(參考材料)上海滬教版小學數(shù)學知識復習整理
《(參考材料)上海滬教版小學數(shù)學知識復習整理》由會員分享,可在線閱讀,更多相關《(參考材料)上海滬教版小學數(shù)學知識復習整理(39頁珍藏版)》請在裝配圖網(wǎng)上搜索。
第一章數(shù)和數(shù)的運算 一 概念 (一)整數(shù) 1 整數(shù)的意義 自然數(shù)和 0 都是整數(shù)。 2 自然數(shù) 我們在數(shù)物體的時候,用來表示物體個數(shù)的 1,2,3……叫做自然數(shù)。 一個物體也沒有,用 0 表示。0 也是自然數(shù)。 3 計數(shù)單位 一(個)、十、百、千、萬、十萬、百萬、千萬、億……都是計數(shù)單位。 每相鄰兩個計數(shù)單位之間的進率都是 10。這樣的計數(shù)法叫做十進制計數(shù) 法。 4 數(shù)位 計數(shù)單位按照一定的順序排列起來,它們所占的位置叫做數(shù)位。 5 數(shù)的整除 整數(shù) a 除以整數(shù) b(b ≠ 0),除得的商是整數(shù)而沒有余數(shù),我們就說 a 能 被 b 整除,或者說 b 能整除 a 。 如果數(shù) a 能被數(shù) b(b ≠ 0)整除,a 就叫做 b 的倍數(shù),b 就叫做 a 的因數(shù) (或約數(shù))。倍數(shù)和因數(shù)是相互依存的。因為 35 能被 7 整除,所以 35 是 7 的倍數(shù),7 是 35 的因數(shù)。 一個數(shù)的因數(shù)的個數(shù)是有限的,其中最小的因數(shù)是 1,最大的因數(shù)是它本身。例如:10 的因數(shù)有 1、2、5、10,其中最小的因數(shù)是 1,最大的因數(shù)是10。 一個數(shù)的倍數(shù)的個數(shù)是無限的,其中最小的倍數(shù)是它本身。3 的倍數(shù)有: 3、6、9、12……其中最小的倍數(shù)是 3 ,沒有最大的倍數(shù)。 個位上是 0、2、4、6、8 的數(shù),都能被2整除,例如:202、480、304 都能被 2 整除。 個位上是 0 或 5 的數(shù),都能被 5 整除,例如:5、30、405 都能被 5 整除。 一個數(shù)的各位上的數(shù)的和能被 3 整除,這個數(shù)就能被 3 整除,例如:12、 108、204 都能被 3 整除。 一個數(shù)各位數(shù)上的和能被 9 整除,這個數(shù)就能被 9 整除。 能被 3 整除的數(shù)不一定能被 9 整除, 但是能被 9 整除的數(shù)一定能被 3 整除。 一個數(shù)的末兩位數(shù)能被 4(或 25)整除,這個數(shù)就能被 4(或 25)整除。 例如:16、404、1256 都能被 4 整除,50、325、500、1675 都能被 25 整 除。 一個數(shù)的末三位數(shù)能被 8(或 125)整除,這個數(shù)就能被 8(或 125)整除。 例如:1168、4600、5000、12344 都能被 8 整除,1125、13375、5000 都 能被 125 整除。 能被 2 整除的數(shù)叫做偶數(shù)。 不能被 2 整除的數(shù)叫做奇數(shù)。 0 也是偶數(shù)。自然數(shù)按能否被 2 整除的特征可分為奇數(shù)和偶數(shù)。 一個數(shù),如果只有 1 和它本身兩個因數(shù),這樣的數(shù)叫做素數(shù)(或素數(shù)), 100 以內(nèi)的素數(shù)有:2、3、5、7、11、13、17、19、23、29、31、37、41、 43、47、53、59、61、67、71、73、79、83、89、97。 一個數(shù),如果除了 1 和它本身還有別的因數(shù),這樣的數(shù)叫做合數(shù),例如 4、 6、8、9、12 都是合數(shù)。 1 不是素數(shù)也不是合數(shù),自然數(shù)除了 1 外,不是素數(shù)就是合數(shù)。如果把自然數(shù)按其因數(shù)的個數(shù)的不同分類,可分為素數(shù)、合數(shù)和 1。 每個合數(shù)都可以寫成幾個素數(shù)相乘的形式。其中每個素數(shù)都是這個合數(shù)的因數(shù),叫做這個合 數(shù)的素因數(shù),例如 15=3×5,3 和 5 叫做 15 的 素因數(shù)。 把一個合數(shù)用素因數(shù)相乘的形式表示出來,叫做分解素因數(shù)。 ( 例如把 28 分解素因數(shù) ) 幾個數(shù)公有的因數(shù),叫做這幾個數(shù)的公因數(shù)。其中最大的一個,叫做這幾個數(shù)的最大公因數(shù),例如 12 的因數(shù)有 1、2、3、4、6、12; 18 的因數(shù)有 1、2、3、6、9、18。其中,1、2、3、6 是 12 和 1 8 的公因數(shù),6 是它們 的最大公因數(shù)。 公因數(shù)只有 1 的兩個數(shù),叫做互素數(shù),成互素關系的兩個數(shù),有下列幾種情況: 1 和任何自然數(shù)互素。 相鄰的兩個自然數(shù)互素。 兩個不同的素數(shù)互素。 當合數(shù)不是素數(shù)的倍數(shù)時,這個合數(shù)和這個素數(shù)互素。 兩個合數(shù)的公因數(shù)只有 1 時,這兩個合數(shù)互素,如果幾個數(shù)中任意兩個都互素,就說這幾個數(shù)兩兩互素。 如果較小數(shù)是較大數(shù)的因數(shù),那么較小數(shù)就是這兩個數(shù)的最大公因數(shù)。 如果兩個數(shù)是互素數(shù),它們的最大公因數(shù)就是 1。 幾個數(shù)公有的倍數(shù),叫做這幾個數(shù)的公倍數(shù),其中最小的一個,叫做這幾個數(shù)的最小公倍數(shù),如 2 的倍數(shù)有 2、4、6 、8、10、12、14、16、18 …… 3 的倍數(shù)有 3、6、9、12、15、18 …… 其中 6、12、18……是 2、3 的公 倍數(shù),6 是它們的最小公倍數(shù)。 如果較大數(shù)是較小數(shù)的倍數(shù),那么較大數(shù)就是這兩個數(shù)的最小公倍數(shù)。 如果兩個數(shù)是互素數(shù),那么這兩個數(shù)的積就是它們的最小公倍數(shù)。 幾個數(shù)的公因數(shù)的個數(shù)是有限的,而幾個數(shù)的公倍數(shù)的個數(shù)是無限的。 (二)小數(shù) 1 小數(shù)的意義 把整數(shù) 1 平均分成 10 份、100 份、1000 份…… 得到的十分之幾、百分之 幾、千分之幾…… 可以用小數(shù)表示。 一位小數(shù)表示十分之幾,兩位小數(shù)表示百分之幾,三位小數(shù)表示千分之 幾…… 一個小數(shù)由整數(shù)部分、小數(shù)部分和小數(shù)點部分組成。數(shù)中的圓點叫做小數(shù)點,小數(shù)點左邊的數(shù)叫做整數(shù)部分,小數(shù)點左邊的數(shù)叫做整數(shù)部分,小數(shù)點右邊的數(shù)叫做小數(shù)部分。 在小數(shù)里,每相鄰兩個計數(shù)單位之間的進率都是 10。小數(shù)部分的最高分數(shù)單位“十分之一”和整數(shù)部分的最低單位“一”之間的進率也是 10。 2 小數(shù)的分類 純小數(shù):整數(shù)部分是零的小數(shù),叫做純小數(shù)。例如: 0.25 、 0.368 都是純小數(shù)。 帶小數(shù):整數(shù)部分不是零的小數(shù),叫做帶小數(shù)。 例如: 3.25 、 5.26 都是帶小數(shù)。 有限小數(shù):小數(shù)部分的數(shù)位是有限的小數(shù),叫做有限小數(shù)。 例如: 41.7 、 25.3 、 0.23 都是有限小數(shù)。 無限小數(shù):小數(shù)部分的數(shù)位是無限的小數(shù),叫做無限小數(shù)。例如: 4.33 …… 3.1415926 …… 無限不循環(huán)小數(shù):一個數(shù)的小數(shù)部分,數(shù)字排列無規(guī)律且位數(shù)無限,這樣的小數(shù)叫做無限不循環(huán)小數(shù)。 循環(huán)小數(shù):一個數(shù)的小數(shù)部分,有一個數(shù)字或者幾個數(shù)字依次不斷重復出 現(xiàn),這個數(shù)叫做循環(huán)小數(shù)。 如: 3.555 …… 0.0333 …… 12.109109 ……一個循環(huán)小數(shù)的小數(shù)部分, 依次不斷重復出現(xiàn)的數(shù)字叫做這個循環(huán)小數(shù)的循環(huán)節(jié)。 例如: 3.99 ……的循環(huán)節(jié)是“ 9 ” , 0.5454 ……的循環(huán)節(jié)是 “ 54 ” 。 純循環(huán)小數(shù):循環(huán)節(jié)從小數(shù)部分第一位開始的,叫做純循環(huán)小數(shù)。 例 如: 3.111 …… 0.5656 …… 混循環(huán)小數(shù):循環(huán)節(jié)不是從小數(shù)部分第一位開始的,叫做混循環(huán)小 數(shù)。 3.1222 …… 0.03333 …… 寫循環(huán)小數(shù)的時候,為了簡便,小數(shù)的循環(huán)部分只需寫出一個循環(huán)節(jié),并 在這個循環(huán)節(jié)的首、末位數(shù)字上各點一個圓點。如果循環(huán)節(jié)只有 一個數(shù)字,就只在它的上面點一個點。 (三)分數(shù) 1 分數(shù)的意義 把單位“1”平均分成若干份,表示這樣的一份或者幾份的數(shù)叫做分數(shù)。 在分數(shù)里,中間的橫線叫做分數(shù)線;分數(shù)線下面的數(shù),叫做分母,表示把 單位“1”平均分成多少份;分數(shù)線下面的數(shù)叫做分子,表示有這樣的多 少份。 把單位“1”平均分成若干份,表示其中的一份的數(shù),叫做分數(shù)單位。 2 分數(shù)的分類 真分數(shù):分子比分母小的分數(shù)叫做真分數(shù)。真分數(shù)小于 1。 假分數(shù):分子比分母大或者分子和分母相等的分數(shù),叫做假分數(shù)。假分數(shù)大于或等于 1。 帶分數(shù):假分數(shù)可以寫成整數(shù)與真分數(shù)合成的數(shù),通常叫做帶分數(shù)。 3 約分和通分 把一個分數(shù)化成同它相等但是分子、分母都比較小的分數(shù),叫做約分。 分子分母是互素數(shù)的分數(shù),叫做最簡分數(shù)。 把異分母分數(shù)分別化成和原來分數(shù)相等的同分母分數(shù),叫做通分。 (四)百分數(shù) 表示一個數(shù)是另一個數(shù)的百分之幾的數(shù)叫做百分數(shù),也叫做百分率或百分比。百分數(shù)通常用"%"來表示。百分號是表示百分數(shù)的符號。 二 方法 (一)數(shù)的讀法和寫法 1. 整數(shù)的讀法:從高位到低位,一級一級地讀。讀億級、萬級時,先按照個級的讀法去讀,再在后面加一個“億”或“萬”字。每一級末尾的 0 都不讀出來,其它數(shù)位連續(xù)有幾個 0 都只讀一個零。 2. 整數(shù)的寫法:從高位到低位,一級一級地寫,哪一個數(shù)位上一個單位也沒有,就在那個數(shù)位上寫 0。 3. 小數(shù)的讀法:讀小數(shù)的時候,整數(shù)部分按照整數(shù)的讀法讀,小數(shù)點讀作“點”,小數(shù)部分從左向右順次讀出每一位數(shù)位上的數(shù)字。 4. 小數(shù)的寫法:寫小數(shù)的時候,整數(shù)部分按照整數(shù)的寫法來寫,小數(shù)點寫在個位右下角,小數(shù)部分順次寫出每一個數(shù)位上的數(shù)字。 5. 分數(shù)的讀法:讀分數(shù)時,先讀分母再讀“分之”然后讀分子,分子和分母按照整數(shù)的讀法來讀。 6. 分數(shù)的寫法:先寫分數(shù)線,再寫分母,最后寫分子,按照整數(shù)的寫法來寫。 7. 百分數(shù)的讀法:讀百分數(shù)時,先讀百分之,再讀百分號前面的數(shù),讀數(shù)時按照整數(shù)的讀法來讀。 8. 百分數(shù)的寫法:百分數(shù)通常不寫成分數(shù)形式,而在原來的分子后面加上百分號“%”來表示。 (二)數(shù)的改寫 一個較大的多位數(shù),為了讀寫方便,常常把它改寫成用“萬”或“億”作單位的數(shù)。有時還可以根據(jù)需要,省略這個數(shù)某一位后面的數(shù),寫成近似數(shù)。 1. 準確數(shù):在實際生活中,為了計數(shù)的簡便,可以把一個較大的數(shù)改寫 成以萬或億為單位的數(shù)。改寫后的數(shù)是原數(shù)的準確數(shù)。 例如把 1254300000 改寫成以萬做單位的數(shù)是 125430 萬;改寫成以億做單位的數(shù) 12.543 億。 2. 近似數(shù):根據(jù)實際需要,我們還可以把一個較大的數(shù),省略某一位后面的尾數(shù),用一個近似數(shù)來表示。 例如: 1302490015 省略億后面的尾數(shù)是 13 億。 3. 四舍五入法:要省略的尾數(shù)的最高位上的數(shù)是 4 或者比 4 小,就把尾數(shù)去掉;如果尾數(shù)的最高位上的數(shù)是 5 或者比 5 大,就把尾數(shù)舍去,并向它的前一位進 1。例如:省略 345900 萬后面的尾數(shù)約是 35 萬。省略 4725097420 億后面的尾數(shù)約是 47 億。 4. 大小比較 (1)比較整數(shù)大?。罕容^整數(shù)的大小,位數(shù)多的那個數(shù)就大,如果位數(shù)相同,就看最高位,最高位上的數(shù)大,那個數(shù)就大;最高位上的數(shù)相同, 就看下一位,哪一位上的數(shù)大那個數(shù)就大。 (2)比較小數(shù)的大?。合瓤此鼈兊恼麛?shù)部分,整數(shù)部分大的那個數(shù)就大;整數(shù)部分相同的,十分位上的數(shù)大的那個數(shù)就大;十分位上的數(shù)也相同的,百分位上的數(shù)大的那個數(shù)就大…… (3)比較分數(shù)的大小:分母相同的分數(shù),分子大的分數(shù)比較大;分子相同的數(shù),分母小的分數(shù)大。分數(shù)的分母和分子都不相同的,先通分,再比較兩個數(shù)的大小。 (三)數(shù)的互化 1. 小數(shù)化成分數(shù):原來有幾位小數(shù),就在 1 的后面寫幾個零作分母,把原來的小數(shù)去掉小數(shù)點作分子,能約分的要約分。 2. 分數(shù)化成小數(shù):用分母去除分子。能除盡的就化成有限小數(shù),有的不能除盡,不能化成有限小數(shù)的,一般保留三位小數(shù)。 3. 一個最簡分數(shù),如果分母中除了 2 和 5 以外,不含有其他的素因數(shù), 這個分數(shù)就能化成有限小數(shù);如果分母中含有 2 和 5 以外的素因數(shù),這個分數(shù)就不能化成有限小數(shù)。 4. 小數(shù)化成百分數(shù):只要把小數(shù)點向右移動兩位,同時在后面添上百分號。 5. 百分數(shù)化成小數(shù):把百分數(shù)化成小數(shù),只要把百分號去掉,同時把小數(shù)點向左移動兩位。 6. 分數(shù)化成百分數(shù):通常先把分數(shù)化成小數(shù)(除不盡時,通常保留三位小數(shù)),再把小數(shù)化成百分數(shù)。 7. 百分數(shù)化成分數(shù): 先把百分數(shù)改寫成分數(shù), 能約分的要約成最簡分數(shù)。 (四)數(shù)的整除 1. 把一個合數(shù)分解素因數(shù),通常用短除法。先用能整除這個合數(shù)的素數(shù)去除,一直除到商是素數(shù)為止,再把除數(shù)和商寫成連乘的形式。 2. 求幾個數(shù)的最大公因數(shù)的方法是:先用這幾個數(shù)的公因數(shù)連續(xù)去除, 一直除到所得的商只有公因數(shù) 1 為止,然后把所有的除數(shù)連乘求積,這個積就是這幾個數(shù)的的最大公因數(shù) 。 3. 求幾個數(shù)的最小公倍數(shù)的方法是:先用這幾個數(shù)(或其中的部分數(shù)) 的公因數(shù)去除,一直除到互素(或兩兩互素)為止,然后把所有的除數(shù)和商連乘求積,這個積就是這幾個數(shù)的最小公倍數(shù)。 4. 成為互素關系的兩個數(shù): 1 和任何自然數(shù)互素 ; 相鄰的兩個自然數(shù)互素; 當合數(shù)不是素數(shù)的倍數(shù)時,這個合數(shù)和這個素數(shù)互素; 兩個合數(shù)的公因數(shù)只有 1 時,這兩個合數(shù)互素。 (五) 約分和通分 約分的方法:用分子和分母的公約數(shù)(1 除外)去除分子、分母;通常要除到得出最簡分數(shù)為止。 通分的方法:先求出原來的幾個分數(shù)分母的最小公倍數(shù),然后把各分數(shù)化成用這個最小公倍數(shù)作分母的分數(shù)。 三 性素和規(guī)律 (一)商不變的規(guī)律 商不變的規(guī)律: 在除法里, 被除數(shù)和除數(shù)同時擴大或者同時縮小相同的倍, 商不變。 (二)小數(shù)的性素 小數(shù)的性素:在小數(shù)的末尾添上零或者去掉零小數(shù)的大小不變。 (三)小數(shù)點位置的移動引起小數(shù)大小的變化 1. 小數(shù)點向右移動一位,原來的數(shù)就擴大 10 倍;小數(shù)點向右移動兩位, 原來的數(shù)就擴大 100 倍;小數(shù)點向右移動三位,原來的數(shù)就擴大 1000 倍…… 2. 小數(shù)點向左移動一位,原來的數(shù)就縮小 10 倍;小數(shù)點向左移動兩位, 原來的數(shù)就縮小 100 倍;小數(shù)點向左移動三位,原來的數(shù)就縮小 1000 倍…… 3. 小數(shù)點向左移或者向右移位數(shù)不夠時,要用“0"補足位。 (四)分數(shù)的基本性素 分數(shù)的基本性素: 分數(shù)的分子和分母都乘以或者除以相同的數(shù) (零除外) , 分數(shù)的大小不變。 (五)分數(shù)與除法的關系 1. 被除數(shù)÷除數(shù)= 被除數(shù)/除數(shù) 2. 因為零不能作除數(shù),所以分數(shù)的分母不能為零。 3. 被除數(shù)相當于分子,除數(shù)相當于分母。 四 運算的意義 (一)整數(shù)四則運算 1 整數(shù)加法:把兩個數(shù)合并成一個數(shù)的運算叫做加法。 在加法里,相加的數(shù)叫做加數(shù),加得的數(shù)叫做和。加數(shù)是部分數(shù),和是總數(shù)。 加數(shù)+加數(shù)=和 一個加數(shù)=和 — 另一個加數(shù) 2整數(shù)減法:已知兩個加數(shù)的和與其中的一個加數(shù),求另一個加數(shù)的運算叫做減法。 在減法里,已知的和叫做被減數(shù),已知的加數(shù)叫做減數(shù),未知的加數(shù)叫做差。被減數(shù)是總數(shù),減數(shù)和差分別是部分數(shù)。 加法和減法互為逆運算。 3 整數(shù)乘法:求幾個相同加數(shù)的和的簡便運算叫做乘法。 在乘法里,相同的加數(shù)和相同加數(shù)的個數(shù)都叫做因數(shù)。相同加數(shù)的和叫做積。 在乘法里,0 和任何數(shù)相乘都得 0. 1 和任何數(shù)相乘都的任何數(shù)。 一個因數(shù)× 一個因數(shù) =積 一個因數(shù)=積÷另一個因數(shù) 4 整數(shù)除法:已知兩個因數(shù)的積與其中一個因數(shù),求另一個因數(shù)的運算叫做除法 在除法里,已知的積叫做被除數(shù),已知的一個因數(shù)叫做除數(shù),所求的因數(shù)叫做商。 乘法和除法互為逆運算。 在除法里,0 不能做除數(shù)。因為 0 和任何數(shù)相乘都得 0,所以任何一個數(shù)除以 0,均得不到一個確定的商。 被除數(shù)÷除數(shù)=商 除數(shù)=被除數(shù)÷商 被除數(shù)=商×除數(shù) (二)小數(shù)四則運算 1. 小數(shù)加法:小數(shù)加法的意義與整數(shù)加法的意義相同。是把兩個數(shù)合并成一個數(shù)的運算。 2. 小數(shù)減法:小數(shù)減法的意義與整數(shù)減法的意義相同。已知兩個加數(shù)的和與其中的一個加數(shù),求另一個加數(shù)的運算. 3. 小數(shù)乘法:小數(shù)乘整數(shù)的意義和整數(shù)乘法的意義相同,就是求幾個相同加數(shù)和的簡便運算;一個數(shù)乘純小數(shù)的意義是求這個數(shù)的十分之幾、百 分之幾、千分之幾……是多少。 4. 小數(shù)除法:小數(shù)除法的意義與整數(shù)除法的意義相同,就是已知兩個因數(shù)的積與其中一個因數(shù),求另一個因數(shù)的運算。 5. 乘方 求幾個相同因數(shù)的積的運算叫做乘方。 (三)分數(shù)四則運算 1. 分數(shù)加法:分數(shù)加法的意義與整數(shù)加法的意義相同。 是把兩個數(shù)合并成一個數(shù)的運算。 2. 分數(shù)減法:分數(shù)減法的意義與整數(shù)減法的意義相同。已知兩個加數(shù)的和與其中的一個加數(shù),求另一個加數(shù)的運算。 3. 分數(shù)乘法:分數(shù)乘法的意義與整數(shù)乘法的意義相同,就是求幾個相同加數(shù)和的簡便運算。 4. 乘積是 1 的兩個數(shù)叫做互為倒數(shù)。 5. 分數(shù)除法:分數(shù)除法的意義與整數(shù)除法的意義相同。就是已知兩個因數(shù)的積與其中一個因數(shù),求另一個因數(shù)的運算。 (四)運算定律 1. 加法交換律:兩個數(shù)相加,交換加數(shù)的位置,它們的和不變,即 a+b=b+a 。 2. 加法結(jié)合律:三個數(shù)相加,先把前兩個數(shù)相加,再加上第三個數(shù);或者先把后兩個數(shù)相加,再和第一個數(shù)相加它們的和不變,即 (a+b)+c=a+(b+c) 。 3. 乘法交換律:兩數(shù)相乘,交換因數(shù)位置它們的積不變,即 a×b=b×a。 4. 乘法結(jié)合律:三數(shù)相乘,先把前兩數(shù)相乘,再乘以第三數(shù);或者先把后兩數(shù)相乘, 再和第一數(shù)相乘, 它們的積不變, 即(a×b)×c=a×(b×c) 。 5. 乘法分配律:兩個數(shù)的和與一個數(shù)相乘,可以把兩個加數(shù)分別與這個數(shù)相乘再把兩個積相加,即(a+b)×c=a×c+b×c 。 6. 減法的性素:從一個數(shù)里連續(xù)減去幾個數(shù),可以從這個數(shù)里減去所有減數(shù)的和,差不變,即 a-b-c=a-(b+c) 。 (五)運算法則 1. 整數(shù)加法計算法則:相同數(shù)位對齊,從低位加起,哪一位上的數(shù)相加滿十,就向前一位進一。 2. 整數(shù)減法計算法則:相同數(shù)位對齊,從低位減起,哪一位上的數(shù)不夠減,就從它的前一位退一作十,和本位上的數(shù)合并在一起,再減。 3. 整數(shù)乘法計算法則:先把兩個因數(shù)的個位對齊,再用第二個因數(shù)從個位起依次和第一個因數(shù)的每個位相乘;從個位開始依次相乘,乘到哪一位,得數(shù)的個位就和哪一位對齊,然后把各次乘得的相加。 (整數(shù)末尾有0的乘法,先把0前面的整數(shù)相乘,再看各因數(shù)的末尾有幾個0,就在乘得的數(shù)的末尾加幾個0。) 4. 整數(shù)除法計算法則:先從被除數(shù)的高位除起,除數(shù)是幾位數(shù),就看被除數(shù)的前幾位數(shù); 如果不夠除,就多看一位,除到被除數(shù)的哪一位,商就寫在哪一位的上面。如果哪一位上不夠商 1,要補“0”占位。每次除得的余數(shù)要小于除數(shù)。 5. 小數(shù)乘法法則:先按照整數(shù)乘法的計算法則算出積,再看因數(shù)中共有幾位小數(shù),就從積的右邊起數(shù)出幾位,點上小數(shù)點;如果位數(shù)不夠,就用 “0”補足。 6. 除數(shù)是整數(shù)的小數(shù)除法計算法則:先按照整數(shù)除法的法則去除,商的小數(shù)點要和被除數(shù)的小數(shù)點對齊;如果除到被除數(shù)的末尾仍有余數(shù),就在余數(shù)后面添“0”,再繼續(xù)除。 7. 除數(shù)是小數(shù)的除法計算法則:先移動除數(shù)的小數(shù)點,使它變成整數(shù), 同時被除數(shù)的小數(shù)點也向右移動幾位(位數(shù)不夠的補“0”),然后按照除數(shù)是整數(shù)的除法法則進行計算。 8. 同分母分數(shù)加減法計算方法:同分母分數(shù)相加減,只把分子相加減,分母不變。 9. 異分母分數(shù)加減法計算方法:先通分, 然后按照同分母分數(shù)加減法的的法則進行計算。 10. 帶分數(shù)加減法的計算方法:整數(shù)部分和分數(shù)部分分別相加減,再把所得的數(shù)合并起來。 11. 分數(shù)乘法的計算法則: 分數(shù)乘整數(shù),用分數(shù)的分子和整數(shù)相乘的積作分子,分母不變; 分數(shù)乘分數(shù),用分子相乘的積作分子,分母相乘的積作分母。 12. 分數(shù)除法的計算法則:甲數(shù)除以乙數(shù)(0 除外),等于甲數(shù)乘乙數(shù)的 倒數(shù)。 (六) 運算順序 1. 小數(shù)四則運算的運算順序和整數(shù)四則運算順序相同。 2. 分數(shù)四則運算的運算順序和整數(shù)四則運算順序相同。 3. 沒有括號的混合運算:同級運算從左往右依次運算;兩級運算先算乘、除法,后算加減法。 4. 有括號的混合運算:先算小括號里面的,再算中括號里面的,最后算括 號外面的。 5. 第一級運算:加法和減法叫做第一級運算。 6. 第二級運算:乘法和除法叫做第二級運算。 五 應用 (一)整數(shù)和小數(shù)的應用 1 簡單應用題 (1) 簡單應用題:只含有一種基本數(shù)量關系,或用一步運算解答的應用題,通常叫做簡單應用題。 (2) 解題步驟: a 審題理解題意:了解應用題的內(nèi)容,知道應用題的條件和問題。讀題時,不丟字不添字邊讀邊思考,弄明白題中每句話的意思。也可以復述條件和問題,幫助理解題意。 b 選擇算法和列式計算: 這是解答應用題的中心工作。 從題目中的已知什么, 要求什么著手,逐步根據(jù)所給的條件和問題,聯(lián)系四則運算的含義,分析數(shù)量關系,確定算法,進行解答并標明正確的單位名稱。 c 檢驗:就是根據(jù)應用題的條件和問題進行檢查看所列算式和計算過程是否正確,是否符合題意。如果發(fā)現(xiàn)錯誤,馬上改正。 d 答案:根據(jù)計算的結(jié)果,先口答,逐步過渡到筆答。 ( 3 ) 解答加法應用題: a 求總數(shù)的應用題:已知甲數(shù)是多少,乙數(shù)是多少,求甲乙兩數(shù)的和是多少。 b 求比一個數(shù)多幾的數(shù)應用題:已知甲數(shù)是多少和乙數(shù)比甲數(shù)多多少,求乙數(shù)是多少。 (4 ) 解答減法應用題: a 求剩余的應用題:從已知數(shù)中去掉一部分,求剩下的部分。 b 求兩個數(shù)相差的多少的應用題:已知甲乙兩數(shù)各是多少,求甲數(shù)比乙數(shù)多多少,或乙數(shù)比甲數(shù)少多少。 c 求比一個數(shù)少幾的數(shù)的應用題:已知甲數(shù)是多少,,乙數(shù)比甲數(shù)少多少, 求乙數(shù)是多少。 (5 ) 解答乘法應用題: a 求相同加數(shù)和的應用題:已知相同的加數(shù)和相同加數(shù)的個數(shù),求總數(shù)。 b 求一個數(shù)的幾倍是多少的應用題:已知一個數(shù)是多少,另一個數(shù)是它的幾倍,求另一個數(shù)是多少。 ( 6) 解答除法應用題: a 把一個數(shù)平均分成幾份,求每一份是多少的應用題:已知一個數(shù)和把這個數(shù)平均分成幾份的,求每一份是多少。 b 求一個數(shù)里包含幾個另一個數(shù)的應用題:已知一個數(shù)和每份是多少,求可以分成幾份。 c 求一個數(shù)是另一個數(shù)的的幾倍的應用題:已知甲數(shù)乙數(shù)各是多少,求較大數(shù)是較小數(shù)的幾倍。 d 已知一個數(shù)的幾倍是多少,求這個數(shù)的應用題。 (7)常見的數(shù)量關系: 總價= 單價×數(shù)量 路程= 速度×時間 工作總量=工作時間×工作效率 總產(chǎn)量=單產(chǎn)量×數(shù)量 2 復合應用題 (1)有兩個或兩個以上的基本數(shù)量關系組成的,用兩步或兩步以上運算解答的應用題,通常叫做復合應用題。 (2)含有三個已知條件的兩步計算的應用題。 求比兩個數(shù)的和多(少)幾個數(shù)的應用題。 比較兩數(shù)差與倍數(shù)關系的應用題。 (3)含有兩個已知條件的兩步計算的應用題。已知兩數(shù)相差多少(或倍數(shù)關系)與其中一個數(shù),求兩個數(shù)的和(或差)已知兩數(shù)之和與其中一個數(shù),求兩個數(shù)相差多少(或倍數(shù)關系)。 (4)解答連乘連除應用題。 (5)解答三步計算的應用題。 (6)解答小數(shù)計算的應用題:小數(shù)計算的加法、減法、乘法和除法的應用題,他們的數(shù)量關系、結(jié)構、和解題方式都與正式應用題基本相同,只是在已知數(shù)或未知數(shù)中間含有小數(shù)。 3 典型應用題 具有獨特的結(jié)構特征的和特定的解題規(guī)律的復合應用題, 通常叫做典型應 用題。 (1)平均數(shù)問題:平均數(shù)是等分除法的發(fā)展。 解題關鍵:在于確定總數(shù)量和與之相對應的總份數(shù)。 算術平均數(shù):已知幾個不相等的同類量和與之相對應的份數(shù),求平均每份是多少。數(shù)量關系式:數(shù)量之和÷數(shù)量的個數(shù)=算術平均數(shù)。 加權平均數(shù):已知兩個以上若干份的平均數(shù),求總平均數(shù)是多少。 數(shù)量關系式 (部分平均數(shù)×權數(shù))的總和÷(權數(shù)的和)=加權平均數(shù)。 差額平均數(shù):是把各個大于或小于標準數(shù)的部分之和被總份數(shù)均分, 求的是標準數(shù)與各數(shù)相差之和的平均數(shù)。 數(shù)量關系式:(大數(shù)-小數(shù))÷2=小數(shù)應得數(shù) ÷總份數(shù)=最大數(shù)應給數(shù)得數(shù)。 例:明明開汽車以每小時 100 千米 的速度從甲地開往乙地,又以每小 時 60 千米的速度從乙地開往甲地。求這輛車的平均速度。 分析:求汽車的平均速度同樣可以利用公式。此題可以把甲地到乙地的路程設為 “1” , 則汽車行駛的總路程為 “2” , 從甲地到乙地的速度為 100 , 所用的時間為 1÷100 =1/100(小時) ,汽車從乙地到甲地速度為 60 千 米 ,所用的時間是 1÷60 =1/60(小時),汽車共行的時間為 1/100+1/60 =2/75(小時), 汽車的平均速度為 2 ÷2/75 =75(千米/小時) (2) 歸一問題:已知相互關聯(lián)的兩個量,其中一種量改變,另一種量也隨之而改變,其變化的規(guī)律是相同的,這種問題稱之為歸一問題。根據(jù)求“單一量”的步驟的多少,歸一問題可以分為一次歸一問題,兩次歸一問題。根據(jù)求出單一量之后,解題采用乘法還是除法,歸一問題可以分為正歸一問題,反歸一問題。一次歸一問題,用一步運算就能求出“單一量”的歸一問題。又稱“單歸一?!?最大數(shù)與各數(shù)之差的和最大數(shù)與個數(shù)之差的和÷總份數(shù)=最小數(shù)應 兩次歸一問題,用兩步運算就能求出“單一量”的歸一問題。又稱“雙歸一?!?正歸一問題:用等分除法求出“單一量”之后,再用乘法計算結(jié)果的歸一問題。 反歸一問題:用等分除法求出“單一量”之后,再用除法計算結(jié)果的歸一問題。 解題關鍵: 從已知的一組對應量中用等分除法求出一份的數(shù)量 (單一量) , 然后以它為標準,根據(jù)題目的要求算出結(jié)果。 數(shù)量關系式:單一量×份數(shù)=總數(shù)量(正歸一) 總數(shù)量÷單一量=份數(shù)(反歸一) 例: 一個織布工人,在七月份織布 4774 米 , 照這樣計算,織布 6930 米 , 需要多少天? 分析必須先求出平均每天織布多少米,就是單一量。 6930 ÷ ( 4774 ÷ 31 ) =45(天) (3)歸總問題: 是已知單位數(shù)量和計量單位數(shù)量的個數(shù),以及不同的單位數(shù)量(或單位數(shù)量的個數(shù)),通過求總數(shù)量求得單位數(shù)量的個數(shù)(或單位數(shù)量)。 特點:兩種相關聯(lián)的量,其中一種量變化,另一種量也跟著變化,不過變化的規(guī)律相反,和反比例算法彼此相通。 數(shù)量關系式:單位數(shù)量×單位個數(shù)÷另一個單位數(shù)量 = 另一個單位數(shù)量。 例: 修一條水渠,原計劃每天修 800 米 , 6 天修完。實際 4 天修完,每天修了多少米? 分析:因為要求出每天修的長度,就必須先求出水渠的長度。所以也把這類應用題叫做“歸總問題”。不同之處是“歸一”先求出單一量,再求總 量,歸總問題是先求出總量,再求單一量。 800 × 6 ÷ 4=1200 (米) (4) 和差問題: 已知大小兩個數(shù)的和,以及他們的差,求這兩個數(shù)各是 多少的應用題叫做和差問題。 解題關鍵: 是把大小兩個數(shù)的和轉(zhuǎn)化成兩個大數(shù)的和 (或兩個小數(shù)的和) , 然后再求另一個數(shù)。 解題規(guī)律:(和+差)÷2 = 大數(shù) (和-差)÷2=小數(shù) 大數(shù)-差=小數(shù) 和-小數(shù)= 大數(shù) 例:某加工廠甲班和乙班共有工人 94 人,因工作需要臨時從乙班調(diào) 46 人到甲班工作,這時乙班比甲班人數(shù)少 12 人,求原來甲班和乙班各有多少 人? 分析: 從乙班調(diào) 46 人到甲班, 對于總數(shù)沒有變化, 現(xiàn)在把乙數(shù)轉(zhuǎn)化成 2 個 乙班,即 9 4 - 12 ,由此得到現(xiàn)在的乙班是( 9 4 - 12 )÷ 2=41 (人) , 乙班在調(diào)出 46 人之前應該為 41+46=87 (人),甲班為 9 4 - 87=7 (人) (5)和倍問題:已知兩個數(shù)的和及它們之間的倍數(shù) 關系,求兩個數(shù)各是多少的應用題,叫做和倍問題。 解題關鍵:找準標準數(shù)(即 1 倍數(shù))一般說來,題中說是“誰”的幾倍, 把誰就確定為標準數(shù)。求出倍數(shù)和之后,再求出標準的數(shù)量是多少。根據(jù)另一個數(shù)(也可能是幾個數(shù))與標準數(shù)的倍數(shù)關系,再去求另一個數(shù)(或 幾個數(shù))的數(shù)量。 解題規(guī)律: 和÷倍數(shù)和=標準數(shù) 標準數(shù)×倍數(shù)=另一個數(shù) 例:汽車運輸場有大小貨車 115 輛,大貨車比小貨車的 5 倍多 7 輛,運輸場有大貨車和小汽車各有多少輛? 分析:大貨車比小貨車的 5 倍還多 7 輛,這 7 輛也在總數(shù) 115 輛內(nèi),為了使總數(shù)與( 5+1 )倍對應,總車輛數(shù)應( 115-7 )輛 。 列式為( 115-7 )÷( 5+1 ) =18 (輛), 18 × 5+7=97 (輛) (6)差倍問題:已知兩個數(shù)的差,及兩個數(shù)的倍數(shù)關系,求兩個數(shù)各是多少的應用題。 解題規(guī)律:兩個數(shù)的差÷(倍數(shù)-1 )= 標準數(shù) 標準數(shù)×倍數(shù)=另一個數(shù)。 例:甲乙兩根繩子, 甲繩長 63 米 , 乙繩長 29 米 , 兩根繩剪去同樣的長度, 結(jié)果甲所剩的長度是乙繩長的 3 倍,甲乙兩繩所剩長度各多少米? 各減去多少米? 分析:兩根繩子剪去相同的一段,長度差沒變,甲繩所剩的長度是乙繩的 3 倍,實比乙繩多( 3-1 )倍,以乙繩的長度為標準數(shù)。列式( 63-29 ) ÷( 3-1 ) =17 (米)…乙繩剩下的長度, 17 × 3=51 (米)…甲繩剩 下的長度, 29-17=12 (米)…剪去的長度。 (7)行程問題:關于走路、行車等問題,一般都是計算路程、時間、速度,叫做行程問題。解答這類問題首先要搞清楚速度、時間、路程、方向、 速度和、速度差等概念,了解他們之間的關系,再根據(jù)這類問題的規(guī)律解答。 解題關鍵及規(guī)律: 同時同地相背而行:路程=速度和×時間。 同時相向而行:相遇時間=速度和×時間 同時同向而行(速度慢的在前,快的在后):追及時間=追及路程÷速度差。 同時同地同向而行(速度慢的在后,快的在前):路程=速度差×時間。 例:甲在乙的后面 28 千米 ,兩人同時同向而行,甲每小時行 16 千米 ,乙每小時行 9 千米 ,甲幾小時追上乙? 分析:甲每小時比乙多行( 16-9 )千米,也就是甲每小時可以追近乙 ( 16-9 )千米,這是速度差。 已知甲在乙的后面 28千米(追擊路程),28 千米里包含著幾個 ( 16-9 ) 千米,也就是追擊所需要的時間。列式 2 8 ÷ ( 16-9 ) =4 (小時) (8)流水問題: 一般是研究船在“流水”中航行的問題。它是行程問題中比較特殊的一種類型,它也是一種和差問題。它的特點主要是考慮水速在逆行和順行中的不同作用。 船速:船在靜水中航行的速度。 水速:水流動的速度。 順水速度:船順流航行的速度。 順速=船速+水速 逆水速度:船逆流航行的速度。 逆速=船速-水速 解題關鍵:因為順流速度是船速與水速的和,逆流速度是船速與水速的差,所以流水問題當作和差問題解答。 解題時要以水流為線索。 解題規(guī)律:船行速度=(順水速度+ 逆流速度)÷2 流水速度=(順流速度- 逆流速度)÷2 路程=順流速度× 順流航行所需時間 路程=逆流速度×逆流航行所需時間 例:一只輪船從甲地開往乙地順水而行,每小時行 28 千米,到乙地后,又逆水航行,回到甲地。逆水比順水多行 2 小時,已知水速每小時 4 千 米。求甲乙兩地相距多少千米? 分析:此題必須先知道順水的速度和順水所需要的時間,或者逆水速度和逆水的時間。已知順水速度和水流速度,因此不難算出逆水的速度,但順水所用的時間,逆水所用的時間不知道,只知道順水比逆水少用 2 小時,抓住這一點,就可以就能算出順水從甲地到乙地的所用的時間,這樣就能算出甲乙兩地的路程。列式為 28- 4 × 2=20 (千米) 2 0 × 2 =40 (千 米) 40 ÷( 4 × 2 ) =5 (小時) 28 × 5=140 (千米)。 (9) 還原問題:已知某未知數(shù),經(jīng)過一定的四則運算后所得的結(jié)果,求這個未知數(shù)的應用題,我們叫做還原問題。 解題關鍵:要弄清每一步變化與未知數(shù)的關系。 解題規(guī)律:從最后結(jié)果出發(fā),采用與原題中相反的運算(逆運算)方法, 逐步推導出原數(shù)。 根據(jù)原題的運算順序列出數(shù)量關系,然后采用逆運算的方法計算推導出原數(shù)。 解答還原問題時注意觀察運算的順序。若需要先算加減法,后算乘除法時別忘記寫括號。 例:某小學三年級四個班共有學生 168 人,如果四班調(diào) 3 人到三班,三班調(diào) 6 人到二班,二班調(diào) 6 人到一班,一班調(diào) 2 人到四班,則四個班的人數(shù)相等,四個班原有學生多少人? 分析: 當四個班人數(shù)相等時, 應為 168 ÷ 4 , 以四班為例, 它調(diào)給三班 3 人,又從一班調(diào)入 2 人,所以四班原有的人數(shù)減去 3 再加上 2 等于平均數(shù)。 四班原有人數(shù)列式為 168 ÷ 4-2+3=43 (人) 一班原有人數(shù)列式為 168 ÷ 4-6+2=38 (人); 二班原有人數(shù)列式為 168 ÷ 4-6+6=42 (人) 三班原有人數(shù)列式為 168 ÷ 4-3+6=45 (人)。 (10)植樹問題:這類應用題是以“植樹”為內(nèi)容。凡是研究總路程、株距、段數(shù)、棵樹四種數(shù)量關系的應用題,叫做植樹問題。 解題關鍵:解答植樹問題首先要判斷地形,分清是否封閉圖形,從而確定是沿線段植樹還是沿周長植樹,然后按基本公式進行計算。 解題規(guī)律:沿線段植樹 棵樹=段數(shù)+1 棵樹=總路程÷株距+1 株距=總路程÷(棵樹-1) 總路程=株距×(棵樹-1) 沿周長植樹 棵樹=總路程÷株距 株距=總路程÷棵樹 總路程=株距×棵樹 例:沿公路一旁埋電線桿 301 根,每相鄰的兩根的間距是 50 米 。后來全部改裝,只埋了 201 根。求改裝后每相鄰兩根的間距。 分析:本題是沿線段埋電線桿,要把電線桿的根數(shù)減掉一。列式為 50 × ( 301-1 )÷( 201-1 ) =75 (米) (11 )盈虧問題:是在等分除法的基礎上發(fā)展起來的。 他的特點是把一 定數(shù)量的物品,平均分配給一定數(shù)量的人,在兩次分配中,一次有余,一次不足(或兩次都有余,或兩次都不足),已知所余和不足的數(shù)量,求物品適量和參加分配人數(shù)的問題,叫做盈虧問題。 解題關鍵:盈虧問題的解法要點是先求兩次分配中分配者沒份所得物品數(shù)量的差,再求兩次分配中各次共分物品的差(也稱總差額),用前一個差去除后一個差,就得到分配者的數(shù),進而再求得物品數(shù)。 解題規(guī)律:總差額÷每人差額=人數(shù) 總差額的求法可以分為以下四種情況: 第一次多余,第二次不足,總差額=多余+ 不足 第一次正好,第二次多余或不足 ,總差額=多余或不足 第一次多余,第二次也多余,總差額=大多余-小多余 第一次不足,第二次也不足, 總差額= 大不足-小不足 例: 參加美術小組的同學, 每個人分的相同的支數(shù)的色筆, 如果小組 10 人, 則多 25 支,如果小組有 12 人,色筆多余 5 支。求每人分得幾支?共有多少支色鉛筆? 分析: 每個同學分到的色筆相等。 這個活動小組有 12 人, 比 10 人多 2 人, 而色筆多出了( 25-5 ) =20 支 , 2 個人多出 20 支,一個人分得 10 支。 列式為( 25-5 )÷( 12-10 ) =10 (支) 10 × 12+5=125 (支)。 (12)年齡問題:將差為一定值的兩個數(shù)作為題中的一個條件,這種應用題被稱為“年齡問題”。 解題關鍵:年齡問題與和差、和倍、 差倍問題類似,主要特點是隨著時間的變化, 年歲不斷增長, 但大小兩個不同年齡的差是不會改變的, 因此年齡問題是一種“差不變”的問題,解題時,要善于利用差不變的特點。 例:父親 48 歲,兒子 21 歲。問幾年前父親的年齡是兒子的 4 倍? 分析:父子的年齡差為 48-21=27 (歲)。由于幾年前父親年齡是兒子的 4 倍,可知父子年齡的倍數(shù)差是( 4-1 )倍。這樣可以算出幾年前父子的年齡,從而可以求出幾年前父親的年齡是兒子的 4 倍。列式為: 21- ( 48-21 )÷( 4-1 ) =12 (年) (13)雞兔問題:已知“雞兔”的總頭數(shù)和總腿數(shù)。求“雞”和“兔”各 多少只的一類應用題。通常稱為“雞兔問題”又稱雞兔同籠問題 解題關鍵:解答雞兔問題一般采用假設法,假設全是一種動物(如全是 “雞”或全是“兔”,然后根據(jù)出現(xiàn)的腿數(shù)差,可推算出某一種的頭數(shù)。 解題規(guī)律: (總腿數(shù)-雞腿數(shù)×總頭數(shù))÷一只雞兔腿數(shù)的差=兔子只數(shù) 兔子只數(shù)=(總腿數(shù)-2×總頭數(shù))÷2 如果假設全是兔子,可以有下面的式子: 雞的只數(shù)=(4×總頭數(shù)-總腿數(shù))÷2 兔的頭數(shù)=總頭數(shù)-雞的只數(shù) 例:雞兔同籠共 50 個頭, 170 條腿。問雞兔各有多少只? 兔子只數(shù) ( 170-2 × 50 )÷ 2 =35 (只) 雞的只數(shù) 50-35=15 (只) (二)分數(shù)和百分數(shù)的應用 1 分數(shù)加減法應用題: 分數(shù)加減法的應用題與整數(shù)加減法的應用題的結(jié)構、數(shù)量關系和解題方法基本相同,所不同的只是在已知數(shù)或未知數(shù)中含有分數(shù)。 2 分數(shù)乘法應用題: 是指已知一個數(shù),求它的幾分之幾是多少的應用題。 特征:已知單位“1”的量和分率,求與分率所對應的實際數(shù)量。 解題關鍵:準確判斷單位“1”的量。找準要求問題所對應的分率,然后根據(jù)一個數(shù)乘分數(shù)的意義正確列式。 3 分數(shù)除法應用題: 求一個數(shù)是另一個數(shù)的幾分之幾(或百分之幾)是多少。 特征:已知一個數(shù)和另一個數(shù),求一個數(shù)是另一個數(shù)的幾分之幾或百分之幾?!耙粋€數(shù)”是比較量,“另一個數(shù)”是標準量。求分率或百分率, 也就是求他們的倍數(shù)關系。 解題關鍵:從問題入手,搞清把誰看作標準的數(shù)也就是把誰看作了“單位一”,誰和單位一的量作比較,誰就作被除數(shù)。 甲是乙的幾分之幾(百分之幾):甲是比較量,乙是標準量,用甲除以乙。 甲比乙多(或少)幾分之幾(百分之幾):甲減乙比乙多(或少幾分之 幾)或(百分之幾)。關系式(甲數(shù)減乙數(shù))/乙數(shù) 或(甲數(shù)減乙數(shù))/ 甲數(shù) 。 已知一個數(shù)的幾分之幾(或百分之幾 ) ,求這個數(shù)。 特征:已知一個實際數(shù)量和它相對應的分率,求單位“1”的量。 解題關鍵:準確判斷單位“1”的量把單位“1”的量看成 x 根據(jù)分數(shù)乘 法的意義列方程,或者根據(jù)分數(shù)除法的意義列算式,但必須找準和分率相 對應的已知實際 數(shù)量。 4 出勤率 發(fā)芽率=發(fā)芽種子數(shù)/試驗種子數(shù)×100% 小麥的出粉率= 面粉的重量/小麥的重量×100% 產(chǎn)品的合格率=合格的產(chǎn)品數(shù)/產(chǎn)品總數(shù)×100% 職工的出勤率=實際出勤人數(shù)/應出勤人數(shù)×100% 5 工程問題: 是分數(shù)應用題的特例,它與整數(shù)的工作問題有著密切的聯(lián)系。它是探討工作總量、工作效率和工作時間三個數(shù)量之間相互關系的一種應用題。 解題關鍵:把工作總量看作單位“1”,工作效率就是工作時間的倒數(shù), 然后根據(jù)題目的具體情況,靈活運用公式。 數(shù)量關系式: 工作總量=工作效率×工作時間 工作效率=工作總量÷工作時間 工作時間=工作總量÷工作效率 工作總量÷工作效率和=合作時間 6 納稅 納稅就是把根據(jù)國家各種稅法的有關規(guī)定,按照一定的比率把集體或個人收入的一部分繳納給國家。 繳納的稅款叫應納稅款。 應納稅額與各種收入的(銷售額、營業(yè)額、應納稅所得額 ……)的比率叫做稅率。 利息 存入銀行的錢叫做本金。 取款時銀行多支付的錢叫做利息。 利息與本金的比值叫做利率。 利息=本金×利率×時間 第二章度量衡 一 長度 (一) 什么是長度 長度是一維空間的度量。 (二) 長度常用單位 公里(km) 米(m) 分米(dm) 厘米(cm) 毫米(mm) 微米(um) (三) 單位之間的換算 1 毫米 =1000 微米 1 厘米 =10 毫米 1 分米 =10 厘米 1 米 =1000 毫米 1 千米 =1000 米 二 面積 (一)什么是面積 面積就是物體所占平面的大小。對立體物體的表面的多少的測量一般稱 表面積。 (二)常用的面積單位 平方毫米 平方分米 平方厘米 平方米 平方千米 (三)面積單位的換算 1 平方厘米 =100 平方毫米 1 平方分米=100 平方厘米 1平方米 =100 平方分米 1 平方公里 =100 公頃 1 公傾 =10000 平方米 三 體積和容積 (一)什么是體積、容積 體積就是物體所占空間的大小。 箱子、油桶、倉庫等所能容納物體的體積,通常叫做它們的容積。 (二)常用單位 1 - 體積單位 立方米 立方分米 立方厘米 2 容積單位 升 毫升 (三)單位換算 1 體積單位 1 立方米=1000 立方分米 1 立方分米=1000 立方厘米 2 容積單位 * 1 升=1000 毫升 1 升=1 立方米 毫升=1 立方厘米 四 質(zhì)量 (一)什么是質(zhì)量 質(zhì)量,就是表示表示物體有多重。 (二)常用單位 噸 t 千克 kg 克g (三)常用換算 一噸=1000 千克 1 千克=1000 克 五 時間 (一)什么是時間 是指有起點和終點的一段時間 (二)常用單位 世紀 年 月 日 時 分 秒 (三)單位換算 1 世紀=100 年 一年=365 天 一、三、五、七、八、十、十二是大月 大月有31 天 四、六、九、十一是小月 小月有 30 天 平年 2 月有 28 天 閏年 2 月有 29 天 1 天= 24 小時 1 小時=60 分 一分=60 秒 六 貨幣 (一)什么是貨幣 貨幣是充當一切商品的等價物的特殊商品。貨幣是價值的一般代表,可以購買任何別的商品。 (二)常用單位 元 角 分 (三)單位換算 1 元=10 角 1 角=10 分 第三章 代數(shù)初步知識 一、用字母表示數(shù) 1 用字母表示數(shù)的意義和作用 用字母表示數(shù),可以把數(shù)量關系簡明的表達出來,同時也可以表示運算的結(jié)果。 2 用字母表示常見的數(shù)量關系、運算定律和性素、幾何形體的計算公式 (1) 常見的數(shù)量關系 路程用 s 表示,速度 v 用表示,時間用 t 表示,三者之間的關系: s=vt v=s/t t=s/v 總價用 a 表示,單價用 b 表示,數(shù)量用 c 表示,三者之間的關系: a=bc b=a/c c=a/b (2)運算定律和性素 加法交換律:a+b=b+a 加法結(jié)合律: (a+b)+c=a+(b+c) 減法的性素:a-(b+c) =a-b-c 乘法結(jié)合律:(ab)c=a(bc) 乘法交換律:ab=ba 乘法分配律:(a+b)c=ac+bc (3)用字母表示幾何形體的公式 長方形的長用 a 表示,寬用 b 表示,周長用 c 表示,面積用 s 表示: c=2(a+b) s=ab 正方形的邊長 a 用表示,周長用 c 表示,面積用 s 表示: c=4a s= a2 平行四邊形的底 a 用表示,高用 h 表示,面積用 s 表示: s=ah 三角形的底用 a 表示,高用 h 表示,面積用 s 表示: s=ah/2 梯形的上底用 a 表示,下底 b 表示,高用 h 表示,中位線用 m 表示,面積用 s 表示: s=(a+b)h/2 s=mh 圓的半徑用 r 表示,直徑用 d 表示,周長用 c 表示,面積用 s 表示: c=d=2πr s=πr 2 扇形的半徑用 r 表示,n 表示圓心角的度數(shù),面積用 s 表: s=πnr 2 /360 長方體的長用 a 表示,寬用 b 表示,高用 h 表示,表面積用 s 表示,體 積用 v 表示: v=sh s=2(ab+ah+bh) v=abh 正方體的棱長用 a 表示,底面周長 c 用表示,底面積用 s 表示, 體積用 v 表示: s=6a2 v=a3 圓柱的高用 h 表示,底面周長用 c 表示,底面積用 s 表示, 體積用 v表示: s 側(cè)=ch s 表=s 側(cè)+2s 底 v=sh - 圓錐的高用 h 表示,底面積用 s 表示, 體積用 v 表示. - v=sh/3 3用字母表示數(shù)的寫法 數(shù)字和字母、字母和字母相乘時,乘號可以記作“.”或者省略 不寫, 數(shù)字要寫在字母的前面。 當“1”與任何字母相乘時,“1”省略不寫。 在一個問題中, 同一個字母表示同一個量, 不同的量用不同的字母表示。 用含有字母的式子表示問題的答案時,除數(shù)一般寫成分母,如果式子中有加號或者減號,要先用括號把含字母的式子括起來,再在括號后面寫上單位的名稱。 4 將數(shù)值代入式子求值 把具體的數(shù)代入式子求值時,要注意書寫格式:先寫出字母等于幾,然后寫出原式, 再把數(shù)代入式子求值。 字母表示的是數(shù), 后面不寫單位名稱。 同一個式子,式子中所含字母取不同的數(shù)值,那么所求出的式子的值也不相同。 二、簡易方程 (一)方程和方程的解 1 方程:含有未知數(shù)的等式叫做方程。 注意方程是等式,又含有未知數(shù),兩者缺一不可。 方程和算術式不同。算術式是一個式子,它由運算符號和已知數(shù)組成, 它表示未知數(shù)。方程是一個等式,在方程里的未知數(shù)可以參加運算,并且只有當未知數(shù)為特定的數(shù)值時,方程才成立 。 2 方程的解:使方程左右兩邊相等的未知數(shù)的值,叫做方程的解。 三、解方程 解方程,求方程的解的過程叫做解方程。 四、列方程解應用題 1 列方程解應用題的意義 用方程式去解答應用題求得應用題的未知量的方法。 2 列方程解答應用題的步驟 a弄清題意,確定未知數(shù)并用 x 表示; b找出題中的數(shù)量之間的等量關系; c列方程,解方程; d檢查或驗算,寫出答案。 3 列方程解應用題的方法 綜合法:先把應用題中已知數(shù)(量)和所設未知數(shù)(量)列成有關的代數(shù)式,再找出它們之間的等量關系,進而列出方程。這是從部分到整體的一種思維過程,其思考方向是從已知推理到未知。 分析法:先找出等量關系,再根據(jù)具體建立等量關系的需要,把應用題中已知數(shù)(量)和所設的未知數(shù)(量)列成有關的代數(shù)式進而列出方程。 這是從整體到部分的一種思維過程,其思考方向是從未知推理到已知。 4 列方程解應用題的范圍 小學范圍內(nèi)常用方程解的應用題: a 一般應用題; b 和倍、差倍問題; c 幾何形體的周長、面積、體積計算 d 分數(shù)、百分數(shù)應用題; e 比和比例應用題。 五 比和比例 1 比的意義和性素 (1) 比的意義 兩個數(shù)相除又叫做兩個數(shù)的比。 “:”是比號,讀作“比”。比號前面的數(shù)叫做比的前項,比號后面的 數(shù)叫做比的后項。比的前項除以后項所得的商,叫做比值。 同除法比較, 比的前項相當于被除數(shù), 后項相當于除數(shù), 比值相當于商。 比值通常用分數(shù)表示,也可以用小數(shù)表示,有時也可能是整數(shù)。 比的后項不能是零。 根據(jù)分數(shù)與除法的關系,可知比的前項相當于分子,后項相當于分母,比值相當于分數(shù)值。 (2)比的性素 比的前項和后項同時乘上或者除以相同的數(shù)(0 除外),比值不變,這叫做比的基本性素。 (3)求比值和化簡比 求比- 配套講稿:
如PPT文件的首頁顯示word圖標,表示該PPT已包含配套word講稿。雙擊word圖標可打開word文檔。
- 特殊限制:
部分文檔作品中含有的國旗、國徽等圖片,僅作為作品整體效果示例展示,禁止商用。設計者僅對作品中獨創(chuàng)性部分享有著作權。
- 關 鍵 詞:
- 參考 材料 上海 滬教版 小學 數(shù)學知識 復習 整理
裝配圖網(wǎng)所有資源均是用戶自行上傳分享,僅供網(wǎng)友學習交流,未經(jīng)上傳用戶書面授權,請勿作他用。
鏈接地址:http://m.zhongcaozhi.com.cn/p-658338.html