新版高三數(shù)學(xué)理一輪復(fù)習(xí)作業(yè):第九章 平面解析幾何 第五節(jié) 橢圓 Word版含解析

上傳人:仙*** 文檔編號:64153854 上傳時間:2022-03-21 格式:DOC 頁數(shù):7 大小:391.03KB
收藏 版權(quán)申訴 舉報 下載
新版高三數(shù)學(xué)理一輪復(fù)習(xí)作業(yè):第九章 平面解析幾何 第五節(jié) 橢圓 Word版含解析_第1頁
第1頁 / 共7頁
新版高三數(shù)學(xué)理一輪復(fù)習(xí)作業(yè):第九章 平面解析幾何 第五節(jié) 橢圓 Word版含解析_第2頁
第2頁 / 共7頁
新版高三數(shù)學(xué)理一輪復(fù)習(xí)作業(yè):第九章 平面解析幾何 第五節(jié) 橢圓 Word版含解析_第3頁
第3頁 / 共7頁

下載文檔到電腦,查找使用更方便

10 積分

下載資源

還剩頁未讀,繼續(xù)閱讀

資源描述:

《新版高三數(shù)學(xué)理一輪復(fù)習(xí)作業(yè):第九章 平面解析幾何 第五節(jié) 橢圓 Word版含解析》由會員分享,可在線閱讀,更多相關(guān)《新版高三數(shù)學(xué)理一輪復(fù)習(xí)作業(yè):第九章 平面解析幾何 第五節(jié) 橢圓 Word版含解析(7頁珍藏版)》請在裝配圖網(wǎng)上搜索。

1、 1

2、 1 第五節(jié) 橢圓 A組 基礎(chǔ)題組 1.已知方程x22-k+y22k-1=1表示焦點在y軸上的橢圓,則實數(shù)k的取值范圍是(  )                   A.12,2 B.(1,+∞) C.(1,2) D.12,1 2.(20xx黑龍江齊齊哈爾一中期末)已知橢圓的焦點在x軸上,離心率為35,直線x+y-4=0與y軸的交點為橢圓的一個頂點,則橢圓的方程為( 

3、 ) A.x225+y29=1 B.x29+y225=1 C.x225+y216=1 D.x216+y225=1 3.矩形ABCD中,|AB|=4,|BC|=3,則以A,B為焦點,且過C,D兩點的橢圓的短軸的長為(  ) A.23 B.26 C.42 D.43 4.設(shè)橢圓x24+y23=1的焦點為F1,F2,點P在橢圓上,若△PF1F2是直角三角形,則△PF1F2的面積為(  ) A.3 B.3或32 C.32 D.6或3 5.已知橢圓x24+y2b2=1(0

4、值為5,則b的值是(  ) A.1 B.2 C.32 D.3 6.已知橢圓的中心在原點,焦點在x軸上,離心率為55,且過點P(-5,4),則橢圓的標(biāo)準(zhǔn)方程為      .? 7.已知橢圓C的中心在原點,一個焦點為F(-2,0),且長軸長與短軸長的比是2∶3,則橢圓C的方程是        .? 8.橢圓x29+y22=1的左,右焦點分別為F1,F2,點P在橢圓上,若|PF1|=4,則∠F1PF2的大小為    .? 9.已知橢圓的兩焦點為F1(-3,0),F2(3,0),離心率e=32. (1)求此橢圓的方程; (2)設(shè)直線l:y=x+m,若l與此橢圓相交于P,Q兩點,且

5、|PQ|等于橢圓的短軸長,求m的值. 10.已知橢圓x2a2+y2b2=1(a>b>0),F1,F2分別為橢圓的左,右焦點,A為橢圓的上頂點,直線AF2交橢圓于另一點B. (1)若∠F1AB=90°,求橢圓的離心率; (2)若=2,·=32,求橢圓的方程. B組 提升題組 11.已知橢圓C:x24+y23=1的左,右焦點分別為F1,F2,橢圓C上的點A滿足AF2⊥F1F2.若點P是橢圓C上的動點,則·的最大值為(  )                   A.32 B.332 C.94 D.154 12.如圖,

6、已知橢圓C的中心為原點O,F(-25,0)為C的左焦點,P為C上一點,滿足|OP|=|OF|,且|PF|=4,則橢圓C的方程為(  ) A.x225+y25=1 B.x236+y216=1 C.x230+y210=1 D.x245+y225=1 13.(20xx江蘇,10,5分)如圖,在平面直角坐標(biāo)系xOy中,F是橢圓x2a2+y2b2=1(a>b>0)的右焦點,直線y=b2與橢圓交于B,C兩點,且∠BFC=90°,則該橢圓的離心率是    .? 14.設(shè)F1,F2分別是橢圓C:x2a2+y2b2=1(a>b>0)的左,右焦點,點P在橢圓C上,線段PF1的中點在y軸上

7、,若∠PF1F2=30°,則橢圓C的離心率為    .? 15.(20xx云南檢測)已知焦點在y軸上的橢圓E的中心是原點O,離心率等于32,以橢圓E的長軸和短軸為對角線的四邊形的周長為45.直線l:y=kx+m與y軸交于點P,與橢圓E相交于A、B兩個點. (1)求橢圓E的方程; (2)若=3,求m2的取值范圍. 答案全解全析 A組 基礎(chǔ)題組 1.C ∵方程x22-k+y22k-1=1表示焦點在y軸上的橢圓,所以2-k>0,2k-1>0,2k-1>2-k,解得k<2,k>12,k>1,故k的取值范圍為(1,2). 2.C 設(shè)橢圓的方程為x2a2+y2b2=1(a>b>

8、0),由題意知ca=35,b=4,a2=b2+c2,解得a=5,b=4,c=3,所以橢圓的方程為x225+y216=1. 3.D 依題意得|AC|=5,橢圓的焦距2c=|AB|=4,長軸長2a=|AC|+|BC|=8,所以短軸長2b=2a2-c2=216-4=43. 4.C 由橢圓的方程知a=2,b=3,c=1,當(dāng)點P為短軸端點(0,3)時,∠F1PF2=,△PF1F2是正三角形,若△PF1F2是直角三角形,則直角頂點不可能是點P,只能是焦點F1(或F2),此時|PF1|=b2a=,=12×32×2=32.故選C. 5.D 由橢圓的方程可知a=2,由橢圓的定義可知,|AF2|+|BF2|

9、+|AB|=4a=8,所以|AB|=8-(|AF2|+|BF2|)≥3,由橢圓的性質(zhì)可知,過橢圓焦點的弦中,垂直于焦點所在坐標(biāo)軸的弦最短,則2b2a=3.所以b2=3,即b=3. 6.答案 x245+y236=1 解析 由題意設(shè)橢圓的標(biāo)準(zhǔn)方程為x2a2+y2b2=1(a>b>0).由離心率e=55可得a2=5c2,所以b2=4c2,故橢圓的方程為x25c2+y24c2=1,將P(-5,4)代入可得c2=9,故橢圓的方程為x245+y236=1. 7.答案 x216+y212=1 解析 設(shè)橢圓C的方程為x2a2+y2b2=1(a>b>0). 由題意知解得a2=16,b2=12. 所以

10、橢圓C的方程為x216+y212=1. 8.答案 120° 解析 由橢圓定義知,|PF2|=2,|F1F2|=2×9-2=27.在△PF1F2中,由余弦定理,得cos∠F1PF2=|PF1|2+|PF2|2-|F1F2|22|PF1|路|PF2|==-12,∴∠F1PF2=120°. 9.解析 (1)設(shè)橢圓方程為x2a2+y2b2=1(a>b>0),由題意知c=3,ca=32,所以a=2,則b=1,所求橢圓方程為x24+y2=1. (2)由x24+y2=1,y=x+m消去y,得5x2+8mx+4(m2-1)=0,則Δ=64m2-4×5×4(m2-1)>0,整理,得m2<5(*). 設(shè)

11、P(x1,y1),Q(x2,y2),則x1+x2=-8m5,x1x2=4(m2-1)5,y1-y2=x1-x2, |PQ|=2-8m52-16(m2-1)5=2. 解得m=±304,滿足(*),所以m=±304. 10.解析 (1)∠F1AB=90°,則△AOF2為等腰直角三角形,所以有OA=OF2,即b=c.所以a=2c,所以e=ca=22. (2)由題知A(0,b),F1(-c,0),F2(c,0),其中c=a2-b2,設(shè)B(x,y).由=2,得(c,-b)=2(x-c,y),解得x=3c2,y=-b2,即B3c2,-b2. 將B點坐標(biāo)代入x2a2+y2b2=1,得94c2a2+

12、b24b2=1,即9c24a2+14=1,解得a2=3c2①. 又由·=(-c,-b)·3c2,-3b2=32,得b2-c2=1,即a2-2c2=1②. 由①②解得c2=1,a2=3,從而有b2=2. 所以橢圓的方程為x23+y22=1. B組 提升題組 11.B 由橢圓方程知c=4-3=1,所以F1(-1,0),F2(1,0),因為橢圓C上的點A滿足AF2⊥F1F2,所以可設(shè)A(1,y0),代入橢圓方程可得y02=94,所以y0=±32.設(shè)P(x1,y1),則=(x1+1,y1),又=(0,y0),所以·=y1y0,因為點P是橢圓C上的動點,所以-3≤y1≤3,故·的最大值為332

13、,選B. 12.B 設(shè)橢圓的標(biāo)準(zhǔn)方程為x2a2+y2b2=1(a>b>0),焦距為2c,右焦點為F',連接PF',如圖所示.因為F(-25,0)為C的左焦點,所以c=25.由|OP|=|OF|=|OF'|知,∠FPF'=90°,即FP⊥PF'.在Rt△PFF'中,由勾股定理,得|PF'|=|FF'|2-|PF|2=(45)2-42=8.由橢圓定義,得|PF|+|PF'|=2a=4+8=12,所以a=6,a2=36,于是b2=a2-c2=36-(25)2=16,所以橢圓的方程為x236+y216=1. 13.答案 63 解析 由已知條件易得B-32a,b2,C32a,b2,F(c,0)

14、, ∴=c+32a,-b2,=c-32a,-b2, 由∠BFC=90°,可得·=0, 所以c-32ac+32a+-b22=0, c2-34a2+14b2=0, 即4c2-3a2+(a2-c2)=0, 亦即3c2=2a2, 所以c2a2=23,則e=ca=63. 14.答案 33 解析 如圖,設(shè)PF1的中點為M,連接PF2. 因為O為F1F2的中點,所以O(shè)M為△PF1F2的中位線. 所以O(shè)M∥PF2,所以∠PF2F1=∠MOF1=90°. 因為∠PF1F2=30°,所以|PF1|=2|PF2|. 由勾股定理得|F1F2|=|PF1|2-|PF2|2=3|PF2|, 由

15、橢圓定義得2a=|PF1|+|PF2|=3|PF2|?a=3|PF2|2,2c=|F1F2|=3|PF2|?c=3|PF2|2, 則e=ca=3|PF2|2·23|PF2|=33. 15.解析 (1)根據(jù)已知設(shè)橢圓E的方程為y2a2+x2b2=1(a>b>0), 由已知得ca=32, ∴c=32a,b2=a2-c2=a24. ∵以橢圓E的長軸和短軸為對角線的四邊形的周長為45, ∴4a2+b2=25a=45,∴a=2,∴b=1. ∴橢圓E的方程為x2+y24=1. (2)根據(jù)已知得P(0,m),設(shè)A(x1,kx1+m),B(x2,kx2+m), 由y=kx+m,4x2+y

16、2-4=0得,(k2+4)x2+2mkx+m2-4=0. 由已知得Δ=4m2k2-4(k2+4)(m2-4)>0, 即k2-m2+4>0, 由一元二次方程的根與系數(shù)的關(guān)系知,x1+x2=-2kmk2+4,x1x2=m2-4k2+4. 由=3得x1=-3x2, ∴3(x1+x2)2+4x1x2=12x22-12x22=0. ∴12k2m2(k2+4)2+4(m2-4)k2+4=0,即m2k2+m2-k2-4=0. 當(dāng)m2=1時,m2k2+m2-k2-4=0不成立,∴k2=4-m2m2-1. 由題意知k≠0,m≠0,結(jié)合m2k2+m2-k2-4=0,知k2-m2+4=m2k2>0, ∴4-m2m2-1-m2+4>0,即(4-m2)m2m2-1>0. ∴1

展開閱讀全文
溫馨提示:
1: 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
2: 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
3.本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
5. 裝配圖網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

相關(guān)資源

更多
正為您匹配相似的精品文檔
關(guān)于我們 - 網(wǎng)站聲明 - 網(wǎng)站地圖 - 資源地圖 - 友情鏈接 - 網(wǎng)站客服 - 聯(lián)系我們

copyright@ 2023-2025  zhuangpeitu.com 裝配圖網(wǎng)版權(quán)所有   聯(lián)系電話:18123376007

備案號:ICP2024067431-1 川公網(wǎng)安備51140202000466號


本站為文檔C2C交易模式,即用戶上傳的文檔直接被用戶下載,本站只是中間服務(wù)平臺,本站所有文檔下載所得的收益歸上傳人(含作者)所有。裝配圖網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對上載內(nèi)容本身不做任何修改或編輯。若文檔所含內(nèi)容侵犯了您的版權(quán)或隱私,請立即通知裝配圖網(wǎng),我們立即給予刪除!