人教版數(shù)學(xué)九上253《利用頻率估計(jì)概率》課件
《人教版數(shù)學(xué)九上253《利用頻率估計(jì)概率》課件》由會(huì)員分享,可在線閱讀,更多相關(guān)《人教版數(shù)學(xué)九上253《利用頻率估計(jì)概率》課件(20頁(yè)珍藏版)》請(qǐng)?jiān)谘b配圖網(wǎng)上搜索。
1、利用頻率估計(jì)概率利用頻率估計(jì)概率 25.3 25.3 知識(shí)回顧知識(shí)回顧 同一條件下同一條件下, ,在大量重復(fù)試驗(yàn)中在大量重復(fù)試驗(yàn)中, ,如果某隨機(jī)事件如果某隨機(jī)事件A A發(fā)生的發(fā)生的頻率穩(wěn)定在某個(gè)常數(shù)頻率穩(wěn)定在某個(gè)常數(shù)p p附近附近, ,那么這個(gè)常數(shù)就叫做事件那么這個(gè)常數(shù)就叫做事件A A的概率的概率. .問(wèn)題問(wèn)題( (兩題中任選一題)兩題中任選一題): :. .擲一次骰子,向上的一面數(shù)字是的概率是擲一次骰子,向上的一面數(shù)字是的概率是P(A)= P(A)= m mn n. .某射擊運(yùn)動(dòng)員射擊一次,命中靶心的概率是某射擊運(yùn)動(dòng)員射擊一次,命中靶心的概率是命中靶心與未命中靶心發(fā)生可能性不相等命中靶心與
2、未命中靶心發(fā)生可能性不相等25.325.3利用頻率估計(jì)概率利用頻率估計(jì)概率試驗(yàn)的結(jié)果不是有限個(gè)的試驗(yàn)的結(jié)果不是有限個(gè)的各種結(jié)果發(fā)生的可能性相等各種結(jié)果發(fā)生的可能性相等試驗(yàn)的結(jié)果是有限個(gè)的試驗(yàn)的結(jié)果是有限個(gè)的等可能事件等可能事件二、新課二、新課材料材料1:o.5二、新課二、新課 材料材料2:0.9某林業(yè)部門要考查某種幼樹(shù)在一定條件下的移植成活率某林業(yè)部門要考查某種幼樹(shù)在一定條件下的移植成活率, ,應(yīng)應(yīng)采用什么具體做法采用什么具體做法? ?觀察在各次試驗(yàn)中得到的幼樹(shù)成活的頻率,談?wù)動(dòng)^察在各次試驗(yàn)中得到的幼樹(shù)成活的頻率,談?wù)勀愕目捶愕目捶ü烙?jì)移植成活率估計(jì)移植成活率移植總數(shù)(移植總數(shù)(n)成活數(shù)(
3、成活數(shù)(m)108成活的頻率成活的頻率0.8( )nm50472702350.870400369750662150013350.890350032030.915700063359000807314000126280.9020.940.9230.8830.9050.897是實(shí)際問(wèn)題中的一種概率是實(shí)際問(wèn)題中的一種概率, ,可理解為成活的概率可理解為成活的概率. .估計(jì)移植成活率估計(jì)移植成活率由下表可以發(fā)現(xiàn),幼樹(shù)移植成活的頻率在由下表可以發(fā)現(xiàn),幼樹(shù)移植成活的頻率在左右擺動(dòng),左右擺動(dòng),并且隨著移植棵數(shù)越來(lái)越大,這種規(guī)律愈加明顯并且隨著移植棵數(shù)越來(lái)越大,這種規(guī)律愈加明顯. .所以估計(jì)幼樹(shù)移植成活的概率為
4、所以估計(jì)幼樹(shù)移植成活的概率為0.90.9移植總數(shù)(移植總數(shù)(n)成活數(shù)(成活數(shù)(m)108成活的頻率成活的頻率0.8( )nm50472702350.870400369750662150013350.890350032030.915700063359000807314000126280.9020.940.9230.8830.9050.897數(shù)學(xué)史實(shí)數(shù)學(xué)史實(shí)人們?cè)陂L(zhǎng)期的實(shí)踐中發(fā)現(xiàn)人們?cè)陂L(zhǎng)期的實(shí)踐中發(fā)現(xiàn), ,在隨機(jī)試驗(yàn)中在隨機(jī)試驗(yàn)中, ,由于眾多微由于眾多微小的偶然因素的影響小的偶然因素的影響, ,每次測(cè)得的結(jié)果雖不盡相同每次測(cè)得的結(jié)果雖不盡相同, ,但大量但大量重復(fù)試驗(yàn)所得結(jié)果卻重復(fù)試驗(yàn)所得結(jié)果
5、卻能反應(yīng)客觀規(guī)律能反應(yīng)客觀規(guī)律. .這稱為這稱為大數(shù)法則大數(shù)法則, ,亦亦稱稱大數(shù)定律大數(shù)定律. . 由頻率可以估計(jì)概率是由瑞士數(shù)學(xué)家雅由頻率可以估計(jì)概率是由瑞士數(shù)學(xué)家雅各布各布伯努利(伯努利(1654165417051705)最早闡明的,因)最早闡明的,因而他被公認(rèn)為是概率論的先驅(qū)之一而他被公認(rèn)為是概率論的先驅(qū)之一頻率穩(wěn)定性定理頻率穩(wěn)定性定理由下表可以發(fā)現(xiàn),幼樹(shù)移植成活的頻率在由下表可以發(fā)現(xiàn),幼樹(shù)移植成活的頻率在左右擺動(dòng),左右擺動(dòng),并且隨著移植棵數(shù)越來(lái)越大,這種規(guī)律愈加明顯并且隨著移植棵數(shù)越來(lái)越大,這種規(guī)律愈加明顯. .所以估計(jì)幼樹(shù)移植成活的概率為所以估計(jì)幼樹(shù)移植成活的概率為0.90.9移植
6、總數(shù)(移植總數(shù)(n)成活數(shù)(成活數(shù)(m)108成活的頻率成活的頻率0.8( )nm50472702350.870400369750662150013350.890350032030.915700063359000807314000126280.9020.940.9230.8830.9050.8971.1.林業(yè)部門種植了該幼樹(shù)林業(yè)部門種植了該幼樹(shù)10001000棵棵, ,估計(jì)能成活估計(jì)能成活_棵棵. . 2. 2.我們學(xué)校需種植這樣的樹(shù)苗我們學(xué)校需種植這樣的樹(shù)苗500500棵來(lái)綠化校園棵來(lái)綠化校園, ,則至少則至少向林業(yè)部門購(gòu)買約向林業(yè)部門購(gòu)買約_棵棵. .900556估計(jì)移植成活率估計(jì)移植成活
7、率 例:張小明承包了一片荒山,他想把這片荒山改造成一個(gè)蘋果果園,現(xiàn)在有兩批幼苗可以選擇,它們的成活率如下兩個(gè)表格所示:類樹(shù)苗: B類樹(shù)苗:移植總數(shù)(m)成活數(shù)(m)成活的頻率(m/n)10850472702354003697506621500133535003203700063351400012628移植總數(shù)(m)成活數(shù)(m)成活的頻率(m/n)109504927023040036075064115001275350029967000598514000119140.80.940.8700.9230.8830.8900.9150.9050.9020.90.980.850.90.8550.8500
8、.8560.8550.851觀察圖表,回答問(wèn)題串、從表中可以發(fā)現(xiàn),類幼樹(shù)移植成活的頻率在_左右擺動(dòng),并且隨著統(tǒng)計(jì)數(shù)據(jù)的增加,這種規(guī)律愈加明顯,估計(jì)類幼樹(shù)移植成活的概率為_(kāi),估計(jì)類幼樹(shù)移植成活的概率為_(kāi)、張小明選擇類樹(shù)苗,還是類樹(shù)苗呢?_,若他的荒山需要10000株樹(shù)苗,則他實(shí)際需要進(jìn)樹(shù)苗_株?3、如果每株樹(shù)苗9元,則小明買樹(shù)苗共需 _元0.90.90.85A類類11112100008共同練習(xí)共同練習(xí)51.5450044.5745039.2440035.3235030.9330024.2525019.4220015.151500.10510.51000.1105.5050柑橘損壞的頻率(柑橘損壞
9、的頻率( )損壞柑橘質(zhì)量(損壞柑橘質(zhì)量(m)/千克千克柑橘總質(zhì)量(柑橘總質(zhì)量(n)/千克千克nm完成下表完成下表, ,0.1010.0970.0970.1030.1010.0980.0990.103某水果公司以某水果公司以2 2元元/ /千克的成本新進(jìn)了千克的成本新進(jìn)了10 00010 000千克柑橘千克柑橘, ,如果公如果公司希望這些柑橘能夠獲得利潤(rùn)司希望這些柑橘能夠獲得利潤(rùn)5 0005 000元元, ,那么在出售柑橘那么在出售柑橘( (已去掉損已去掉損壞的柑橘壞的柑橘) )時(shí)時(shí), ,每千克大約定價(jià)為多少元比較合適每千克大約定價(jià)為多少元比較合適? ? 為簡(jiǎn)單起見(jiàn),我們能否直接把表中的為簡(jiǎn)單起
10、見(jiàn),我們能否直接把表中的500500千克柑橘對(duì)應(yīng)的柑橘損壞的頻率看作柑千克柑橘對(duì)應(yīng)的柑橘損壞的頻率看作柑橘損壞的概率?橘損壞的概率?利用你得到的結(jié)論解答下列問(wèn)題利用你得到的結(jié)論解答下列問(wèn)題: :根據(jù)頻率穩(wěn)定性定理,在要求精度不是很高的情況下,不妨用根據(jù)頻率穩(wěn)定性定理,在要求精度不是很高的情況下,不妨用表中的最后一行數(shù)據(jù)中的頻率近似地代替概率表中的最后一行數(shù)據(jù)中的頻率近似地代替概率. .共同練習(xí)共同練習(xí)51.5450044.5745039.2440035.3235030.9330024.2525019.4220015.151500.10510.51000.1105.5050柑橘損壞的頻率(柑橘損
11、壞的頻率( )損壞柑橘質(zhì)量(損壞柑橘質(zhì)量(m)/千克千克柑橘總質(zhì)量(柑橘總質(zhì)量(n)/千克千克nm0.1010.0970.0970.1030.1010.0980.0990.103 為簡(jiǎn)單起見(jiàn),我們能否直接把表中的為簡(jiǎn)單起見(jiàn),我們能否直接把表中的500500千克柑橘對(duì)應(yīng)的柑橘損壞的頻率看作柑千克柑橘對(duì)應(yīng)的柑橘損壞的頻率看作柑橘損壞的概率?橘損壞的概率?完成下表完成下表, ,利用你得到的結(jié)論解答下列問(wèn)題利用你得到的結(jié)論解答下列問(wèn)題: :試一試試一試1.1.一水塘里有鯉魚(yú)、鯽魚(yú)、鰱魚(yú)共一水塘里有鯉魚(yú)、鯽魚(yú)、鰱魚(yú)共1 0001 000尾,一漁民通尾,一漁民通過(guò)多次捕獲實(shí)驗(yàn)后發(fā)現(xiàn):鯉魚(yú)、鯽魚(yú)出現(xiàn)的頻率是
12、過(guò)多次捕獲實(shí)驗(yàn)后發(fā)現(xiàn):鯉魚(yú)、鯽魚(yú)出現(xiàn)的頻率是31%31%和和42%42%,則這個(gè)水塘里有鯉魚(yú),則這個(gè)水塘里有鯉魚(yú)_尾尾, ,鰱魚(yú)鰱魚(yú)_尾尾. .3102702.動(dòng)物學(xué)家通過(guò)大量的調(diào)查估計(jì)出,某種動(dòng)物活到20歲的概率為0.8,活到25歲的概率是0.5,活到30歲的概率是0.3.現(xiàn)年20歲的這種動(dòng)物活到25歲的概率為多少?現(xiàn)年25歲的這種動(dòng)物活到30歲的概率為多少?概率伴隨著我你他 1.1.在有一個(gè)在有一個(gè)1010萬(wàn)人的萬(wàn)人的小鎮(zhèn)小鎮(zhèn), ,隨機(jī)調(diào)查了隨機(jī)調(diào)查了20002000人人, ,其中有其中有250250人人看中央電視臺(tái)的早間看中央電視臺(tái)的早間新聞新聞. .在該鎮(zhèn)隨便問(wèn)在該鎮(zhèn)隨便問(wèn)一個(gè)人一個(gè)人
13、, ,他看早間新他看早間新聞的概率大約是多少聞的概率大約是多少? ?該鎮(zhèn)看中央電視臺(tái)早該鎮(zhèn)看中央電視臺(tái)早間新聞的大約是多少間新聞的大約是多少人人? ? 解解: : 根據(jù)概率的意義根據(jù)概率的意義, ,可以可以認(rèn)為其概率大約等于認(rèn)為其概率大約等于250/2000=0.125.250/2000=0.125. 該鎮(zhèn)約有該鎮(zhèn)約有1000001000000.125=125000.125=12500人看中央電視臺(tái)的早人看中央電視臺(tái)的早間新聞間新聞. . 例例2.2.某廠打算生產(chǎn)一種中學(xué)生使用的筆袋,但無(wú)法確定各種顏色某廠打算生產(chǎn)一種中學(xué)生使用的筆袋,但無(wú)法確定各種顏色的產(chǎn)量,于是的產(chǎn)量,于是該文具廠就筆袋的
14、顏色隨機(jī)調(diào)查了該文具廠就筆袋的顏色隨機(jī)調(diào)查了5 0005 000名中學(xué)生,名中學(xué)生,并在調(diào)查到并在調(diào)查到1 0001 000名、名、2 0002 000名、名、3 0003 000名、名、4 0004 000名、名、5 0005 000名時(shí)名時(shí)分別計(jì)算了各種顏色的頻率,繪制折線圖如下:分別計(jì)算了各種顏色的頻率,繪制折線圖如下:試一試試一試(1)(1)隨著調(diào)查次數(shù)的增加,紅色的頻率如何變化?隨著調(diào)查次數(shù)的增加,紅色的頻率如何變化? (2)(2)你能你能估計(jì)估計(jì)調(diào)查到調(diào)查到10 00010 000名同學(xué)時(shí),紅色的頻率是多少嗎?名同學(xué)時(shí),紅色的頻率是多少嗎?估計(jì)調(diào)查到估計(jì)調(diào)查到10 00010 00
15、0名同學(xué)時(shí),紅色的頻率大約仍是名同學(xué)時(shí),紅色的頻率大約仍是40%40%左右左右. . 隨著調(diào)查次數(shù)的增加,紅色的頻率基本穩(wěn)定在隨著調(diào)查次數(shù)的增加,紅色的頻率基本穩(wěn)定在40%40%左右左右. . (3)(3)若你是該廠的負(fù)責(zé)人若你是該廠的負(fù)責(zé)人, ,你將如何安排生產(chǎn)各種顏色的產(chǎn)量?你將如何安排生產(chǎn)各種顏色的產(chǎn)量?紅、黃、藍(lán)、綠及其它顏色的生產(chǎn)比例大約為紅、黃、藍(lán)、綠及其它顏色的生產(chǎn)比例大約為4:2:1:1:2 .4:2:1:1:2 .從一定的高度落下的圖釘,落地后從一定的高度落下的圖釘,落地后可能圖釘尖著地,也可能圖釘尖不找地,可能圖釘尖著地,也可能圖釘尖不找地,估計(jì)一下哪種事件的概率更大,與同
16、學(xué)估計(jì)一下哪種事件的概率更大,與同學(xué)合作,通過(guò)做實(shí)驗(yàn)來(lái)驗(yàn)證合作,通過(guò)做實(shí)驗(yàn)來(lái)驗(yàn)證一下你事先估計(jì)是否正確?一下你事先估計(jì)是否正確? 例例你能估計(jì)圖釘尖朝上的概率嗎?大家都來(lái)做一做大家都來(lái)做一做知識(shí)應(yīng)用知識(shí)應(yīng)用 如圖如圖, ,長(zhǎng)方形內(nèi)有一不規(guī)則區(qū)域長(zhǎng)方形內(nèi)有一不規(guī)則區(qū)域, ,現(xiàn)在玩投擲游戲現(xiàn)在玩投擲游戲, ,如如果隨機(jī)擲中長(zhǎng)方形的果隨機(jī)擲中長(zhǎng)方形的300300次中,有次中,有150150次是落在不規(guī)則圖形次是落在不規(guī)則圖形內(nèi)內(nèi). .【拓展【拓展】 你能設(shè)計(jì)一個(gè)利用頻你能設(shè)計(jì)一個(gè)利用頻率估計(jì)概率的實(shí)驗(yàn)方法估率估計(jì)概率的實(shí)驗(yàn)方法估算該不規(guī)則圖形的面積的算該不規(guī)則圖形的面積的方案嗎方案嗎? ?(1)(1
17、)你能估計(jì)出擲中不規(guī)則圖形的概率嗎?你能估計(jì)出擲中不規(guī)則圖形的概率嗎?(2)(2)若該長(zhǎng)方形的面積為若該長(zhǎng)方形的面積為150150平方米平方米, ,試估計(jì)不規(guī)則圖形試估計(jì)不規(guī)則圖形的面積的面積. .升華提高升華提高了解了一種方法了解了一種方法-用多次試驗(yàn)頻率去估計(jì)概率用多次試驗(yàn)頻率去估計(jì)概率體會(huì)了一種思想:體會(huì)了一種思想: 用樣本去估計(jì)總體用樣本去估計(jì)總體用頻率去估計(jì)概率用頻率去估計(jì)概率弄清了一種關(guān)系弄清了一種關(guān)系-頻率與概率的關(guān)系頻率與概率的關(guān)系當(dāng)當(dāng)試驗(yàn)次數(shù)很多或試驗(yàn)時(shí)樣本容量足夠大試驗(yàn)次數(shù)很多或試驗(yàn)時(shí)樣本容量足夠大時(shí)時(shí), ,一件事件發(fā)生的一件事件發(fā)生的頻率頻率與相應(yīng)的與相應(yīng)的概率概率會(huì)非常接近會(huì)非常接近. .此時(shí)此時(shí), ,我們可以用一件事件發(fā)生的我們可以用一件事件發(fā)生的頻頻率率來(lái)估計(jì)這一事件發(fā)生的來(lái)估計(jì)這一事件發(fā)生的概率概率. . 小紅和小明在操場(chǎng)上做游戲,他們先在地上畫了半小紅和小明在操場(chǎng)上做游戲,他們先在地上畫了半徑分別為徑分別為2m2m和和3m3m的同心圓的同心圓( (如圖如圖) ),蒙上眼在一定距離外,蒙上眼在一定距離外向圈內(nèi)擲小石子,擲中陰影小紅勝,擲中里面小圈小明向圈內(nèi)擲小石子,擲中陰影小紅勝,擲中里面小圈小明勝,勝,未擲入大圈內(nèi)不算未擲入大圈內(nèi)不算,你認(rèn)為游戲公平嗎?為什么?,你認(rèn)為游戲公平嗎?為什么?游戲公平嗎游戲公平嗎?3m2m 再見(jiàn)
- 溫馨提示:
1: 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
2: 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
3.本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
5. 裝配圖網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 6.煤礦安全生產(chǎn)科普知識(shí)競(jìng)賽題含答案
- 2.煤礦爆破工技能鑒定試題含答案
- 3.爆破工培訓(xùn)考試試題含答案
- 2.煤礦安全監(jiān)察人員模擬考試題庫(kù)試卷含答案
- 3.金屬非金屬礦山安全管理人員(地下礦山)安全生產(chǎn)模擬考試題庫(kù)試卷含答案
- 4.煤礦特種作業(yè)人員井下電鉗工模擬考試題庫(kù)試卷含答案
- 1 煤礦安全生產(chǎn)及管理知識(shí)測(cè)試題庫(kù)及答案
- 2 各種煤礦安全考試試題含答案
- 1 煤礦安全檢查考試題
- 1 井下放炮員練習(xí)題含答案
- 2煤礦安全監(jiān)測(cè)工種技術(shù)比武題庫(kù)含解析
- 1 礦山應(yīng)急救援安全知識(shí)競(jìng)賽試題
- 1 礦井泵工考試練習(xí)題含答案
- 2煤礦爆破工考試復(fù)習(xí)題含答案
- 1 各種煤礦安全考試試題含答案