山東省齊河縣高考數(shù)學(xué)三輪沖刺 專(zhuān)題 計(jì)數(shù)原理練習(xí)(含解析).doc
《山東省齊河縣高考數(shù)學(xué)三輪沖刺 專(zhuān)題 計(jì)數(shù)原理練習(xí)(含解析).doc》由會(huì)員分享,可在線閱讀,更多相關(guān)《山東省齊河縣高考數(shù)學(xué)三輪沖刺 專(zhuān)題 計(jì)數(shù)原理練習(xí)(含解析).doc(10頁(yè)珍藏版)》請(qǐng)?jiān)谘b配圖網(wǎng)上搜索。
計(jì)數(shù)原理 一、選擇題(本大題共12小題,共60分) 1. 如圖,小明從街道的E處出發(fā),先到F處與小紅會(huì)合,再一起到位于G處的老年公寓參加志愿者活動(dòng),則小明到老年公寓可以選擇的最短路徑條數(shù)為( ) A. 24 B. 18 C. 12 D. 9 (正確答案)B 解:從E到F,每條東西向的街道被分成2段,每條南北向的街道被分成2段, 從E到F最短的走法,無(wú)論怎樣走,一定包括4段,其中2段方向相同,另2段方向相同, 每種最短走法,即是從4段中選出2段走東向的,選出2段走北向的,故共有C42C22=6種走法. 同理從F到G,最短的走法,有C31C22=3種走法. ∴小明到老年公寓可以選擇的最短路徑條數(shù)為63=18種走法. 故選:B. 從E到F最短的走法,無(wú)論怎樣走,一定包括4段,其中2段方向相同,另2段方向相同,每種最短走法,即是從4段中選出2段走東向的,選出2段走北向的,由組合數(shù)可得最短的走法,同理從F到G,最短的走法,有C31=3種走法,利用乘法原理可得結(jié)論. 本題考查排列組合的簡(jiǎn)單應(yīng)用,得出組成矩形的條件和最短走法是解決問(wèn)題的關(guān)鍵,屬基礎(chǔ)題 2. 某企業(yè)有4個(gè)分廠,新培訓(xùn)了一批6名技術(shù)人員,將這6名技術(shù)人員分配到各分廠,要求每個(gè)分廠至少1人,則不同的分配方案種數(shù)為( ) A. 1080 B. 480 C. 1560 D. 300 (正確答案)C 解:先把6名技術(shù)人員分成4組,每組至少一人. 若4個(gè)組的人數(shù)按3、1、1、1分配,則不同的分配方案有C63=20種不同的方法. 若4個(gè)組的人數(shù)為2、2、1、1,則不同的分配方案有C62C422!?C212!=45種不同的方法. 故所有的分組方法共有20+45=65種. 再把4個(gè)組的人分給4個(gè)分廠,不同的方法有65A44=1560種, 故選:C. 先把6名技術(shù)人員分成4組,每組至少一人,再把這4個(gè)組的人分給4個(gè)分廠,利用乘法原理,即可得出結(jié)論. 本題考查組合知識(shí)的運(yùn)用,考查學(xué)生分析解決問(wèn)題的能力,正確分組是關(guān)鍵. 3. 如圖所示的五個(gè)區(qū)域中,中心區(qū)域是一幅圖畫(huà),現(xiàn)要求在其余四個(gè)區(qū)域中涂色,有四種顏色可供選擇.要求每個(gè)區(qū)域只涂一種顏色,相鄰區(qū)域所涂顏色不同,則不同的涂色方法種數(shù)為( ) A. 84 B. 72 C. 64 D. 56 (正確答案)A 解:分兩種情況: (1)A、C不同色(注意:B、D可同色、也可不同色,D只要不與A、C同色,所以D可以從剩余的2中顏色中任意取一色):有4322=48種; (2)A、C同色(注意:B、D可同色、也可不同色,D只要不與A、C同色,所以D可以從剩余的3中顏色中任意取一色):有4313=36種. 共有84種, 故選:A 每個(gè)區(qū)域只涂一種顏色,相鄰區(qū)域顏色不相同,然后分類(lèi)研究,A、C不同色;A、C同色兩大類(lèi) 本題考查了區(qū)域涂色、種植花草作物是一類(lèi)題目.分類(lèi)要全要細(xì). 4. 用數(shù)字1,2,3,4,5組成的無(wú)重復(fù)數(shù)字的四位偶數(shù)的個(gè)數(shù)為( ) A. 8 B. 24 C. 48 D. 120 (正確答案)C 解:由題意知本題需要分步計(jì)數(shù), 2和4排在末位時(shí),共有A21=2種排法, 其余三位數(shù)從余下的四個(gè)數(shù)中任取三個(gè)有A43=432=24種排法, 根據(jù)由分步計(jì)數(shù)原理得到符合題意的偶數(shù)共有224=48(個(gè)). 故選C. 本題需要分步計(jì)數(shù),首先選擇2和4排在末位時(shí),共有A21種結(jié)果,再?gòu)挠嘞碌钠溆嗳粩?shù)從余下的四個(gè)數(shù)中任取三個(gè)有A43種結(jié)果,根據(jù)由分步計(jì)數(shù)原理得到符合題意的偶數(shù). 本題考查分步計(jì)數(shù)原理,是一個(gè)數(shù)字問(wèn)題,這種問(wèn)題是最典型的排列組合問(wèn)題,經(jīng)常出現(xiàn)限制條件,并且限制條件變化多樣,是一個(gè)易錯(cuò)題. 5. 6把椅子排成一排,3人隨機(jī)就座,任何兩人不相鄰的坐法種數(shù)為( ) A. 144 B. 120 C. 72 D. 24 (正確答案)D 解:使用“插空法“.第一步,三個(gè)人先坐成一排,有A33種,即全排,6種;第二步,由于三個(gè)人必須隔開(kāi),因此必須先在1號(hào)位置與2號(hào)位置之間擺放一張凳子,2號(hào)位置與3號(hào)位置之間擺放一張凳子,剩余一張凳子可以選擇三個(gè)人的左右共4個(gè)空擋,隨便擺放即可,即有C41種辦法.根據(jù)分步計(jì)數(shù)原理,64=24. 故選:D. 使用“插空法“.第一步,三個(gè)人先坐成一排,有A33種,即全排,6種;第二步,由于三個(gè)人必須隔開(kāi),因此必須先在1號(hào)位置與2號(hào)位置之間擺放一張凳子,2號(hào)位置與3號(hào)位置之間擺放一張凳子,剩余一張凳子可以選擇三個(gè)人的左右共4個(gè)空擋,隨便擺放即可,即有C41種辦法.根據(jù)分步計(jì)數(shù)原理可得結(jié)論. 本題考查排列知識(shí)的運(yùn)用,考查乘法原理,先排人,再插入椅子是關(guān)鍵. 6. 將4個(gè)紅球與2個(gè)藍(lán)球(這些球只有顏色不同,其他完全相同)放入一個(gè)33的格子狀木柜里(如圖所示),每個(gè)格至多放一個(gè)球,則“所有紅球均不位于相鄰格子”的放法共有( )種. 7. A. 30 B. 36 C. 60 D. 72 (正確答案)C 解:第一類(lèi),當(dāng)4個(gè)紅球在4個(gè)頂角的位置時(shí),藍(lán)球放在剩下5個(gè)格種任選兩個(gè),故有C52=10種,如圖 第二類(lèi),當(dāng)有一個(gè)紅球再最中間時(shí),其它三個(gè)紅球只能放在頂角位置,有出C43=4種,藍(lán)球放在剩下5個(gè)格種任選兩個(gè),C43C52=40種,如圖 第三類(lèi),當(dāng)4個(gè)紅球放在每外圍三個(gè)格的中間時(shí),藍(lán)球在剩下5個(gè)格種任選兩個(gè)有C52=10種,如圖 根據(jù)分類(lèi)計(jì)數(shù)原理,故有10+40+10=60. 故選:C. 對(duì)紅球的位置分類(lèi)討論:第一類(lèi),當(dāng)4個(gè)紅球在4個(gè)頂角的位置時(shí),藍(lán)球放在剩下5個(gè)格種任選兩個(gè);第二類(lèi),當(dāng)有一個(gè)紅球再最中間時(shí),其它三個(gè)紅球只能放在頂角位置,藍(lán)球放在剩下5個(gè)格種任選兩個(gè);第三類(lèi),當(dāng)4個(gè)紅球放在每外圍三個(gè)格的中間時(shí),藍(lán)球放在剩下5個(gè)格種任選兩個(gè),即可得出. 本題主要考查了分類(lèi)計(jì)數(shù)原理,關(guān)鍵是如何分類(lèi),屬于中檔題. 8. 4名學(xué)生參加3項(xiàng)不同的競(jìng)賽,每名學(xué)生必須參加其中的一項(xiàng)競(jìng)賽,有( )種不同的結(jié)果. A. 34 B. A43 C. C43 D. 43 (正確答案)A 解:由題意知本題是一個(gè)分步計(jì)數(shù)問(wèn)題, 首先第一名學(xué)生從三種不同的競(jìng)賽中選有三種不同的結(jié)果, 第二名學(xué)生從三種不同的競(jìng)賽中選有3種結(jié)果, 同理第三個(gè)和第四個(gè)同學(xué)從三種競(jìng)賽中選都有3種結(jié)果, ∴根據(jù)分步計(jì)數(shù)原理得到共有3333=34 故選A. 本題是一個(gè)分步計(jì)數(shù)問(wèn)題,首先第一名學(xué)生從三種不同的競(jìng)賽中選有三種不同的結(jié)果,第二名學(xué)生從三種不同的競(jìng)賽中選有3種結(jié)果,同理第三個(gè)和第四個(gè)同學(xué)從三種競(jìng)賽中選都有3種結(jié)果,相乘得到結(jié)果數(shù). 解答此題,先考慮學(xué)生問(wèn)題還是競(jìng)賽問(wèn)題才能很好地完成這件事,易把兩問(wèn)結(jié)果混淆;另外,每位學(xué)生選定競(jìng)賽或每項(xiàng)競(jìng)賽選定學(xué)生這一做法對(duì)完成整個(gè)事件的影響理解錯(cuò)誤導(dǎo)致原理弄錯(cuò),其原因是對(duì)題意理解不清,對(duì)事情完成的方式有錯(cuò)誤的認(rèn)識(shí). 9. 某班新年聯(lián)歡會(huì)原定的6個(gè)節(jié)目已排成節(jié)目單,開(kāi)演前又增加了3個(gè)新節(jié)目,如果將這3個(gè)節(jié)目插入節(jié)目單中,那么不同的插法種數(shù)為( ) A. 504 B. 210 C. 336 D. 120 (正確答案)A 解:∵由題意知將這3個(gè)節(jié)目插入節(jié)目單中,原來(lái)的節(jié)目順序不變, ∴三個(gè)新節(jié)目一個(gè)一個(gè)插入節(jié)目單中, 原來(lái)的6個(gè)節(jié)目形成7個(gè)空,在這7個(gè)位置上插入第一個(gè)節(jié)目,共有7種結(jié)果, 原來(lái)的6個(gè)和剛插入的一個(gè),形成8個(gè)空,有8種結(jié)果,同理最后一個(gè)節(jié)目有9種結(jié)果 根據(jù)分步計(jì)數(shù)原理得到共有插法種數(shù)為789=504, 故選A. 由題意知將這3個(gè)節(jié)目插入節(jié)目單中,原來(lái)的節(jié)目順序不變,三個(gè)新節(jié)目一個(gè)一個(gè)插入節(jié)目單中,原來(lái)的6個(gè)節(jié)目形成7個(gè)空,在這7個(gè)位置上插入第一個(gè)節(jié)目,共有7種結(jié)果;用同樣的方法插入第二個(gè)和第三個(gè)節(jié)目,根據(jù)分步乘法計(jì)數(shù)原理得到結(jié)果. 本題考查分步計(jì)數(shù)原理,是一個(gè)實(shí)際問(wèn)題,解題時(shí)注意題目條件中對(duì)于原來(lái)6個(gè)節(jié)目的順序要求不變,所以采用插入法. 10. 從5名學(xué)生中選出4名分別參加A,B,C,D四科競(jìng)賽,其中甲不能參加A,B兩科競(jìng)賽,則不同的參賽方案種數(shù)為( ) A. 24 B. 48 C. 72 D. 120 (正確答案)C 解:∵從5名學(xué)生中選出4名分別參加A,B,C,D四科競(jìng)賽,其中甲不能參加A,B兩科競(jìng)賽, ∴可分為以下幾步: (1)先從5人中選出4人,分為兩種情況:有甲參加和無(wú)甲參加. 有甲參加時(shí),選法有:C43=4種; 無(wú)甲參加時(shí),選法有:C44=1種. (2)安排科目 有甲參加時(shí),先排甲,再排其它人.排法有:A21A33=12種. 無(wú)甲參加時(shí),排法有A44=24種. 綜上,412+124=72. ∴不同的參賽方案種數(shù)為72. 故答案為:72. 本題可以先從5人中選出4人,分為有甲參加和無(wú)甲參加兩種情況,再將甲安排參加C、D科目,然后安排其它學(xué)生,通過(guò)乘法原理,得到本題的結(jié)論 本題是一道排列組合題,要考慮特殊元素,本題還考查了分類(lèi)討論的數(shù)學(xué)思想,本題有一定難度,屬于中檔題. 11. 考生甲填報(bào)某高校專(zhuān)業(yè)意向,打算從5個(gè)專(zhuān)業(yè)中挑選3個(gè),分別作為第一、第二、第三志愿,則不同的填法有( ) A. 10種 B. 60種 C. 125種 D. 243種 (正確答案)B 解:從中選3個(gè)并分配到3個(gè)志愿中,故有A53=60種, 故選:B. 從中選3個(gè)并分配到3個(gè)志愿中,問(wèn)題得以解決. 本題考查了簡(jiǎn)單的排列組合問(wèn)題,關(guān)鍵是分清是排列還是組合,屬于基礎(chǔ)題. 12. 某次聯(lián)歡會(huì)要安排3個(gè)歌舞類(lèi)節(jié)目,2個(gè)小品類(lèi)節(jié)目和1個(gè)相聲類(lèi)節(jié)目的演出順序,則同類(lèi)節(jié)目不相鄰的排法種數(shù)是( ) A. 72 B. 120 C. 144 D. 168 (正確答案)B 解:分2步進(jìn)行分析: 1、先將3個(gè)歌舞類(lèi)節(jié)目全排列,有A33=6種情況,排好后,有4個(gè)空位, 2、因?yàn)?個(gè)歌舞類(lèi)節(jié)目不能相鄰,則中間2個(gè)空位必須安排2個(gè)節(jié)目, 分2種情況討論: ①將中間2個(gè)空位安排1個(gè)小品類(lèi)節(jié)目和1個(gè)相聲類(lèi)節(jié)目,有C21A22=4種情況, 排好后,最后1個(gè)小品類(lèi)節(jié)目放在2端,有2種情況, 此時(shí)同類(lèi)節(jié)目不相鄰的排法種數(shù)是642=48種; ②將中間2個(gè)空位安排2個(gè)小品類(lèi)節(jié)目,有A22=2種情況, 排好后,有6個(gè)空位,相聲類(lèi)節(jié)目有6個(gè)空位可選,即有6種情況, 此時(shí)同類(lèi)節(jié)目不相鄰的排法種數(shù)是626=72種; 則同類(lèi)節(jié)目不相鄰的排法種數(shù)是48+72=120種. 故選:B. 根據(jù)題意,分2步進(jìn)行分析:①先將3個(gè)歌舞類(lèi)節(jié)目全排列,②因?yàn)?個(gè)歌舞類(lèi)節(jié)目不能相鄰,則分2種情況討論中間2個(gè)空位安排情況,由分步計(jì)數(shù)原理計(jì)算每一步的情況數(shù)目,進(jìn)而由分類(lèi)計(jì)數(shù)原理計(jì)算可得答案. 本題考查計(jì)數(shù)原理的運(yùn)用,注意分步方法的運(yùn)用,既要滿足題意的要求,還要計(jì)算或分類(lèi)簡(jiǎn)便. 13. 某公司慶?;顒?dòng)需從甲、乙、丙等5名志愿者中選2名擔(dān)任翻譯,2名擔(dān)任向?qū)В€有1名機(jī)動(dòng)人員,為來(lái)參加活動(dòng)的外事人員提供服務(wù),并且翻譯和向?qū)Ф急仨氂幸蝗诉x自甲、乙、丙,則不同的選法有( ) A. 20 B. 22 C. 24 D. 36 (正確答案)D 解:∵翻譯和向?qū)Ф急仨氂幸蝗诉x自甲、乙、丙, ∴有A32=6種方法, 其余3人全排,有A33=6種方法, 根據(jù)乘法原理,有66=36種方法, 故選D. 翻譯和向?qū)葌€(gè)安排1人,其余3人全排,即可得出結(jié)論. 本題考查計(jì)數(shù)原理運(yùn)用,注意要根據(jù)題意,進(jìn)而按一定順序分情況討論,對(duì)于有限制條件的元素要首先安排. 二、填空題(本大題共4小題,共20分) 14. 用1,2,3三個(gè)數(shù)字組成一個(gè)五位數(shù),要求相鄰的位置的數(shù)字不能相同,則不同的五位數(shù)共有______ 種(以數(shù)字作答). (正確答案)42 解:第一類(lèi):其中一個(gè)數(shù)字用3次,另外兩個(gè)數(shù)字用1次,把3個(gè)相同的數(shù)字排除一排,再將另外兩個(gè)數(shù)字插入到所形成的2個(gè)空中(不包含兩端)共有A22C31=6種, 第二類(lèi),其中一個(gè)數(shù)字用1次,另外兩個(gè)數(shù)字用2次,若把相同的兩個(gè)數(shù)字互相間隔,(例如2323),再把另一個(gè)數(shù)字插入前4個(gè)數(shù)字所形成的5個(gè)空中的任意一個(gè)空,有C31A22A51=30種, 若若把相同的兩個(gè)數(shù)字有只有一組相鄰,(例如2332),把另一個(gè)數(shù)字插入前相鄰的數(shù)字中間,有C31A22=6種, 根據(jù)分類(lèi)計(jì)數(shù)原理,共有6+30+6=42種, 故答案為:42. 根據(jù)重復(fù)數(shù)字的個(gè)數(shù),分兩類(lèi),第一類(lèi):其中一個(gè)數(shù)字用3次,另外兩個(gè)數(shù)字用1次,第二類(lèi),其中一個(gè)數(shù)字用1次,另外兩個(gè)數(shù)字用2次,根據(jù)分類(lèi)計(jì)數(shù)原理可得. 本題考查了分類(lèi)計(jì)數(shù)原理,關(guān)鍵是分類(lèi),屬于中檔題. 15. 用數(shù)字0,1,2,3,4,5組成沒(méi)有重復(fù)數(shù)字的四位數(shù),其中能被3整除的四位數(shù)有______個(gè). (正確答案)96 解:各位數(shù)字之和是3的倍數(shù)能被3整除,符合題意的有: 一類(lèi):含0、3則需1、4 和2、5各取1個(gè),可組成C21C21C31A33; 二類(lèi):含0或3中一個(gè)均不適合題意; 三類(lèi):不含0,3,由1、2、4、5可組成A44個(gè), 共有C21C21C31A33+A44=96個(gè). 故答案為:96. 各位數(shù)字之和是3的倍數(shù)能被3整除,符合題意的有:一類(lèi):含0、3則需1、4 和2、5各取1個(gè),可組成C21C21C31A33;二類(lèi):含0或3中一個(gè)均不適合題意;三類(lèi):不含0,3,由1、2、4、5可組成A44個(gè),相加得到結(jié)果. 本題考查排列組合的實(shí)際應(yīng)用,本題是一個(gè)數(shù)字問(wèn)題,解題的關(guān)鍵是注意0不能在首位,注意分類(lèi)和分步的應(yīng)用. 16. 學(xué)校安排4名教師在六天里值班,每天只安排一名教師,每人至少安排一天,至多安排兩天,且這兩天要相連,那么不同的安排方法種數(shù)是______(用數(shù)字作答) (正確答案)144 解:由題意知本題是一個(gè)簡(jiǎn)單計(jì)數(shù)問(wèn)題, 排四名老師時(shí):有12,34,5,6和12,3,45,6和12,3,4,56和1,23,45,6和1,23,4,56和1,2,34,56,共6種情形. ∴根據(jù)分步計(jì)數(shù)原理知四名時(shí)有6(4321)=144, 故答案為:144. 本題是一個(gè)簡(jiǎn)單計(jì)數(shù)問(wèn)題,分為排三名老師時(shí)和排四名老師時(shí)兩大類(lèi)結(jié)果,分別列舉出這兩種情況的結(jié)果,用分步計(jì)數(shù)表示出結(jié)果數(shù),再用分類(lèi)加法得到結(jié)果. 本題考查計(jì)數(shù)問(wèn)題,對(duì)于復(fù)雜一點(diǎn)的計(jì)數(shù)問(wèn)題,有時(shí)分類(lèi)以后,每類(lèi)方法并不都是一步完成的,必須在分類(lèi)后又分步,綜合利用兩個(gè)原理解決,即類(lèi)中有步,步中有類(lèi). 17. 在冬奧會(huì)志愿者活動(dòng)中,甲、乙等5人報(bào)名參加了A,B,C三個(gè)項(xiàng)目的志愿者工作,因工作需要,每個(gè)項(xiàng)目?jī)H需1名志愿者,且甲不能參加A,B項(xiàng)目,乙不能參加B,C項(xiàng)目,那么共有______種不同的志愿者分配方案.(用數(shù)字作答) (正確答案)21 解:若甲,乙都參加,則甲只能參加C項(xiàng)目,乙只能參見(jiàn)A項(xiàng)目,B項(xiàng)目有3種方法, 若甲參加,乙不參加,則甲只能參加C項(xiàng)目,A,B項(xiàng)目,有A32=6種方法, 若甲參加,乙不參加,則乙只能參加A項(xiàng)目,B,C項(xiàng)目,有A32=6種方法, 若甲不參加,乙不參加,有A33=6種方法, 根據(jù)分類(lèi)計(jì)數(shù)原理,共有3+6+6+6=21種. 由題意可以分為四類(lèi),根據(jù)分類(lèi)計(jì)數(shù)原理可得. 本題考查了分類(lèi)計(jì)數(shù)原理,關(guān)鍵是分類(lèi),屬于中檔題. 三、解答題(本大題共3小題,共40分) 18. 設(shè)n∈N*,對(duì)1,2,……,n的一個(gè)排列i1i2……in,如果當(dāng)s- 1.請(qǐng)仔細(xì)閱讀文檔,確保文檔完整性,對(duì)于不預(yù)覽、不比對(duì)內(nèi)容而直接下載帶來(lái)的問(wèn)題本站不予受理。
- 2.下載的文檔,不會(huì)出現(xiàn)我們的網(wǎng)址水印。
- 3、該文檔所得收入(下載+內(nèi)容+預(yù)覽)歸上傳者、原創(chuàng)作者;如果您是本文檔原作者,請(qǐng)點(diǎn)此認(rèn)領(lǐng)!既往收益都?xì)w您。
下載文檔到電腦,查找使用更方便
9.9 積分
下載 |
- 配套講稿:
如PPT文件的首頁(yè)顯示word圖標(biāo),表示該P(yáng)PT已包含配套word講稿。雙擊word圖標(biāo)可打開(kāi)word文檔。
- 特殊限制:
部分文檔作品中含有的國(guó)旗、國(guó)徽等圖片,僅作為作品整體效果示例展示,禁止商用。設(shè)計(jì)者僅對(duì)作品中獨(dú)創(chuàng)性部分享有著作權(quán)。
- 關(guān) 鍵 詞:
- 山東省齊河縣高考數(shù)學(xué)三輪沖刺 專(zhuān)題 計(jì)數(shù)原理練習(xí)含解析 山東省 齊河縣 高考 數(shù)學(xué) 三輪 沖刺 計(jì)數(shù) 原理 練習(xí) 解析
鏈接地址:http://m.zhongcaozhi.com.cn/p-6287718.html