新版高考數(shù)學(xué)一輪復(fù)習(xí)學(xué)案訓(xùn)練課件: 第7章 立體幾何初步 第2節(jié) 簡(jiǎn)單幾何體的表面積與體積學(xué)案 文 北師大版
《新版高考數(shù)學(xué)一輪復(fù)習(xí)學(xué)案訓(xùn)練課件: 第7章 立體幾何初步 第2節(jié) 簡(jiǎn)單幾何體的表面積與體積學(xué)案 文 北師大版》由會(huì)員分享,可在線閱讀,更多相關(guān)《新版高考數(shù)學(xué)一輪復(fù)習(xí)學(xué)案訓(xùn)練課件: 第7章 立體幾何初步 第2節(jié) 簡(jiǎn)單幾何體的表面積與體積學(xué)案 文 北師大版(10頁珍藏版)》請(qǐng)?jiān)谘b配圖網(wǎng)上搜索。
1、 1
2、 1 第二節(jié) 簡(jiǎn)單幾何體的表面積與體積 [考綱傳真] 了解球、棱柱、棱錐、臺(tái)的表面積和體積的計(jì)算公式. (對(duì)應(yīng)學(xué)生用書第95頁) [基礎(chǔ)知識(shí)填充] 1.多面體的表(側(cè))面積 因?yàn)槎嗝骟w的各個(gè)面都是平面,所以多面體的側(cè)面積就是所有側(cè)面的面積之和,表面積是側(cè)面積與底面面積之和. 2.圓柱、圓錐、圓臺(tái)的側(cè)面展開圖及側(cè)面積公式 圓柱 圓錐 圓臺(tái) 側(cè)面 展
3、開圖 側(cè)面 積公式 S圓柱側(cè)=2πrl S圓錐側(cè)=πrl S圓臺(tái)側(cè)= π(r1+r2)l 3. 柱、錐、臺(tái)和球的表面積和體積 名稱 幾何體 表面積 體積 柱體(棱柱和圓柱) S表面積=S側(cè)+2S底 V=Sh 錐體(棱錐和圓錐) S表面積=S側(cè)+S底 V=Sh 臺(tái)體(棱臺(tái)和圓臺(tái)) S表面積=S側(cè)+S上+S下 V=(S上+S下+)h 球 S=4πR2 V=πR3 [知識(shí)拓展] 1.正四面體的表面積與體積 棱長(zhǎng)為a的正四面體,其表面積為a2,體積為a3. 2.幾個(gè)與球有關(guān)的切、接常用結(jié)論 (1)正方體的棱長(zhǎng)為a
4、,球的半徑為R, ①若球?yàn)檎襟w的外接球,則2R=a; ②若球?yàn)檎襟w的內(nèi)切球,則2R=A. ③若球與正方體的各棱相切,則2R=A. (2)若長(zhǎng)方體的同一頂點(diǎn)的三條棱長(zhǎng)分別為a,b,c,外接球的半徑為R,則2R=. (3)正四面體的外接球與內(nèi)切球的半徑之比為3∶1,棱長(zhǎng)為a的正四面體,其內(nèi)切球半徑R內(nèi)=a,外接球半徑R外=A. [基本能力自測(cè)] 1.(思考辨析)判斷下列結(jié)論的正誤.(正確的打“√”,錯(cuò)誤的打“×”) (1)錐體的體積等于底面面積與高之積.( ) (2)球的體積之比等于半徑比的平方.( ) (3)臺(tái)體的體積可轉(zhuǎn)化為兩個(gè)錐體的體積之差.(
5、) (4)已知球O的半徑為R,其內(nèi)接正方體的邊長(zhǎng)為a,則R=A.( ) [答案] (1)× (2)× (3)√ (4)√ 2.(教材改編)已知圓錐的表面積等于12π cm2,其側(cè)面展開圖是一個(gè)半圓,則底面圓的半徑為( ) A.1 cm B.2 cm C.3 cm D. cm B [S表=πr2+πrl=πr2+πr·2r=3πr2=12π,∴r2=4, ∴r=2(cm).] 3.(20xx·全國(guó)卷Ⅰ)《九章算術(shù)》是我國(guó)古代內(nèi)容極為豐富的數(shù)學(xué)名著,書中有如下問題:“今有委米依垣內(nèi)角,下周八尺,高五尺.問:積及為米幾何?”其意思為:“在屋內(nèi)墻角處堆
6、放米(如圖7-2-1,米堆為一個(gè)圓錐的四分之一),米堆底部的弧長(zhǎng)為8尺,米堆的高為5尺,問米堆的體積和堆放的米各為多少?”已知1斛米的體積約為1.62立方尺,圓周率約為3,估算出堆放的米約有( ) 圖7-2-1 A.14斛 B.22斛 C.36斛 D.66斛 B [設(shè)米堆的底面半徑為r尺,則r=8,所以r=,所以米堆的體積為V=×π·r2·5=×2×5≈(立方尺).故堆放的米約有÷1.62≈22(斛).故選B.] 4.(20xx·全國(guó)卷Ⅱ)長(zhǎng)方體的長(zhǎng)、寬、高分別為3,2,1,其頂點(diǎn)都在球O的球面上,則球O的表面積為________. 14π [∵長(zhǎng)方體的頂點(diǎn)都在球
7、O的球面上, ∴長(zhǎng)方體的體對(duì)角線的長(zhǎng)度就是其外接球的直徑. 設(shè)球的半徑為R, 則2R==. ∴球O的表面積為S=4πR2=4π×2=14π.] 5.(20xx·鄭州質(zhì)檢)某幾何體的三視圖如圖7-2-2所示(單位:cm),則該幾何體的體積是________cm3. 【導(dǎo)學(xué)號(hào):00090233】 圖7-2-2 [由三視圖可知該幾何體是由棱長(zhǎng)為2 cm的正方體與底面為邊長(zhǎng)為2 cm的正方形、高為2 cm的四棱錐組成,V=V正方體+V四棱錐=8 cm3+ cm3= cm3.] (對(duì)應(yīng)學(xué)生用書第96頁) 簡(jiǎn)單幾何體的表面積 (1)某幾何體的三視圖如圖7
8、-2-3所示,則該幾何體的表面積等于( ) 圖7-2-3 A.8+2 B.11+2 C.14+2 D.15 (2)(20xx·江西七校聯(lián)考)若某空間幾何體的三視圖如圖7-2-4所示,則該幾何體的表面積是( ) 【導(dǎo)學(xué)號(hào):00090234】 圖7-2-4 A.48+π B.48-π C.48+2π D.48-2π (1)B (2)A [(1)由三視圖知,該幾何體是一個(gè)直四棱柱,上、下底面為直角梯形,如圖所示. 直角梯形斜腰長(zhǎng)為=,所以底面周長(zhǎng)為4+,側(cè)面積為4+2+2+2=8+2,兩底面的面積和為2××1×(1+2)=3. 所以該幾何體的表
9、面積為8+2+3=11+2. (2)該幾何體是正四棱柱挖去了一個(gè)半球,正四棱柱的底面是正方形(邊長(zhǎng)為2),高為5,半球的半徑是1,那么該幾何體的表面積為S=2×2×2+2×4×5-π×12+2π×12=48+π,故選A. [規(guī)律方法] 1.(1)多面體與旋轉(zhuǎn)體的表面積等于側(cè)面面積與底面面積之和.(2)簡(jiǎn)單組合體:應(yīng)搞清各構(gòu)成部分,并注意重合部分的處理. 2.若以三視圖的形式給出,解題的關(guān)鍵是對(duì)給出的三視圖進(jìn)行分析,從中發(fā)現(xiàn)幾何體中各元素間的位置關(guān)系及數(shù)量關(guān)系,得到幾何體的直觀圖,然后根據(jù)條件求解. [變式訓(xùn)練1] (1)(20xx·全國(guó)卷Ⅲ)如圖7-2-5,網(wǎng)格紙上小正方形的邊長(zhǎng)
10、為1,粗實(shí)線畫出的是某多面體的三視圖,則該多面體的表面積為( ) 圖7-2-5 A.18+36 B.54+18 C.90 D.81 (2)(20xx·全國(guó)卷Ⅰ)如圖7-2-6,某幾何體的三視圖是三個(gè)半徑相等的圓及每個(gè)圓中兩條互相垂直的半徑.若該幾何體的體積是,則它的表面積是( ) 圖7-2-6 A.17π B.18π C.20π D.28π (1)B (2)A [(1)由三視圖可知該幾何體是底面為正方形的斜四棱柱,其中有兩個(gè)側(cè)面為矩形,另兩個(gè)側(cè)面為平行四邊形,則表面積為(3×3+3×6+3×3)×2=54+18.故選B. (2)由幾何體的三視圖可知,
11、該幾何體是一個(gè)球體去掉上半球的,得到的幾何體如圖.設(shè)球的半徑為R,則πR3-×πR3=π,解得R=2.因此它的表面積為×4πR2+πR2=17π.故選A.] 簡(jiǎn)單幾何體的體積 (1)在梯形ABCD中,∠ABC=,AD∥BC,BC=2AD=2AB=2.將梯形ABCD繞AD所在的直線旋轉(zhuǎn)一周而形成的曲面所圍成的幾何體的體積為( ) A. B. C. D.2π (2)(20xx·全國(guó)卷Ⅱ)如圖7-2-7,網(wǎng)格紙上小正方形的邊長(zhǎng)為1,粗實(shí)線畫出的是某幾何體的三視圖,該幾何體由一平面將一圓柱截去一部分后所得,則該幾何體的體積為( ) 圖7-2-
12、7 A.90π B.63π C.42π D.36π (1)C (2)B [(1)過點(diǎn)C作CE垂直AD所在直線于點(diǎn)E,梯形ABCD繞AD所在直線旋轉(zhuǎn)一周而形成的旋轉(zhuǎn)體是由以線段AB的長(zhǎng)為底面圓半徑,線段BC為母線的圓柱挖去以線段CE的長(zhǎng)為底面圓半徑,ED為高的圓錐而得到的,如圖所示. 由于V圓柱=π·AB2·BC=π×12×2=2π, V圓錐=π·CE2·DE=π·12×(2-1)=, 所以該幾何體的體積V=V圓柱-V圓錐=2π-=. (2)法一:(割補(bǔ)法)如圖所示,由幾何體的三視圖,可知該幾何體是一個(gè)圓柱被截去上面虛線部分所得. 將圓柱補(bǔ)全,并將圓柱體從
13、點(diǎn)A處水平分成上下兩部分.由圖可知,該幾何體的體積等于下部分圓柱的體積加上上部分圓柱體積的,所以該幾何體的體積V=π×32×4+π×32×6×=63π. 故選B. 法二:(估值法)由題意,知V圓柱<V幾何體<V圓柱.又V圓柱=π×32×10=90π,∴45π<V幾何體<90π.觀察選項(xiàng)可知只有63π符合. 故選B.] [規(guī)律方法] 1.若所給定的幾何體是柱體、錐體或臺(tái)體,則可直接利用公式進(jìn)行求解. 2.若所給定的幾何體的體積不能直接利用公式得出,則常用轉(zhuǎn)換法(轉(zhuǎn)換的原則是使底面面積和高易求)、分割法、補(bǔ)形法等方法進(jìn)行求解. 3.若以三視圖的形式給出幾何體,則應(yīng)先根據(jù)三視
14、圖得到幾何體的直觀圖,然后根據(jù)條件求解. [變式訓(xùn)練2] (1)(20xx·唐山模擬)一個(gè)幾何體的三視圖如圖7-2-8所示,則其體積為( ) 圖7-2-8 A.π+2 B.2π+4 C.π+4 D.2π+2 (2)(20xx·天津高考)已知一個(gè)四棱錐的底面是平行四邊形,該四棱錐的三視圖如圖7-2-9所示(單位:m),則該四棱錐的體積為________m3. 【導(dǎo)學(xué)號(hào):00090235】 圖7-2-9 (1)A (2)2 [(1)該幾何體為組合體,左邊為三棱柱,右邊為半圓柱,其體積V=×2×1×2+π×12×2=2+π.故選A. (2)由三視圖知,四棱錐的
15、高為3,底面平行四邊形的一邊長(zhǎng)為2,對(duì)應(yīng)高為1,所以其體積V=Sh=×2×1×3=2.] 多面體與球的切、接問題 (20xx·全國(guó)卷Ⅲ)在封閉的直三棱柱ABC-A1B1C1內(nèi)有一個(gè)體積為V的球.若AB⊥BC,AB=6,BC=8,AA1=3,則V的最大值是( ) A.4π B. C.6π D. B [由AB⊥BC,AB=6,BC=8,得AC=10,要使球的體積V最大,則球與直三棱柱的部分面相切,若球與三個(gè)側(cè)面相切,設(shè)底面△ABC的內(nèi)切圓的半徑為r.則×6×8=×(6+8+10)·r,則r=2. 此時(shí)2r=4>3,不合題意. 因此球與三棱柱的
16、上、下底面相切時(shí),球的半徑R最大. 由2R=3,即R=. 故球的最大體積V=πR3=π.] [母題探究1] 若本例中的條件變?yōu)椤爸比庵鵄BC-A1B1C1的6個(gè)頂點(diǎn)都在球O的球面上”,若AB=3,AC=4,AB⊥AC,AA1=12,求球O的表面積. [解] 將直三棱柱補(bǔ)形為長(zhǎng)方體ABEC-A1B1E1C1, 則球O是長(zhǎng)方體ABEC-A1B1E1C1的外接球, 所以體對(duì)角線BC1的長(zhǎng)為球O的直徑. 因此2R==13, 故S球=4πR2=169π. [母題探究2] 若本例中的條件變?yōu)椤罢睦忮F的頂點(diǎn)都在球O的球面上”,若該棱錐的高為4,底面邊長(zhǎng)為2,求該球的體積.
17、 [解] 如圖,設(shè)球心為O,半徑為r, 則在Rt△AFO中,(4-r)2+()2=r2,解得r=, 則球O的體積V球=πr3=π×3=. [規(guī)律方法] 1.與球有關(guān)的組合體問題,一種是內(nèi)切,一種是外接.球與旋轉(zhuǎn)體的組合通常是作它們的軸截面解題,球與多面體的組合,通過多面體的一條側(cè)棱和球心,或“切點(diǎn)”“接點(diǎn)”作出截面圖,把空間問題化歸為平面問題. 2.若球面上四點(diǎn)P,A,B,C中PA,PB,PC兩兩垂直或三棱錐的三條側(cè)棱兩兩垂直,可構(gòu)造長(zhǎng)方體或正方體確定直徑解決外接問題. [變式訓(xùn)練3] (1)(20xx·全國(guó)卷Ⅱ)已知A,B是球O的球面上兩點(diǎn),∠AOB=90°,C為該
18、球面上的動(dòng)點(diǎn).若三棱錐O-ABC體積的最大值為36,則球O的表面積為( ) A.36π B.64π C.144π D.256π (2)(20xx·全國(guó)卷Ⅲ)已知圓柱的高為1,它的兩個(gè)底面的圓周在直徑為2的同一個(gè)球的球面上,則該圓柱的體積為( ) 【導(dǎo)學(xué)號(hào):00090236】 A.π B. C. D. (1)C (2)B [(1)如圖,設(shè)球的半徑為R,∵∠AOB=90°, ∴S△AOB=R2. ∵VO-ABC=VC-AOB,而△AOB面積為定值, ∴當(dāng)點(diǎn)C到平面AOB的距離最大時(shí),VO-ABC最大, ∴當(dāng)C為與球的大圓面AOB垂直的直徑的端點(diǎn)時(shí),體積VO-ABC最大為×R2×R=36, ∴R=6,∴球O的表面積為4πR2=4π×62=144π. 故選C. (2)設(shè)圓柱的底面半徑為r,球的半徑為R,且R=1,由圓柱兩個(gè)底面的圓周在同一個(gè)球的球面上可知,r,R及圓柱的高的一半構(gòu)成直角三角形. ∴r==. ∴圓柱的體積為V=πr2h=π×1=. 故選B.]
- 溫馨提示:
1: 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
2: 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
3.本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
5. 裝配圖網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 物業(yè)管理制度:常見突發(fā)緊急事件應(yīng)急處置程序和方法
- 某物業(yè)公司冬季除雪工作應(yīng)急預(yù)案范文
- 物業(yè)管理制度:小區(qū)日常巡查工作規(guī)程
- 物業(yè)管理制度:設(shè)備設(shè)施故障應(yīng)急預(yù)案
- 某物業(yè)公司小區(qū)地下停車場(chǎng)管理制度
- 某物業(yè)公司巡查、檢查工作內(nèi)容、方法和要求
- 物業(yè)管理制度:安全防范十大應(yīng)急處理預(yù)案
- 物業(yè)公司巡查、檢查工作內(nèi)容、方法和要求
- 某物業(yè)公司保潔部門領(lǐng)班總結(jié)
- 某公司安全生產(chǎn)舉報(bào)獎(jiǎng)勵(lì)制度
- 物業(yè)管理:火情火災(zāi)應(yīng)急預(yù)案
- 某物業(yè)安保崗位職責(zé)
- 物業(yè)管理制度:節(jié)前工作重點(diǎn)總結(jié)
- 物業(yè)管理:某小區(qū)消防演習(xí)方案
- 某物業(yè)公司客服部工作職責(zé)