diǎn),F(xiàn)1,F(xiàn)2分別為左、右焦點(diǎn)的橢圓E恰好經(jīng)過(guò)點(diǎn). (1)求橢圓E的方程; (2)設(shè)經(jīng)過(guò)點(diǎn)(-2,0)的直線l與橢圓E交于M,N兩點(diǎn),求△F2MN面積的最大值. 解:(1)由已知可得,橢圓E的焦點(diǎn)在x軸上. 設(shè)橢圓E的標(biāo)準(zhǔn)方程為+=1(a>b>0), 焦距為2c,則b=c, ∴a2=b2+c2=2b2, ∴橢圓E的方程為+=1. 又橢圓E過(guò)點(diǎn),∴+=1,解得b2=1. ∴橢圓E的方程為+y2=1. (2)∵點(diǎn)(-2,0)在橢圓E外,∴直線l的斜率存在. 設(shè)直線l的方程為y=k(x+2),M(x1,y1),N(x2,y2). 由消去y得, (1+2k2)x2+8k2x+8k2-2=0. 由Δ>0,得0- 1.請(qǐng)仔細(xì)閱讀文檔,確保文檔完整性,對(duì)于不預(yù)覽、不比對(duì)內(nèi)容而直接下載帶來(lái)的問(wèn)題本站不予受理。
- 2.下載的文檔,不會(huì)出現(xiàn)我們的網(wǎng)址水印。
- 3、該文檔所得收入(下載+內(nèi)容+預(yù)覽)歸上傳者、原創(chuàng)作者;如果您是本文檔原作者,請(qǐng)點(diǎn)此認(rèn)領(lǐng)!既往收益都?xì)w您。
下載文檔到電腦,查找使用更方便
9.9 積分
下載 |
- 配套講稿:
如PPT文件的首頁(yè)顯示word圖標(biāo),表示該P(yáng)PT已包含配套word講稿。雙擊word圖標(biāo)可打開(kāi)word文檔。
- 特殊限制:
部分文檔作品中含有的國(guó)旗、國(guó)徽等圖片,僅作為作品整體效果示例展示,禁止商用。設(shè)計(jì)者僅對(duì)作品中獨(dú)創(chuàng)性部分享有著作權(quán)。
- 關(guān) 鍵 詞:
- 通用版2019版高考數(shù)學(xué)二輪復(fù)習(xí) 第一部分 第三層級(jí) 難點(diǎn)自選 專(zhuān)題三“圓錐曲線”壓軸大題的搶分策略講義 理普通生,含解析 通用版 2019 高考 數(shù)學(xué) 二輪 復(fù)習(xí) 第一 部分 第三 層級(jí) 難點(diǎn)
鏈接地址:http://m.zhongcaozhi.com.cn/p-6134047.html